铁路线路纵断面
- 格式:pptx
- 大小:1.09 MB
- 文档页数:57
铁路线路纵断面设备标准和修理要求第3.2.1条线路大修时,应改善线路坡度。
如既有线路坡度超过限制坡度且改善困难时,可保持原状。
线路大修纵断面设计,应符合下列规定:一、应设计长坡段。
允许速度大于160km/h的线路最小坡段长度不应小于600m,困难条件下最小坡段长度不应小于400m;其他线路坡段长度不应小于该区段到发线有效长度的一半,个别困难地段也不应小于200m。
二、相邻坡段的连接,应按原线路标准设计为抛物线形或圆曲线形竖曲线。
1.允许速度不大于160km/h的线路,采用抛物线形竖曲线时,若相邻坡段的坡度代数差大于2‰,应设置竖曲线。
20 m范围内竖曲线的变坡率,凸形不应大于1‰,凹形不应大于0.5‰。
采用圆曲线形竖曲线时,若相邻坡段的坡度代数差大于3‰,应设置竖曲线,竖曲线半径不得小于10000m,困难地段不得小于5000m。
2.允许速度大于160km/h的线路,坡度代数差不小于1‰时,应设置圆曲线形竖曲线,竖曲线半径不应小于15000 m,且长度不应小于25m。
竖曲线不得与竖曲线、缓和曲线重叠,不得侵入道岔、调节器及明桥面。
第3.2.2条两线路中心距不大于5 m时,其轨面标高应设计为同一水平,困难地段高度差可不大于300 mm,但易被雪埋地段的轨面标高差不应大于150 mm,道口处不应大于100 mm。
第3.2.3条大修地段与非大修地段的连接顺坡,应设在大修地段以外。
其顺坡率为:允许速度不大于120 km/h的线路不应大于2.0‰,允许速度为120(不含)~160km/h的线路不应大于1.0‰,允许速度大于160 km/h的线路不应大于0.8‰。
第三节有砟道床第3.3.1条道床大修,枕下道床厚度应符合表3.3.1的规定。
道床厚度标准(mm)表3.3.1五年内年计划通过总质量(Mt)W年≥50 50>W年≥25 25>W年≥15 W年<15无垫层的碎石道床一般路基450 450 400350 不易风化的岩石、碎石路基350 350 30030有垫层的碎石道床(碎石/垫层)300/200 300/200 250/200250/20有砟桥面υmax≤120km/h 250上的碎石道床υmax>120km/h 300注:允许速度大于120km/h的线路,无垫层时碎石道床厚度不得小于450mm;有垫层时碎石道床厚度不得小于300mm,垫层厚度不得小于200mm。
线路的纵断面名词解释线路的纵断面,这可真是个挺有趣的概念呢。
咱就把线路想象成一条长长的路,这纵断面呢,就像是把这条路从中间一刀切开,然后看它的侧面。
你看,就好比你有一个长长的面包,你横着切一刀看到的是面包片,那是横断面,要是竖着切一刀看面包的侧面,那大概就类似线路的纵断面啦。
纵断面主要是用来表示线路在垂直方向上的形状和变化的。
它会告诉你这条线路是平平整整的呢,还是一会儿高一会儿低,像坐过山车似的。
比如说铁路线路吧,如果它的纵断面设计得不合理,火车跑起来就会特别费劲,就像人爬山,一会儿要上特别陡的坡,一会儿又要下很陡的坡,累得气喘吁吁的。
在线路的纵断面图上,有好多重要的东西呢。
有高程,这高程就像是每个点的高度标记。
你可以把它想象成是在每个点上都插了一根小杆子,杆子的高度就是高程。
还有坡度,坡度这个东西可太关键了。
如果坡度太陡,那不管是汽车在公路上跑,还是火车在铁轨上跑,都得小心翼翼的。
这就跟人走路一样,要是走在一个特别陡的坡上,一不小心就会摔倒。
要是坡度缓一点呢,那就轻松多了,就像在平地上散步似的。
而且啊,纵断面里还有坡长的概念。
这坡长就像是一段路程的长度。
要是坡太长了,一直是上坡或者一直是下坡,那对于行驶在这条线路上的交通工具来说,也是个不小的挑战。
就好比一个人要跑很长很长的上坡路,跑着跑着就没力气了。
再说说竖曲线吧。
竖曲线是为了让线路在坡度变化的时候过渡得更平滑。
这就好比你在搭积木的时候,要是两块积木的高度不一样,直接把它们拼在一起就会很突兀。
但是如果在中间加一个小弧形的过渡,看起来就舒服多了。
线路中的竖曲线就是起到这样一个让过渡自然的作用。
那为什么要这么仔细地研究线路的纵断面呢?这就跟我们盖房子要打好地基一样重要。
对于交通线路来说,合理的纵断面设计可以保证行驶的安全、舒适和高效。
要是没有好好考虑纵断面,就像盖房子没有打好地基,房子可能就会摇摇欲坠。
线路的纵断面其实就是线路在垂直方向的一个详细的“画像”。
铁路线路的平面和纵断面一、铁路线路的平面及平面图一条铁路线路在空间的位置是用它的线路中心线表示的。
中心线点的位置是在路肩连线CD的中点O,如图2-1-2所示。
图2-1-2铁路线路中心线点的位置(一)铁路线路平面的组成要素线路中心线在水平面上的投影,叫做铁路线路的平面;线路中心线(展直后)在垂直面上的投影,叫做铁路线路的纵断面。
从运营的观点来看,最理想的线路是既直又平的线路。
但是天然地面情况复杂多变(有山、水、沙漠、森林、矿区、城镇等障碍物和建筑物),如果把铁路修得过于平直,就会造成工程数量和工程费用大,且工期长,这样既不经济,又不合理,有时也不现实。
从工程的角度来看,铁路线路最好是随自然地形起伏变化,这样,既可以减少工程数量、降低造价,甚至可以缩短工期。
但是这会给列车运营造成很大困难,甚至影响铁路行车的安全与平稳。
选定铁路线路的空间位置,应该综合考虑工程和运营的要求,通过方案比较,在满足运营基本要求的前提下,尽量减少工程量,降低造价。
如某条铁路经过A、B、C三点(图2-1-3),如果把AB和BC分别用直线连接起来,那么在AB之间要建筑两座桥梁,在BC 之间要开凿一座隧道。
在工程上是不合理、不经济的,而应分别用折线ADB和BEC来代替。
在折线的转角处,则用曲线来连接。
因此,直线和曲线就成为线路平面的组成要素。
图2-1-3铁路线路绕避地形障碍示意图(二)曲线附加阻力与曲线半径列车在线路上运行,总会受到各种阻力。
阻力方向与列车运行方向相反。
归纳起来,阻力主要有两大类。
1.基本阻力基本阻力是指列车在空旷地段沿平、直轨道运行时所受到的阻力。
包括车轴与轴承之间的摩擦阻力、轮轨之间的摩擦阻力,以及钢轨接头对车轮的撞击阻力等。
基本阻力在列车运行时总是存在的。
2.附加阻力附加阻力是列车在线路上运行时,除基本阻力外所受到的额外阻力。
如坡道阻力、曲线阻力、起动阻力等。
附加阻力随列车运行条件或线路平、纵断面情况而定。
线路平面上有了曲线(弯道)后,给列车运行造成阻力增大和限制列车速度等不良影响。
铁路线路纵断面设计3.2 纵断面3.2.1 设计线(或区段)的限制坡度应根据铁路等级、地形条件、牵引种类和运输要求比选确定,并应考虑与邻接铁路的牵引质量相协调,但不得大于表3.2.1规定的数值。
表3.2.1 限制坡度最大值(‰)3.2.2 根据地形、工程和运输需求,经过比选,各级铁路均可采用加力牵引坡度。
加力牵引坡度的使用应符合下列规定:1 加力牵引坡度应集中使用。
加力牵引地段宜与区段站或其他有机务设备的车站邻接。
2 加力牵引坡度应根据牵引质量、机车类型、机车台数及加力牵引方式按下式计算确定:式中i j1——加力牵引坡度(‰),以0.5‰为单位取值;n——机车台数;λy——机车牵引力使用系数,取λy=0.9;λk——第k台机车的牵引力取值系数,根据加力牵引方式和操纵方法按国家现行标准《列车牵引计算规程》TB/T 1407的规定取值;F jk——第k台机车在本务机车计算速度时的牵引力(N);P k——第k台机车的质量(t);Q——牵引质量(t);w′0k——第k台机车在本务机车计算速度时的单位基本阻力(N/t);w″0——车辆在本务机车计算速度时的单位基本阻力(N/t);g——重力加速度,取9.81m/s2。
3 各级铁路电力、内燃牵引的加力牵引坡度值分别不得大于30.0‰和25.0‰。
4 采用相同类型的机车加力牵引时,各种限制坡度相应的加力牵引坡度可采用表3.2.2规定的数值。
表3.2.2 电力和内燃牵引的加力牵引力坡度(‰)注:内燃牵引的加力牵引坡度值是按机车牵引力未进行海拔与气温修正计算的,条件不同时应按公式(3.2.2)计算确定。
3.2.3 轻、重车方向货流显著不平衡,将来也不致发生巨大变化,且分方向采用不同限制坡度有显著经济价值时,可分方向选择限制坡度,但Ⅰ级铁路仅在特殊困难条件下,有充分技术经济依据时方可采用。
轻车方向的最大坡度值不宜大于重车方向的三机牵引坡度值,且应进行重车方向的下坡制动安全检算。
第一章 线路平面和纵断面运行列车和机车车辆的线路称为铁路线路,简称线路。
线路是机车车辆和列车运行的基础,它是由路基、桥隧建筑物、轨道组成的一个整体的工程结构。
为使列车按规定的最高速度安全、平稳和不间断地运行,铁路线路必须经常保持完好状态。
铁路线路的平面与纵断面不但确定了其在空间的位置,同时也为路基、桥涵、隧道及站场等其他设备的设置提供依据,对铁路通过能力及输送能力都有直接影响。
从运营的观点来看,最理想的线路是既平又直,但是天然地面情况复杂多变,有山、水、沙漠、森林、矿区、城镇等障碍物和建筑物,如果把铁路修得过于平直,就会造成工程数量和工程费用的增加,并且将会延长工期。
所以,铁路线路平面与纵断面必须按线路等级和《铁路线路设计规范》规定的技术标准,结合具体情况设置。
第一节 线路平面铁路线路在空间的位置用它的中心线表示。
线路中心线在水平面上的投影,叫做铁路线路的平面。
线路平面能够表明线路的直、曲变化状态。
在线路平面设计时,为缩短线路长度和改善运营条件,应尽可能设计较长的直线段,但当线路遇到地形、地物等障碍时,为减少工程造价和运营支出,还应适当设置曲线。
为使列车由曲线到直线或由直线到曲线运行平稳,还应设置缓和曲线。
所以线路平面由直线、圆曲线以及连接直线与圆曲线的缓和曲线组成。
一、圆曲线铁道线路在转向处所设的曲线为圆曲线,如图1-1所示,其基本要素有:曲线半径R ,曲线转角α,曲线长度L ,切线长度T 。
在线路设计时,一般是先设计出α和R ,再按下式算出T 及L :tan2T R α=⨯ (m ) (1-1)π180L R α=⋅⋅(m ) (1-2)图1-1 圆曲线要素图曲线转角 的大小由线路走向、绕过障碍物的需要等确定。
圆曲线半径的大小,反映了曲线弯曲度的大小。
圆曲线半径愈小,弯曲度愈大,行车速度愈低,工程费用愈低。
反之,圆曲线半径愈大,弯曲度愈小,行车速度愈高,工程费用愈高。
因此,正确地选用曲线半径就显得十分重要。
线路纵断面铁路线路纵断面是线路中心线纵向展直后,其路肩高程在垂直面上的投影。
铁路线路纵断面由坡段(上坡、下坡、平坡)及连接相邻坡段的竖曲线组成。
线路纵断面标准包括坡度、限制坡度、变坡点与坡段长度、竖曲线等。
1.坡度线路的纵断面最好是平坡,但在工程上一般应根据地面的起伏设计成不同的坡道。
其坡度用坡道两端点高程差与其水平距离之比的千分率(‰)来表示,即1 000 m水平距离的线路上升或下降的以米计的高度。
2.限制坡度一定类型的机车、单机牵引一定重量的列车,在坡道上能够以计算速度做等速运行,这个最大坡度叫作限制坡度,简称限坡。
限坡是确定线路区段货物列车牵引重量的主要依据,也是铁路设计的主要技术标准之一。
若限坡大,则可以缩短线路长度、节省工程造价,但列车牵引重量小,输送能力低;若限坡小,则列车牵引重量和输送能力大、运营费用少,但线路长度要延长,工程量大,工程造价高。
因此,当设计一条线路的限坡时,应在满足该线路所需输送能力的情况下选择接近该线地形的自然坡度。
3.变坡点与坡段长度变坡点是线路纵断面上的坡度变化点。
相邻变坡点间的水平距离称为坡段长度。
从运营观点出发,纵断面最好有利于列车平顺运行,最好把纵断面设计成尽量长的同一坡度,以减少变坡点。
但在工程中,变坡点要和地面起伏相配合,较短的坡段更能适应地形的自然起伏,减少工程量。
因此,有时会出现过多的变坡点,使坡段长度缩短。
为兼顾起见,在设计纵断面时,有必要规定坡段的最短长度,一般应考虑使一个列车长度的变坡点不超过两个,以减少变坡点附加力的叠加影响,即坡段长度不宜小于远期货物列车长度的一半。
我国普速铁路最小坡段长度为200~500 m,视设计线的远期到发线的有效长度而定。
4.竖曲线在列车经过变坡点时,坡道起伏会使车钩内产生附加应力。
为避免因该应力过大而造成断钩事故,当相邻坡度的代数差超过一定限制时,还应在相邻坡段用一段圆顺的曲线连接,这种在线路垂直面上的曲线称为竖曲线。
第二节铁路线路的平面和纵断面(于本章最后讲)铁路线路在空间的位置是用它的中心线来表示的。
线路中心线是指距外轨半个轨距的铅垂线 AB 与两路肩边缘水平连线 CD 交点 O 的纵向连线。
如下图所示:线路横断面线路中心线在水平面上的投影,叫做铁路线路的平面,表明线路的直、曲变化状态;线路中心线展直后在铅垂面上的投影,叫铁路线路的纵断面,表明线路的坡度变化。
一、铁路线路的平面及平面图线路的平面由直线、圆曲线以及连接直线与圆曲线的缓和曲线组成。
(一)曲线铁路线路在转向处所设的曲线为圆曲线,其基本组成要素有:曲线半径 R ,曲线转角α ,曲线长 L ,切线长度 T ,如下图所示:圆曲线要素在线路设计时,一般是先设计出α和 R,在按下式计算出T及L:曲线半径愈大,行车速度愈高,但工程量愈大,工程费用愈高。
(二)缓和曲线为保证列车安全,使线路平顺地由直线过渡到圆曲线或由圆曲线过渡到直线,以避免离心力的突然产生和消除,常需要在直线与圆曲线之间设置一个曲率半径变化的曲线,这个曲线称为缓和曲线,如下图所示为设有缓和曲线的铁路曲线。
铁路曲线缓和曲线的特征为:从缓和曲线所衔接的直线一端起,它的曲率半径ρ 由无穷大逐渐减小到它所衔接的圆曲线半径 R 。
它可以使离心力逐渐增加或减小,不致造成列车强烈的横向摇摆,如图所示。
离心力变化示意图(三)夹直线两相邻曲线,转向相同,称为同向曲线;转向相反,称为反向曲线。
两条相邻曲线间应设置一定长度的直线,以保证列车运行的平稳,如下图所示。
车辆运行在同向曲线上,因相邻曲线半径不同,超高高度不同,车体内倾斜度不同;车辆运行在反向曲线上,因两曲线超高方向不同,车体时而向左倾斜,时而向右倾斜。
这两种情况都会造成车体摇晃震动。
夹直线愈短,摇晃振动愈大。
相邻曲线间的夹直线根据运营实践,为保证旅客舒适,夹直线长度应保持 2 ~ 3 辆客车长度,困难条件下,也不应短于 1 辆客车长度。
因此《铁路线路设计规范》规定各级铁路线路两相邻曲线间夹直线最小长度,如下表所示。