无刷直流电机(BLDC)双闭环调速解析
- 格式:pdf
- 大小:109.78 KB
- 文档页数:5
江苏科技大学15届毕业设计(论文)无刷直流电机的双闭环控制设计系部:自动化专业名称:电气工程及其自动化班级:11403041学号:1140602116作者: 龚昊指导教师: 王伟然年月日无刷直流电机的双闭环控制设计The design of double closed loop control of the brushlessDC motor江苏科技大学毕业设计(论文)任务书学院名称:电子信息学院专业:电气工程及其自动化学生姓名:龚昊学号:1140602116指导教师:王伟然职称:讲师摘要由于电子技术,计算机技术,传感器技术,电力电子技术,现代控制理论和新型永磁材料的发展,永磁无刷直流电动机及其控制技术已有突破性进展。
近20年来,永磁无刷直流电机因其结构简单,调速性能好,控制方法灵活多变,效率较高,起动转矩大,运行寿命长等优点,日趋广泛应用于航空航天,计算机,军事,汽车,工业和家用电器等领域。
本文针对无刷直流电动机选取双闭环控制技术进行调速。
首先,介绍了无刷直流电机的特点及其结构和原理;其次,建立了无刷直流电机的模型,进行数学分析;再次,采用双闭环PI调速,主要针对其PI控制器进行了相关设计与改进,消除无刷直流电机稳态时的静差;最后,基于MATLAB/SIMULINK平台,建立控制系统的仿真模型,对无刷直流电动机速度闭环控制系统进行仿真。
仿真结果显示该模型转矩响应较快,电流脉动较小,电机工作稳定可靠,具有良好的静动态特性。
无刷直流电机的双闭环控制采用电流滞环,结构简单、响应快速,具有一定理论与应用意义。
关键词:无刷直流电动机;双闭环控制;数学模型;MATLAB;AbstractSince the development of electronic technology, computer technology, sensor technology, power electronics technology, modern control theory and new permanent magnetic material.Permanent magnet brushless dc motor and its control technology has made a breakthrough.During the past 20 years,since its simple structure,good performance of speed adjustment,variable control methods,high efficiency ,large starting torque and long service life and so on.The brushless dc motor is now increasingly used in fields like aerospace,computer,military,cars,industry andhousehold appliance.This passage is based on the speed control of the brushless dc motor.Double closed-loop control technology isused for researching and analysising among numerous control methods.At first,it has introduced the research backgroundof the brushless dc motor.Next,based on the working principle of the brushless dc motor,the model of the brushless dc motor has been established to do mathematical analysis. After that,we take double closed loop speed regulation,and mainly design and improve PI regulator tomake the brushless dc motor astatic in steady state.At lastin order to make simulation of control system for brushlessdc motor speed closed-loop control system,we establish the simulation model of control system which based onMATLAB/SIMULINK platform.The result of simulation shows that the response oftorque is quick and the pulsation of current is small.Themotor can work reliable and has good static characteristic.We use current hysteresis band in thecontrol system since its simple structure and quick response,it is based on reliable theory and is meaningfulin application.Keywords:brushless direct current motor;double closed-loop control;mathematical models ;MATLAB;目录第一章绪论11.1无刷直流电动机11.1.1无刷直流电机的简介 (1)1.1.2 无刷直流电机的特点11.1.3 无刷直流电机在工业中的地位及应用21.1.3.1定速驱动机械21.1.3.2调速驱动机械31.1.3.3精密控制31.2无刷直流电机国内外研究现状41.3无刷直流电机的发展趋势41.3.1无刷直流电机的发展前景 (4)1.3.2控制策略的发展 (6)1.4 本课题的研究意义71.5 章节安排81.6本章小结8第二章无刷直流电机的工作原理及其数学模型错误!未定义书签。
BLDC无刷直流电机控制算法
BLDC (Brushless DC) 无刷直流电机是一种在很多应用领域中广泛使
用的电机类型,它具有高效率、高可靠性和较长寿命的特点。
为了有效控
制BLDC电机,需要采用适当的控制算法来实现其速度、位置或扭矩控制。
本文将介绍几种常见的BLDC电机控制算法,包括电速算法、电流环控制
算法和磁场导向控制算法。
1. 电速算法:电速算法是最简单和常见的BLDC电机控制方法之一、
它基于测量或估算电机转子速度,并将速度信号与期望速度进行比较,然
后根据比较结果调整电机的相序。
通过适当的相序调整,可以实现对电机
速度的控制。
在电速算法中,通常使用霍尔传感器或反电动势(back EMF)方法来测量电机转子的实时速度。
2. 电流环控制算法:电流环控制算法是一种高级的BLDC电机控制方法,通过控制电流来实现对电机扭矩和速度的控制。
它基于电机的电流反
馈和期望电流之间的差异,通过调整电压来控制电机的转矩输出。
电流环
控制算法通常使用PID(Proportional-Integral-Derivative)控制器来
实现高精度的电流调节。
3.磁场导向控制磁场导向控制算法是一种高级的BLDC电机控制算法,通过测量或估算电机转子位置和速度,实现对电机的精确位置控制。
磁场
导向控制算法基于电机转子位置和速度信息,将电机的磁场定向到期望位置,并通过适当的电流控制来实现转子位置的精确控制。
无刷直流电机滞环控制原理
无刷直流电机(BLDC)的滞环控制原理是基于电流反馈和比较器的。
这个
原理可以理解为将电机的实际电流与设定的参考电流进行比较,如果实际电流大于参考电流,则电机控制器会发送一个信号使电机反转;如果实际电流小于参考电流,则电机控制器会发送一个信号使电机正转。
滞环控制的工作原理如下:
1. 设定一个阈值(滞环宽度),这个阈值决定了控制精度。
2. 将电机的实际电流与设定的参考电流进行比较。
3. 如果实际电流大于参考电流,并且实际电流处于设定的滞环宽度内,那么控制器将通过驱动器将电机的极性反转,从而使电机反转。
4. 如果实际电流小于参考电流,并且实际电流处于设定的滞环宽度内,那么控制器将通过驱动器使电机保持当前极性,从而使电机正转。
5. 重复以上步骤,直到电机的实际电流与参考电流之间的偏差小于滞环宽度。
滞环控制具有响应速度快、动态性能好、抗干扰能力强等优点。
但同时,由于其依赖于电流反馈,因此对电流传感器的精度和稳定性要求较高。
无刷直流电机的电流闭环控制作者:赵念科来源:《数字技术与应用》2013年第03期摘要:分析了BLDCM的换相转矩脉动,指出了引起转矩脉动的主要原因是:关断相电流的下降速度大于开通相电流的上升速度,得到了减小电机低速运行时非换相电流脉动的方法,该方法的原理是令换相期间脉宽调制信号的占空比等于两倍的稳定运行时脉宽调制信号的占空比α1 (2α1=α法)。
在此基础上,提出了基于三相电流的相电流闭环控制。
指出只有三相电流控制才能有效控制相电流。
分别通过仿真验证了基于三相电流的相电流闭环控制能够有效的减小非换相电流的脉动。
关键词:BLDCM 相电流控制转矩脉动中图分类号:TM351 文献标7识码:A 文章编号:1007-9416(2013)03-0003-021 引言理想情况下,BLDCM的三相反电势是互差120°电角度的梯形波,该梯形波的平顶宽度为120°电角度,三相电流为互差120°电角度的矩形波,该矩形波的宽度也为120°电角度。
此时,BLDCM的输出转矩脉动较小。
但是,在实际情况中,反电势和相电流并非理想的梯形波和矩形波。
因此,根据转矩脉动产生的根源,可以将BLDCM的转矩脉动分为齿槽转矩脉动、斩波转矩脉动和换相转矩脉动三种[1]。
在BLDCM调速中,一般采用PWM技术[2]。
在采样控制理论中有一个重要的结论:冲量相等而形状不同的窄脉冲加在具有惯性的环节上时,其效果基本相同。
该原理称为面积等效原理,它是PWM控制技术的重要理论基础。
即通过一系列脉冲的宽度进行调制,来等效地获得所需要的电压波形,以改变施加在电机绕组上的相电压。
BLDCM的驱动器其实就是三相逆变器,PWM控制技术在逆变电路中的应用最广泛,对逆变器的影响也最深刻。
现在大量应用的逆变电路中,绝大部分都是PWM型逆变电路[3]。
不同的PWM开关状态将导致电机相绕组上施加不同的外加电压,不同的外加电压将产生不同的电流上升或下降速度,从而引起转矩随开关状态的变化而脉动,即斩波转矩脉动[4]。
研旭BLDC 闭环控制电机速度计算原理:
研旭配BLDC 的直流无刷电机内部有霍尔传感器,电机每转动一圈进12次CAP 中断(有的用户会疑惑,按照一般理解应该进6次CAP 中断才对,为什么是进12次呢?但是,我们通过对电机的实际测试,转动一圈真的是进12次CAP 中断),通过定时器计算电机转动一圈(即进12次CAP 中断)需要多少时间,这样就可以计算得到电机转动的速度了。
所以在初始化的时候程序要开启一个定时器作为定时,定时时长为t(us),在定时器中断内对一个变量count 计数,每一次中断count 自增1。
在CAP 中断内有一个变量l 对进CAP 的次数计数,在CAP 中断内判断l 是不是等于12,如果等于12那就是已经转过一圈,则计算定时器总的计数时间:
t 乘以count ,单位是微秒us ,那么转速=圈数/时间,即count
t ×=1Speed ,单位是转/us 。
以28335的控制举例:
定时器定时10us ,相应的定时器配置为:
定时器总时间count t SumTime ×=,单位是us ,
转速SumTime
Speed 1=,单位是转/us ,换算为转/分钟则为SumTime
Speed 601016××=,单位是转/min ,然后将Speed 放进速度的数组speed[]内。
如果发现我们例程计算与上述计算方法有矛盾的地方可以自己尝试修改,观察速度的计算值,我们将会不断完善我们的例程。
无刷直流电机pwm调速原理
无刷直流电机(BLDC)是一种电动机,其转子上没有传统的电刷。
相比传统的有刷直流电机,BLDC电机拥有更高的效率和可靠性。
为了实现BLDC电机的调速,通常使用PWM(脉宽调制)技术。
PWM调速原理如下:在电机电源上加上一个有特定占空比的方波信号,即PWM信号。
PWM信号的占空比决定了电机的平均电压,从而决定了电机的转速。
当PWM信号的占空比增加时,电机的平均电压也会增加,电机的转速也会随之增加。
反之,当PWM信号的占空比减小时,电机的平均电压也会减小,电机的转速也会减小。
BLDC电机的控制主要包括两个方面:判断当前转子位置和根据位置控制电机。
判断转子位置通常采用霍尔传感器或反电动势感应法。
在控制电机时,可以采用开环控制或闭环控制。
开环控制指直接根据PWM信号控制电机转速;闭环控制则需要通过传感器反馈来调整PWM信号的占空比,使电机达到预期转速。
PWM调速技术不仅可以用于BLDC电机,也可以用于其他类型的电机调速。
通过合理的PWM信号设置,可以实现电机的精确调速和控制。
- 1 -。
直流无刷电机驱动原理直流无刷电机(BLDC)是一种新型的电机,它采用了电子换向技术,相较于传统的有刷直流电机,具有更高的效率、更低的噪音和更长的使用寿命。
在现代工业和家用电器中,直流无刷电机已经得到了广泛的应用,如电动汽车、空调、洗衣机等领域。
本文将介绍直流无刷电机的驱动原理,帮助读者更好地理解和应用这一技术。
直流无刷电机的驱动原理主要包括三个方面,电子换向、PWM调速和闭环控制。
首先,我们来介绍电子换向技术。
传统的有刷直流电机通过机械换向实现电流的反向,而直流无刷电机则通过内置的传感器或者霍尔传感器来检测转子位置,从而实现电子换向。
当转子转动到特定位置时,电机控制器会根据传感器信号来切换电流的方向,使得电机能够持续地旋转。
这种电子换向技术不仅提高了电机的效率,还减少了摩擦和磨损,延长了电机的使用寿命。
其次,PWM调速是直流无刷电机的另一个重要驱动原理。
PWM(脉冲宽度调制)是一种调节电机转速的方法,通过改变电机输入的脉冲宽度和频率来控制电机的转速。
当需要调节电机转速时,控制器会改变PWM信号的占空比,从而改变电机的平均电压和电流,实现电机的调速功能。
这种调速方式不仅响应速度快,而且能够有效地节能减排,符合现代工业对节能环保的要求。
最后,闭环控制是直流无刷电机驱动的关键技术之一。
闭环控制通过传感器实时监测电机的转速和位置,将监测到的信号反馈给控制器,从而实现对电机的精准控制。
在一些对转速和位置要求较高的应用中,闭环控制能够保证电机的稳定性和精度,提高了电机的性能和可靠性。
总之,直流无刷电机的驱动原理涉及到电子换向、PWM调速和闭环控制这三个方面。
通过这些技术手段,直流无刷电机能够实现高效、低噪音、长寿命的工作特性,广泛应用于各个领域。
希望本文能够帮助读者更好地理解直流无刷电机的驱动原理,为相关领域的工程师和技术人员提供参考和借鉴。
无刷直流电机pwm调速原理:从实现到优化无刷直流电机(BLDC)已经成为现代工业中最受欢迎的驱动电机类型之一,其中最常见的控制方式之一是使用脉冲宽度调制(PWM)来实现电机转速控制。
本文将介绍BLDC PWM调速的原理,探讨其应用和优化方法。
1.BLDC PWM调速原理
BLDC电机通过能够确定电机行驶方向和旋转计数器的位置,由调速器交替地开启电机的三个相位,以控制BLDC转动速度。
使用PWM调速的方法是在电机引脚间交替应用高电平和地电平的脉冲,以实现BLDC的转速调整。
具体来说,PWM控制器会在转子旋转时通过电感检测组合三相MOSFET晶体管进行电流控制,来达到恒速的转速调整目的。
2.BLDC PWM调速应用
BLDC PWM调速广泛应用于电动工具、电动车、无人机、机器人等设备中。
在实际应用中,我们需要根据实际需求进行相应的电机转速匹配,以保证电机最大负载工作状态下的能效。
此外,为了避免电机由于承受过大负载而损坏,我们还需要通过PWM调速来限制电机最大负荷。
3.BLDC PWM调速优化
BLDC PWM调速优化方法包括提高PWM更新频率、增加开短路时间、使用低电流逆变器等。
提高PWM更新频率可以增加电机速度和位置反馈的精度,提高控制精度和稳定性;增加开短路时间可以防止电机发生过载时被动烧毁。
但是这也会增加功率损耗,因此需要根据实际需求进行权衡。
使用低电流逆变器会降低电机的当前需求,从而增加开短路时间,提高系统效率。
总之,在BLDC PWM调速中,我们需要根据实际的需求选择适当的电机转速,以增加设备的性能和效率;同时,我们也需要注意调节PWM 控制器的参数,从而达到最大的能效和系统稳定性。
无刷直流电机(BLDC)双闭环调速解析无刷直流电机(BLDC)双闭环调速系统在无刷直流电机双闭环调速系统中,双闭环分别是指速度闭环和电流闭环。
对于PWM 的无刷直流电机控制来说,无论是转速的变化还是由于负载的弯化引起的电枢电流的变化,可控量输出最终只有一个,那就是都必须通过改变PWM的占空比才能实现,因此其速度环和电流环必然为一个串级的系统,其中将速度环做为外环,电流环做为内环。
调节过程如下所述:由给定速度减去反馈速度得到一个转速误差,此转速误差经过PID调节器,输出一个值给电流环做给定电流,再由给定电流减去反馈电流得到一个电流误差,此电流误差经过PID 调节器,输出一个值就是占空比。
在速度环和电流环的调节过程中,PID的输出是可以作为任意量纲(即无量纲,用标幺值来表示;标幺值:英文为per unit,简写为pu,是各物理量及参数的相对单位值,是不带量纲的数值)来输入给下一环节或者执行器的,因此无需去管PID输出的量纲,只要是这个输出值反映了给定值和反馈值的差值变化,能够使这个差值无限趋近于零即可,相当于将输出值模糊化,不用去搞的太清楚,如果你要是一直在这里纠结输出值具体是个什么东西时,那么你就会瞎在这里出不来了。
假如你要控制一个参数,并且这个参数的大小和你给定量和反馈量有着直接的关系(线性关系或者一阶导数关系或者惯性关系等),那么就可以不做量纲变换。
比如速度环的PID之后的输出就可以直接定义为转矩,因为速度过慢就要提高转矩,速度过快就要减小转矩,PID输出量的意义是调整了这个输出量,就可以直接改变你要最终控制的参数,并且这个输出量你是可以直接来控制的,这种情况下PID输出的含义是你可以自己定的,比如直流电机,速度环输出你可以直接定义为转矩,也可以定义为电流,然后适当的调节PID的各个参数,最终可以落到一个你能直接控制的量上,在这里最终的控制量就是占空比的值,当占空比从0%—100%时对应要写入到寄存器里面的值为0—3750时,那么0—3750就是最终的控制量的范围。