第9讲 乘法速算
- 格式:doc
- 大小:62.00 KB
- 文档页数:4
速算方法一、个位数字的和为十,其他各位数字相同的两个数的速算方法。
个位前的数字加1乘自己的积的末尾添上个位上的数字的积。
如:56×54 5+1=6,6×5=30,在30的末尾添上个位上的数4与6的积24,得到3024,这样56×54=3024。
再如:61×69(6+1)×6=42,1×9=9,当个位上的数相乘的积是一位数时,仍要占两位,故在9的前面还应添一个0。
故61×69=4209。
二、十位相同,个位数字和不为10的两位数乘两位数的速算方法。
用一个数加上另一个数的个位上的数,乘以由十位上的数字组成的整十数,再加上个位上两个数的积。
例如:53×54=(53+4)×50+3×4=57×50+12=2850+12=2862三、个位上的数字相同,十位上的数字和为10的两个两位数相乘的速算方法,十位相乘加个位,末尾添上个位积。
(个位积不足两位,积前添0补足两位),例如:24×84 十位相乘加个位:2×8+4=20,个位积是:4×4=16,故24×84=2016。
练习:35×75 、17×97、 48×68四、各位数字和为10的两位数,与各位数字相同的两位数相乘的速算方法。
数字和为10的两位数的十位加1乘以各位相同的两位数的十位的积的末尾添上两个个位数的积。
(个位积不足两位添0补足两位)如:46×33数字和为10的两位数的十位加1乘以各位相同的两位数的十位的积:(4+1)×3=15,个位数字的积为:3×6=18,故46×33=1518五:个位上的数和为10,十位上的数相差1的两个两位数相乘的速算方法。
大数十位上的数乘10后的平方减去大数个位数的平方。
如:46×34=(4×10)×(4×10)-6×6=1600-36=1564。
小学奥数--速算巧算方法目录1 (3) (5) (8) (10) (14) (16)181920222323252729 注:《速算技巧》 (33)第五讲常用巧算速算中的思维与方法(4)方法一:拆数加减在分数加减法运算中,把一个分数拆成两个分数相减或相加,使隐含的数量关系明朗化,并抵消其中的一些分数,往往可大大地简化运算。
(1)拆成两个分数相减。
例如又如(2)拆成两个分数相加。
例如又如方法二:同分子分数加减同分子分数的加减法,有以下的计算规律:分子相同,分母互质的两个分数相加(减)时,它们的结果是用原分母的积作分母,用原分母的和(或差)乘以这相同的分子所得的积作分子。
分子相同,分母不是互质数的两个分数相加减,也可按上述规律计算,只是最后需要注意把得数约简为既约(最简)分数。
例如(注意:分数减法要用减数的原分母减去被减数的原分母。
)由上面的规律还可以推出,当分子都是1,分母是连续的两个自然数时,这两个分数的差就是这两个分数的积,根据这一关系,我们也可以简化运算过程。
例如方法三:先借后还“先借后还”是一条重要的数学解题思想和解题技巧。
例如做这道题,按先通分后相加的一般办法,势必影响解题速度。
现在从“凑整”着眼,采用“先借后还”的办法,很快就将题目解答出来了。
第六讲常用巧算速算中的思维与方法(5)方法一:个数折半下面的几种情况下,可以运用“个数折半”的方法,巧妙地计算出题目的得数。
(1)分母相同的所有真分数相加。
求分母相同的所有真分数的和,可采用“个数折半法”,即用这些分数的个数除以2,就能得出结果。
这一方法,也可以叙述为分母相同的所有真分数相加,只要用最后一个分数的分子除以2,就能得出结果。
(2)分母为偶数,分子为奇数的所有同分母的真分数相加,也可用“个数折半法”求得数。
比方(3)分母相同的所有既约真分数(最简真分数)相加,同样可用“个数折半法”求得数。
比方方法二:带分数减法带分数减法的巧算,可用下面的两个方法。
万能乘法速算技巧口诀在我们的日常生活中,乘法是一个非常常见的运算。
无论是在学校还是在工作中,乘法都是我们经常需要用到的。
然而,对于一些大数相乘的运算,我们可能会感到有些困惑,计算起来也相对较慢。
为了解决这个问题,我们可以学习一些乘法速算的技巧,帮助我们更快速地进行乘法运算。
一、乘法速算的基本思路乘法速算的基本思路是利用数的特性和运算规律,将复杂的乘法问题转化为简单的计算。
下面将介绍一些常见的乘法速算技巧,帮助大家更好地掌握乘法运算。
二、乘法速算技巧口诀1. 乘以10、100、1000...的倍数:在原数后面添相应数量的零即可。
2. 乘以9的倍数:将被乘数的每一位数字都减去1,然后用9减去得到的差值,再将得到的差值按原来的位置排列,最后添上一个9。
3. 乘以11的倍数:将被乘数的相邻位数字相加,得到的和作为中间位数,两端的数字不变。
4. 乘以5的倍数:将被乘数的一半加上一个0。
5. 乘以25的倍数:将被乘数的四分之一加上两个0。
6. 乘以50的倍数:将被乘数的四分之一加上两个0。
7. 乘以其他两位数:先将被乘数分别与十位数和个位数相乘,然后将两个结果相加。
8. 乘以其他三位数:先将被乘数分别与百位数、十位数和个位数相乘,然后将三个结果相加。
通过掌握这些乘法速算的技巧,我们可以更快速地进行乘法运算,提高计算效率,减少错误的发生。
三、实例演练为了更好地理解和掌握乘法速算技巧,下面将以一些实例来进行演练。
例1:计算25 × 5根据口诀6,将25的四分之一加上两个0,得到125。
例2:计算18 × 11根据口诀3,将18的相邻位数字相加,得到1+8=9,所以结果是198。
例3:计算36 × 24根据口诀7,先将36分别与2和4相乘,得到72和144,然后将两个结果相加,得到216。
通过以上的实例演练,相信大家对乘法速算技巧有了更加深入的理解。
四、乘法速算的应用场景乘法速算技巧不仅可以在日常生活中帮助我们更快速地进行乘法运算,还可以在解决一些实际问题时发挥重要的作用。
任何数乘9的速算方法摘要:1.乘9的速算方法概述2.乘9的速算技巧2.1 利用数字的特性2.2 两位数乘以9的计算方法2.3 三位数乘以9的计算方法3.乘9速算的应用4.总结与建议正文:乘9的速算方法在日常生活和数学计算中都非常实用。
下面我们将详细介绍乘9的速算技巧,帮助大家提高计算速度。
1.乘9的速算方法概述乘9的速算方法主要利用数字的特性,将乘法运算转化为加法运算。
对于一位数乘以9,直接将这个数字与9相乘即可。
例如:5×9=45。
2.乘9的速算技巧2.1 利用数字的特性当乘数是两位数或三位数时,我们可以先观察乘数的个位数,然后将乘数拆分成10的倍数和一个个位数。
例如:27×9=243。
我们可以将27拆分为20和7,然后计算20×9=180,7×9=63,最后将两个结果相加得到243。
2.2 两位数乘以9的计算方法对于两位数乘以9,我们可以先将这个两位数乘以10,然后再加上这个两位数乘以9。
例如:28×9=252。
我们可以先计算28×10=280,再计算28×9=252,最后将两个结果相加得到252。
2.3 三位数乘以9的计算方法对于三位数乘以9,我们可以先将这个三位数乘以100,然后再乘以9,最后再加上这个三位数乘以10。
例如:369×9=3321。
我们可以先计算369×100=36900,再计算369×9=3321,最后将两个结果相加得到3321。
3.乘9速算的应用乘9的速算方法在日常生活和数学计算中都有广泛的应用。
例如,在计算购物金额时,可以快速估算出商品价格乘以9的结果,以便提前准备好足够的现金。
4.总结与建议乘9的速算方法是一种简单且实用的计算技巧,通过掌握乘9的速算方法,我们可以大大提高数学计算的速度。
两个20以内数相乘,将一数的个位数与另一个数相加乘以10,然后再加两个尾数的积,就是应求的得数。
如12×13=156,计算程序是将12的尾数2,加至13里,13加2等于15,15×10=150,然后加各个尾数的积得156,就是应求的积数。
两个十位数相乘,首尾数相同,而尾十互补,其计算方法是:头加1,然后头乘为前积,尾乘尾为后积,两积连接起来,就是应求的得数。
如26×24=624。
计算程序是:被乘数26的头加1等于3,然后头乘头,就是3×2=6,尾乘尾6×4=24,相连为624。
三.乘数加倍,加半或减半的乘法在首同尾互补的计算上,可以引深一步就是乘数可加倍,加半倍,也可减半计算,但是:加倍、加半或减半都不能有进位数或出现小数,如48×42是规定的算法,然而,可以将乘数42加倍位84,也可以减半位21,也可加半倍位63,都可以按规定方法计算。
48×21=1008,48×63=3024,48×84=4032。
有进位数的不能算。
如87×83=7221,将83加倍166,或减半41.5,这都不能按规定的方法计算。
一个数首尾互补,而另一个数首尾相同,其计算方法是:头加1,然后头乘头为前积,尾乘尾为后积,两积相连为乘积。
如37×33=1221,计算程序是(3+1)×3×100+7×3=1221。
两个十位数互补,两个尾数相同,其计算方法是:头乘头后加尾数为前积,尾自乘为后积。
如48×68=3264。
计算程序是4×6=24 24+8=32 32为前积,8×8=64为后积,两积相连就得3264。
两个十位数相乘,首位数相同,而两个尾数非互补,计算方法:头加1,头乘头,尾乘尾,把两个积连接起来。
再看尾和尾的和比10大几还是小几,大几就加几个首位数,小几就减掉几个首位数。
乘法速算口诀速算,看了一定會有用1.十几乘十几:口诀:头乘头,尾加尾,尾乘尾。
例:12×14=?解: 1×1=12+4=62×4=812×14=168注:个位相乘,不够两位数要用0占位。
2.头相同,尾互补(尾相加等于10):口诀:一个头加1后,头乘头,尾乘尾。
例:23×27=?解:2+1=32×3=63×7=2123×27=621注:个位相乘,不够两位数要用0占位。
3.第一个乘数互补,另一个乘数数字相同:口诀:一个头加1后,头乘头,尾乘尾。
例:37×44=?解:3+1=44×4=167×4=2837×44=1628注:个位相乘,不够两位数要用0占位。
4.几十一乘几十一:口诀:头乘头,头加头,尾乘尾。
例:21×41=?解:2×4=82+4=61×1=121×41=8615.11乘任意数:口诀:首尾不动下落,中间之和下拉。
例:11×23125=?解:2+3=53+1=41+2=32+5=72和5分别在首尾11×23125=254375注:和满十要进一。
6.十几乘任意数:口诀:第二乘数首位不动向下落,第一因数的个位乘以第二因数后面每一个数字,加下一位数,再向下落。
例:13×326=?解:13个位是33×3+2=113×2+6=123×6=1813×326=4238注:和满十要进一。
一、关于9的数学速算技巧(两位数乘法)关于9的口诀:1 × 9 = 92 × 9 = 183 × 9 = 274 × 9 = 365 × 9 = 456 × 9 = 547 × 9 = 638 ×9 = 729 × 9 = 81上面的口诀小朋友们已经会了吗?小学一年级可能只学了加法,二年级第一学期数学就要学乘法口诀了。
其实很多家长可能在小朋友没上学时就教会了上面的口诀了。
但是小朋友有没有再细看一下上面的口诀有什么特点呢?从上面的口诀口有没有看到从1到9任何一个数和9相乘的积,个位数和十位数的和还是等于9。
你看上面的:0 + 9 =9;1 + 8 = 9;2 + 7 = 9;3 + 6 = 9;4 +5 = 9;5 + 4 = 9;6 + 3 = 9;7 + 2 = 9;8 + 1 = 9或许小朋友们会问,发现这个秘密有什么用呢?我的回答是很有用的。
这是锻炼你们善于观察、总结、找出事物规律的基础。
下面我们再做一些复杂一点的乘法:18 × 12 = ? 27 × 12 = ? 36 × 12 = ? 45 × 12 = ?54 × 12 = ? 63 × 12 = ? 72 × 12 = ? 81 × 12 = ?关于两位数的乘法,可能要等到3年级才能学到,但小朋友是不是看到了上面的题目中,前面的乘数都是9的倍数,而且个位和十位的和都等于9。
这样我们能不能找到一种简便的算法呢?也就是把两位数的乘法变成一位数的乘法呢?我们先把上面这些数变一变。
18 = 1 × 10 + 8;27 = 2 × 10 + 7;36 = 3 × 10 + 6;45 = 4 × 10 + 5;54 = 5 × 10 + 4;63 = 6 × 10 + 3;72 = 7 × 10 + 2;81 = 8 × 10 + 1;我们再把上面的数变一变好吗?1 × 10 + 8 = 1 × 9 + 1+8 = 1 × 9 + 9 = 1 × 9 + 9 =2 × 9当然如果知道口诀你们可以直接把18 = 2 × 9这里主要是为了让小朋友学会把一个数拆来拆去的方法。
第9讲乘法速算
一、知识要点
我们已经学会了整数乘法的计算方法,但计算多位数乘法要一位一位地乘,运算起来比较麻烦。
其实,多位数与一些特殊的数相乘,也可以用简便的方法来计算。
计算乘法时,如果一个因数是25,另一个因数考虑可拆成4×几,这样可“先拆数再扩整”。
两位数、三位数及更高位数乘以11,可采用“两头一拉,中间相加”的办法,但要注意相邻两位相加作积的中间数时,哪一位上满十要向前一位进一。
比如两位数乘以11,我们有“两位数与11相乘,首尾不变中间变,左右相加放中间,满十进一头就变。
”
二、精讲精练
【例题1】试着计算下列各题,你发现了什么规律?
(1)26×11 (2)57×11 (3)253×11 (4)467×11
练习1:很快算出下面各题的结果。
(1)12×11 (2)34×11 (3)25×11 (4)11×44
(5)48×11 (6)65×11 (7)11×75 (8)87×11
【例题2】下面的乘法计算有规律吗?
(1)25×24 (2)21×25 (3)25×427 (4)1998×25
练习2:速算。
(1)12×25 (2)34×25
(3)25×121 (4)25×46
【例题3】很快算出下面各题的结果。
(1)24×15 (2)248×15 (3)5678×15
练习3:很快算出下面各题的结果。
(1)34×15 (2)436×15 (3)8472×15
【例题4】很快算出下面各题的结果。
(1)45×9 (2)32×99 (3)78×999
练习4:计算。
(1)32×9 (2)461×9 (3)1234×9
(4)45×99 (5)85×99 (6)728×99
【例题5】下面的乘法计算有规律吗?
(1)15×15 (2)25×25 (3)35×35 (4)45×45 (5)65×65 (6)95×95
练习5:速算。
(1)55×55 (2)75×75 (3)85×85
三、课后作业
很快算出下面各题的结果。
(1)105×105 (2)125×125 (3)995×995 (4)124×11 (5)305×11 (6)439×11
(7)872×11 (8)148×25 (9)643×25 (10)25×7252 (11)5678×25 (12)24×999 (13)3×999 (14)56×999。