高效脱硫溶剂(MDEA)投用方案及注意事项
- 格式:docx
- 大小:23.03 KB
- 文档页数:10
概述MDEA又称为N-甲基二乙醇胺,MDEA法脱碳技术是利用活化MDEA水溶液在高压常温将天然气或合成气中的二氧化碳(CO2)吸收,并在降压和升温的情况下,二氧化碳(CO2)又从溶液中解吸出来,同时溶液得到再生。
我公司除了在国内建设MDEA法脱碳装置外,也成功登陆海外市场,在印度尼西亚也建设了类似装置。
典型装置中国海洋石油公司(CNOOC)天然气MDEA法脱除二氧化碳装置印尼石油公司提供了天然气MDEA法脱碳装置MDEA脱除酸性气体技术主要应用于以下几个领域:1.天然气脱除二氧化碳(CO2),配套管输天然气或LNG净化装置2.天然气脱除硫化氢(H2S),配套管输天然气或LNG净化装置3.天然气选择性脱除硫化氢(H2S),配套管输天然气4.变换气脱除二氧化碳(CO2),配套合成氨、甲醇或者深冷分离装置5.合成气脱除二氧化碳(CO2),配套合成氨、甲醇或者深冷分离装置6.煤气脱除二氧化碳(CO2)和硫化氢(H2S),配套合成氨、甲醇或者深冷分离装置7.食品级二氧化碳(CO2)生产,达到国际饮料行业标准装置特点装置规模:处理天然气或变换气1000~500,000m3/h脱碳精度:二氧化碳(CO2)含量为10PPM~3%脱硫精度:硫化氢(H2S)含量为0.1~20mg/m3工作压力:适宜的压力为0.5~15MPa适用领域:天然气处理与加工、甲醇原料净化、合成氨原料净化等技术特点1.MDEA脱除酸性气体的流程可以采用贫液一段吸收和贫液半贫液两段吸收,贫液一段吸收的流程投资省、电耗低、热耗高;贫液半贫液二段吸收的投资大、电耗高、热耗低,根据脱除不同规模的二氧化碳,采用不同的流程。
2.MDEA溶液对天然气的溶解度低于天然气在纯水中的溶解度,因此,MDEA脱除酸性气体的过程中,天然气的损失很低。
3.MDEA溶液兼有物理吸收和化学吸收的特点,溶剂对二氧化碳的负载量大。
4.MDEA稳定性较好,在使用过程中很少发生降解的现象,它对碳钢设备几乎无腐蚀。
活化后MDEA脱硫脱碳溶剂在合成气装置中的应用杨贵林摘要:合成气装置采用二乙醇胺溶液为吸收剂脱除合成气产品中的CO2和H2S,生产中合成气装置净化系统补加二乙醇胺溶液方式采用一次性补加的方法,既装置中原来使用的利用停车机会一次性全部退出,系统进行清洗后再补加新的脱硫脱碳溶剂,按比例一次性配入系统,保证净化系统二乙醇胺溶液35%(Wt)浓度。
为了降低合成气产品三剂消耗,专业技术人员创新思路,尝试重复利用二乙醇胺溶液,本文将探讨活化后MDEA脱硫脱碳溶剂再利用相关问题。
关键词:活化脱硫脱碳溶剂合成气应用合成气装置应用重油或裂解焦油气化工艺专利技术,采用合成气激冷流程生产合成气产品,装置主要由原料准备系统、气化系统、碳黑水处理系统、热回收系统、MDEA净化系统和精脱硫系统六大系统构成,其中MDEA净化系统使用MDEA脱硫脱碳溶剂,作用是脱除合成气中的二氧化碳和硫化氢。
1 MDEA脱硫脱碳溶剂活化概述1.1活化目的装置使用的MDEA脱硫脱碳溶剂,溶剂在净化系统连续使用一年后系统频繁出现液泛现象,经过技术人员分析判断后,认为MDEA失去活性,为进一步降低生产成本,决定对失去部分活性的MDEA脱硫脱碳溶剂进行在线活化,进行溶剂再利用。
1.2活化效果试用活化后MDEA脱硫脱碳溶剂分析数据表1 活化后脱硫脱碳溶剂指标要求及检测结果序号分析项目质量指标要求活化后脱硫脱碳溶剂标准指标检测结果1 净化复活后外观外观清澈透明,长时间静置后无沉淀、无分层、无油花外观清澈透明,长时间静置后无沉淀、无分层、无油花实际达到相应外观指标2 1μm固体颗粒脱除率1μm固体颗粒脱除率达到95% 1μm固体颗粒脱除率达到95% 1μm固体颗粒脱除率达到97.56%3 发泡高度胺液发泡高度<2.0cm 胺液发泡高度<2.0cm 胺液发泡高度<1.5cm4 消泡时间消泡时间<2.0s 消泡时间<2.0s 消泡时间<1.0s5 热稳定盐≤0.75≤0.75 0.31通过表中数据可以看出,经过在线活化后的脱硫脱碳溶剂各项性能指标均满足技术协议要求,可以再次在生产中试用。
MDEA法脱除CO2工艺是德国BASF公司20世纪80年代开发的一种低能耗脱CO2工艺。
此工艺在世界上几十个大型氨厂使用。
生产实践表明:该法不仅能耗低,而且吸收效果好,能使净化气中CO2降至1%以下,溶液稳定性好,不降解,挥发性小,腐蚀性好,对碳钢设备腐蚀性小,对烃类溶解度低等优点。
1、工艺原理MDEA的化学名是N-甲基二乙醇胺,它是一种叔胺。
与CO2反应如下:CO2 + H2O → H+ + HCO3- (7)H+ + R2CH3N → R2CH3NH+ (8)R2CH3N + CO2 + H2O→ R2CH3NH+ + HCO3- (9)反应(7)是水合反应,其反应速度很慢,为了加快反应速度,就是在N-甲基二乙醇胺溶液中加入活性剂,改变反应过程,当加入伯胺或仲胺后,反应就按下式进行:R2NH + CO2→ RNCOOH (10)RNCOOH + R2CH3N + H2O →R2NH + R2CH3NH+·HCO3(11)以上反应式可以看出,活化剂在表面吸收CO2反应生成羟酸基,迅速向液相传递CO2,生成稳定的碳酸氢盐,而活化剂本身又被再生。
N-甲基二乙醇胺溶液兼有化学吸附剂和物理溶剂的特点。
2、工艺流程粗原料气在2.8MPa下进行二段溶液洗涤的吸收塔,下段用降压闪蒸脱吸的溶液进行吸收,为了提高气体的净化度,上段再用经过蒸汽加热再生的溶液进行洗涤。
从吸收塔出来的富液相继通过两个闪蒸槽而降压,溶液第一次降压的能量由透平回收。
回收的能量用于驱动半贫液循环泵。
富液在高压闪蒸槽释放出的蒸汽中有较多的氢和氨,可压缩送回脱碳塔,出高压闪蒸槽溶液继续降压后,在低压闪蒸槽中释放出绝大部分CO2。
获得的半贫液大部分用循环泵打入吸收塔下段,一小部分送入蒸汽加热的再生塔再生,所得贫液送入吸收塔上段使用。
再生塔塔顶所得含水蒸气的CO2气体,送入低压闪蒸槽作为脱气介质使用。
3、工艺操作要点(1) 贫液与半贫液的比例贫液/半贫液比例一般为1/3~1/6,它决定于原料中CO2的分压。
N-甲基二乙醇胺(MDEA)炼厂气的脱硫,目前主要采用醇胺法,醇胺法脱硫开始应用的是一乙醇胺(MEA)、二乙醇胺(DEA),后来又在克劳斯尾气装置上使用二异丙醇胺(DIPA)。
80年代我国研制开发了新型选择性脱硫溶剂N-甲基二乙醇胺(MDEA),开始在天然气脱硫装置上应用;进入90年代,MDEA在炼厂气脱硫装置上也开始应用,MDEA是Fluor公司早年开发的脱硫溶剂。
目前,它作为新一代脱硫溶剂已在天然气脱硫、煤气化脱硫以及炼厂脱硫中得到广泛应用。
由于MDEA对H2S有很高的选择性和较低的能耗,被用于克劳斯原料气提浓,斯科特法尾气处理,低热值气体脱硫等过程。
从1993年开始,由于中国石化总公司系统内炼厂因加工能力提高,或因掺炼高硫原油,均出现过干气、液态烃脱硫深度不够的情况。
在这种情况下以MDEA为主剂的高效脱硫剂充分显示出它硫容量大,选择性好的优点。
由于该剂使用浓度可高达50%,因此它的循环量可大大减少,它可在高气液比或高液液比下吸收,MDEA的再生解吸热又比上述三种胺小,从而降低了再生耗热,总之,这些特点归纳一点,就是用MDEA脱酸性气可大幅降低能耗,最终降低操作成本。
南京化工研究院曾对二乙醇胺等五种溶剂作过对比试验,试验结果列于表1,由此说明MDEA之所以成为高效脱硫剂主剂的原因。
同时,从表1也可看出聚乙二醇二甲醚的各方面性能与MDEA比,不相上下。
但须看到,用它做溶剂是一种物理吸收过程,要达到相同的处理能力,它的耗量比MDEA多,增加了脱硫成本。
五种脱硫剂对比试验2(MEA)为低,而且它对非极性气体如氢、氮、甲醇、甲烷及其他高级烃类化合物的溶解度极低,自身损失很少。
MDEA与CO2反应仅生成碳酸氢盐而不生成氨基甲酸酯,吸收过程不会降解,日常补充量大大减少。
MDEA对碳钢没有腐蚀,本身碱性很弱,且不产生热降解产物与化学降解产物,在再生解吸段出来的湿CO2因其温度不高(70℃左右),对碳钢的腐蚀是轻微的。
1、MDEA脱硫原理胺分子中至少有一个烃基团和一个氨基团。
一般情况下,可以认为烃基团的作用是降低蒸汽压和提高水溶性,氨基团的作用是使水溶液达到必要的酸碱度,促使H2S的吸收。
H2S是弱酸性,MDEA是弱碱,反应生成水溶性盐类,由于反应是可逆的,使MDEA得以再生,循环使用。
甲基二乙醇胺的碱性随温度升高而降低,在低温时弱碱性的甲基二乙醇胺能与H2S结合生成胺盐,在高温下胺盐能分解成H2S和甲基二乙醇胺。
在较低温度下(20℃~40℃)下,反应向左进行(吸收),在较高温度下(>105℃)下,反应向右进行(解吸)。
醇胺脱硫法是一种典型的吸收-再生反应过程,反应机理为:溶于水的H2S 和 CO 2具有微酸性,与胺(弱碱性)发生反应,生成在高温中会分解的盐类。
以甲基二乙醇胺(MDEA)为例,其吸收H2S 和 CO 2发生的主要反应如下:2R3NH+ H2S→(R3NH)2S(R3NH)2S+H2S → 2R3NH2HSR2NH + H2O + CO2→ (R3NH)2CO3(R3NH)2CO3+ H2O + CO2→ 2R3NHHCO3醇胺和H2S 和 CO 2的主要反应为可逆反应,在吸收塔中上述反应的平衡向右移动,原料气中的酸性气组分被脱除;在再生塔中则平衡向左移动,溶剂释放出酸性气组分。
同所有其它吸收-再生反应过程一样,加压和低温利于吸收;减压和高温利于再生,但为了防止溶剂分解,再生温度通常低于127℃。
(我装置再生塔底温度控制为123±2℃)。
MDEA 甲基二乙醇胺 CH3N-(CH2-CH2OH)2MDEA(N-Methyldiethanolamine) 即N-甲基二乙醇胺,分子式为CH3-N(CH2CH2OH)2,分子量119.2,沸点246~248℃,闪点260℃,凝固点-21℃,汽化潜热519.16KJ/Kg,能与水和醇混溶,微溶于醚。
在一定条件下,对二氧化碳等酸性气体有很强的吸收能力,而且反应热小,解吸温度低,化学性质稳定,无毒不降解。
油漆处理与加工MDEA和砜胺-Ⅲ脱硫溶剂的选择性及其应用冼祥发 李 明(四川石油管理局勘察设计研究院)摘 要 阐述了MDE A和砜胺-Ⅲ脱硫溶剂选择性脱除H2S的动力学选择性及热力学选择性的机理,对MDE A和砜胺-Ⅲ的选择性作了一些比较,并就其具体应用进行了讨论。
重点介绍了砜胺-Ⅲ的平衡选择性原理与应用,根据我局川西北净化厂的实际情况和已有的科研成果资料,提出利用砜胺-Ⅲ脱硫溶剂的选择性,解决该厂硫回收装置超负荷运行问题。
建议继续开展有关砜胺-Ⅲ型脱硫溶剂性能的基础研究,以提高其工艺应用水平,进一步发展我国天然气净化技术。
主题词 MDE A 砜胺-Ⅲ 选择性机理 应用 MDE A脱硫溶剂自工业化应用以来,由于其具有选择性脱除H2S性能、节能显著、以及腐蚀性小、稳定性好(不需设复活设施)、气相损失小等优点,得到了迅速推广应用。
砜胺-Ⅲ型溶剂即壳牌(Shell)公司所谓Sulfinol-M,则是在MDE A获得工业化成功应用的基础上,由砜胺-Ⅱ(国外称之为Sulfinol-D)发展起来的具有选择性脱除H2S性能的混合溶剂,它可以看作是MDE A水溶液中的部分水由环丁砜(SF)替代后的产物,而SF的加入,除对烃的溶解倾向有所增加外,在许多应用中,可使砜胺-Ⅲ具有比MDE A更突出的优点,例如,不仅具有较强的脱除有机硫能力,而且,在某些工况下,还具有更高的选择性和更好的节能效果。
MDE A和砜胺-Ⅲ的选择性脱除H2S性能可表现为动力学选择性及热力学选择性,即平衡选择性。
这两种选择性既有内在联系,又有本质上的区别。
充分了解这两种选择性能对优化设计和工厂实际操作都是有益的。
下面将阐述这两种选择性的机理,对MDE A 和砜胺-Ⅲ的选择性作一些比较,并就其具体应用进行一些讨论、分析。
重点放在砜胺-Ⅲ的平衡选择性原理与应用上。
1 选择性机理H2S和C O2在MDE A、砜胺-Ⅲ溶剂的化学吸收过程中的总反应如下:(a) H2S+R3N3NH++HS-(瞬间反应)(b) C O2+R3N(不反应)(c) C O2+R3N+H2O3NH++HC O3ˉ(慢反应)吸收过程的选择性可通过两种途径获得:①利用吸收/反应速度的差异,即H2S反应速度比C O2反应速度快的特点,通过控制气液接触反应的时间来获得选择性。
M D E A脱硫原理及工艺流程(总3页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--MDEA法脱除CO2工艺是德国BASF公司20世纪80年代开发的一种低能耗脱CO2工艺。
此工艺在世界上几十个大型氨厂使用。
生产实践表明:该法不仅能耗低,而且吸收效果好,能使净化气中CO2降至1%以下,溶液稳定性好,不降解,挥发性小,腐蚀性好,对碳钢设备腐蚀性小,对烃类溶解度低等优点。
1、工艺原理MDEA的化学名是N-甲基二乙醇胺,它是一种叔胺。
与CO2反应如下:CO2 + H2O → H+ + HCO3-? (7)H+ + R2CH3N → R2CH3NH+ (8)R 2CH3N + CO2+ H2O→ R2CH3NH+ + HCO3-? (9)反应(7)是水合反应,其反应速度很慢,为了加快反应速度,就是在N-甲基二乙醇胺溶液中加入活性剂,改变反应过程,当加入伯胺或仲胺后,反应就按下式进行:R 2NH + CO2→ RNCOOH (10)RNCOOH + R2CH3N + H2O →R2NH + R2CH3NH+·HCO3(11)以上反应式可以看出,活化剂在表面吸收CO2反应生成羟酸基,迅速向液相传递CO2,生成稳定的碳酸氢盐,而活化剂本身又被再生。
N-甲基二乙醇胺溶液兼有化学吸附剂和物理溶剂的特点。
2、工艺流程粗原料气在下进行二段溶液洗涤的吸收塔,下段用降压闪蒸脱吸的溶液进行吸收,为了提高气体的净化度,上段再用经过蒸汽加热再生的溶液进行洗涤。
从吸收塔出来的富液相继通过两个闪蒸槽而降压,溶液第一次降压的能量由透平回收。
回收的能量用于驱动半贫液循环泵。
富液在高压闪蒸槽释放出的蒸汽中有较多的氢和氨,可压缩送回脱碳塔,出高压闪蒸槽溶液继续降压后,在低压闪蒸槽中释放出绝大部分 CO2。
获得的半贫液大部分用循环泵打入吸收塔下段,一小部分送入蒸汽加热的再生塔再生,所得贫液送入吸收塔上段使用。