实验三 信号与系统(数字信号部分1)
- 格式:doc
- 大小:398.00 KB
- 文档页数:11
实验一 信号、系统及系统响应一、实验目的1、熟悉理想采样的性质,了解信号采样前后的频谱变化,加深对时域采样定理的理解。
2、熟悉离散信号和系统的时域特性。
3、熟悉线性卷积的计算编程方法:利用卷积的方法,观察、分析系统响应的时域特性。
4、掌握序列傅里叶变换的计算机实现方法,利用序列的傅里叶变换对离散信号、系统及其系统响应进行频域分析。
二、 实验原理1.理想采样序列:对信号x a (t)=A e −αt sin(Ω0t )u(t)进行理想采样,可以得到一个理想的采样信号序列x a (t)=A e −αt sin(Ω0nT ),0≤n ≤50,其中A 为幅度因子,α是衰减因子,Ω0是频率,T 是采样周期。
2.对一个连续时间信号x a (t)进行理想采样可以表示为该信号与一个周期冲激脉冲的乘积,即x ̂a (t)= x a (t)M(t),其中x ̂a (t)是连续信号x a (t)的理想采样;M(t)是周期冲激M(t)=∑δ+∞−∞(t-nT)=1T ∑e jm Ωs t +∞−∞,其中T 为采样周期,Ωs =2π/T 是采样角频率。
信号理想采样的傅里叶变换为X ̂a (j Ω)=1T ∑X a +∞−∞[j(Ω−k Ωs )],由此式可知:信号理想采样后的频谱是原信号频谱的周期延拓,其延拓周期为Ωs =2π/T 。
根据时域采样定理,如果原信号是带限信号,且采样频率高于原信号最高频率分量的2倍,则采样以后不会发生频率混叠现象。
三、简明步骤产生理想采样信号序列x a (n),使A=444.128,α=50√2π,Ω0=50√2π。
(1) 首先选用采样频率为1000HZ ,T=1/1000,观察所得理想采样信号的幅频特性,在折叠频率以内和给定的理想幅频特性无明显差异,并做记录;(2) 改变采样频率为300HZ ,T=1/300,观察所得到的频谱特性曲线的变化,并做记录;(3) 进一步减小采样频率为200HZ ,T=1/200,观察频谱混淆现象是否明显存在,说明原因,并记录这时候的幅频特性曲线。
数字信号处理实验报告实验一:用 FFT 做谱分析 一、 实验目的1、进一步加深 DFT 算法原理和基本性质的理解。
2、熟悉 FFT 算法原理和 FFT 子程序的应用。
3、学习用FFT 对连续信号和时域离散信号进行谱分析的方法,了解可能出现的分析误差及其原因,以便在实际中正确应用 FFT 。
二、实验原理用FFT 对信号作频谱分析是学习数字信号处理的重要内容。
经常需要进行谱分析的信号是模拟信号和时域离散信号。
对信号进行谱分析的重要问题是频谱分辨率D 和分析误差。
频谱分辨率直接和FFT 的变换区间N 有关,因为FFT 能够实现的频率分辨率是2π/N ≤D 。
可以根据此时选择FFT 的变换区间N 。
误差主要来自于用FFT 作频谱分析时,得到的是离散谱,而信号(周期信号除外)是连续谱,只有当N 较大时离散谱的包络才能逼近于连续谱,因此N 要适当选择大一些。
周期信号的频谱是离散谱,只有用整数倍周期的长度作FFT ,得到的离散谱才能代表周期信号的频谱。
如果不知道信号周期,可以尽量选择信号的观察时间长一些。
对模拟信号的频谱时,首先要按照采样定理将其变成时域离散信号。
如果是模拟周期信号,也应该选取整数倍周期的长度,经过采样后形成周期序列,按照周期序列的谱分析进行。
三、实验内容和步骤对以下典型信号进行谱分析:⎪⎩⎪⎨⎧≤≤-≤≤-=⎪⎩⎪⎨⎧≤≤-≤≤+==其它nn n n n n x 其它nn n n n n x n R n x ,074,330,4)(,074,830,1)()()(32414()cos4x n n π=5()cos(/4)cos(/8)x n n n ππ=+6()cos8cos16cos20x t t t t πππ=++对于以上信号,x1(n)~x5(n) 选择FFT 的变换区间N 为8和16 两种情况进行频谱分析。
分别打印其幅频特性曲线。
并进行对比、分析和讨论;;x6(t)为模拟周期信号,选择 采样频率Hz F s 64=,变换区间N=16,32,64 三种情况进行谱分析。
数字信号处理实验实验一信号、系统及系统响应1、实验目的认真复习采样理论、离散信号与系统、线性卷积、序列的z 变换及性质等有关内容;掌握离散时间序列的产生与基本运算,理解离散时间系统的时域特性与差分方程的求解方法,掌握离散信号的绘图方法;熟悉序列的z 变换及性质,理解理想采样前后信号频谱的变化。
2、实验内容a. 产生长度为500 的在[0,1]之间均匀分布的随机序列,产生长度为500 的均值为0 单位方差的高斯分布序列。
b. 线性时不变系统单位脉冲响应为h(n)=(0.9)nu(n),当系统输入为x(n)=R10(n)时,求系统的零状态响应,并绘制波形图。
c. 描述系统的差分方程为:y(n)-y(n-1)+0.9y(n-2)=x(n),其中x(n)为激励,y(n)为响应。
计算并绘制n=20,30,40,50,60,70,80,90,100 时的系统单位脉冲响应h(n);计算并绘制n=20,30,40,50,60,70,80,90,100 时的系统单位阶跃响应s(n);由h(n)表征的这个系统是稳定系统吗?d. 序列x(n)=(0.8)nu(n),求DTFT[x(n)],并画出它幅度、相位,实部、虚部的波形图。
观察它是否具有周期性?e. 线性时不变系统的差分方程为y(n)=0.7y(n-1)+x(n),求系统的频率响应H(ejω),如果系统输入为x(n)=cos(0.05πn)u(n),求系统的稳态响应并绘图。
f. 设连续时间信号x(t)=e-1000|t|,计算并绘制它的傅立叶变换;如果用采样频率为每秒5000 样本对x(t)进行采样得到x1(n),计算并绘制X1(ejω),用x1(n)重建连续信号x(t),并对结果进行讨论;如果用采样频率为每秒1000 样本对x(t)进行采样得到x2(n),计算并绘制X2(ejω),用x2(n)重建连续信号x(t),并对结果进行讨论。
加深对采样定理的理解。
g. 设X1(z)=z+2+3z-1,X2(z)=2z2+4z+3+5z-1,用卷积方法计算X1(z)X2(z)。
信号与系统实验实验三:信号的卷积(第三次实验)【实验目的】1. 理解卷积的物理意义;2. 掌握运用计算机进行卷积运算的原理和方法;3. 熟悉卷积运算函数conv的应用;【实验内容】给定如下因果线性时不变系统:y[n]+0.71y[n-1]-0.46y[n-2]-0.62y[n-3=0.9x[n]-0.45x[n-1]+0.35x[n-2]+0.002x[n-3](1)不用impz函数,使用filter命令,求出以上系统的单位冲激响应h[n]的前20个样本;代码如下:clear all;N=[0:19];num=[0.9 -0.45 0.35 0.002];den=[1 0.71 -0.46 -0.62];h=filter(num,den,N);stem(N,h);xlabel('ʱ¼äÐòºÅ');ylabel('Õñ·ù');title('µ¥Î»³å¼¤ÏìÓ¦');grid;图像如下:(2)得到h[n]后,给定x[n],计算卷积输出y[n];并用滤波器h[n]对输入x[n]滤波,求得y1[n];代码如下:clear all;N=[0:19];num=[0.9 -0.45 0.35 0.002];den=[1 0.71 -0.46 -0.62];h=filter(num,den,N);x=[1 -2 3 -4 3 2 1];y=conv(h,x);n=0:25;subplot(2,1,1);stem(n,y);xlabel('时间序号n');ylabel('振幅');title('用卷积得到的输出');grid;x1=[x zeros(1,19)];y1=filter(h,1,x1);subplot(2,1,2);stem(n,y1);xlabel('时间序号n ');ylabel('振幅');title('用滤波得到的输出');grid;图像如下:(3)y[n]和)y1[n]有差别吗?为什么要对x[n]进行补零得到的x1[n]来作为输入来产生y1[n]?(4)思考:设计实验,证明下列结论① 单位冲激信号卷积:)()(*)(t f t f t =δ)()(*)(00t t f t f t t -=-δ代码如下:clc;clear all ;n=[0:20];d=(n==0);f=sin(n);f1=conv(d,f);subplot(3,1,1);f1=f1(1:21);stem(n,f1);title('¦Ä[n]*f[n]');grid;subplot(3,1,2);stem(n,f);title('f[n]');grid;subplot(3,1,3);stem(n,f-f1);title('¦Ä[n]*f[n]-f[n]');grid;图像如下:② 卷积交换律:)(*)()(*)()(1221t f t f t f t f t f ==代码如下:clc;clear all;n=0:30;f1=sin(n);f2=cos(n);y1=conv(f1,f2);y1=y1(1:31);y2=conv(f2,f1);y2=y2(1:31); subplot(3,1,1); stem(n,y1);title('f1*f2'); grid;subplot(3,1,2); stem(n,y2);title('f2*f1'); grid;subplot(3,1,3);y3=(y1-y2)>10^-14; stem(n,y3);grid;图像如下:③卷积分配律:)(*)()(*)()]()([*)(3121321t f t f t f t f t f t f t f +=+代码如下:clc;clear all ;n=1:50;f1=(-1).^n;f2=cos(n);f3=sin(n);y1=conv(f1,(f2+f3));y1=y1(1:50);y2=conv(f1,f2)+conv(f1,f3);y2=y2(1:50);subplot(3,1,1);stem(n,y1);title('f1*[f2+f3]');grid;subplot(3,1,2);stem(n,y2);title('f1*f2+f1*f3');grid;subplot(3,1,3);y3=(y1-y2)>10^-14;stem(n,y3);title('f1*[f2+f3]-f1*f2+f1*f3');grid;图像如下:【实验分析】:1.y[n]和)y1[n]有差别吗?为什么要对x[n]进行补零得到的x1[n]来作为输入来产生y1[n]?答:y[n]和)y1[n]是对同一个系统输入的响应,该系统是因果线性时不变系统,所以y[n]和)y1[n]没有差别;由于y[n]和)y1[n]没有差别,滤波器h[n]对x[n]滤波得到的y1[n]和用卷积计算得到的y[n]是同一个信号;2.卷积分配率程序代码中f1的n时间序号长度n为[1:50],f2的n时间序号长度为[1:50],所以输出完整信号的长度为99,而程序中输出长度仅50,说明这只是信号的部分波形。
实验要求1.每个实验进行之前须充分预习准备,实验完成后一周内提交实验报告;2.填写实验报告时,分为实验题目、实验目的、实验内容、实验结果、实验小结五项;3.实验报告要求:实验题目、实验目的、实验内容、实验结果四项都可打印;但每次实验的实验内容中的重要代码(或关键函数)后面要用手工解释其作用。
实验小结必须手写!(针对以前同学书写实验报告时候抄写代码太费时间的现象,本期实验报告进行以上改革)。
实验一信号、系统及系统响应实验目的:1. 掌握使用MATLAB进行函数、子程序、文件编辑等基本操作;2. 编写一些数字信号处理中常用序列的3. 掌握函数调用的方法。
实验内容:1.在数字信号处理的基本理论和MATLAB信号处理工具箱函数的基础上,可以自己编写一些子程序以便调用。
(1)单位抽样序列δ(n-n0)的生成函数impseq.m(2)单位阶跃序列u(n-n0)的生成函数stepseq.m(3)两个信号相加的生成函数sigadd.m(4)两个信号相乘的生成函数sigmult.m(5)序列移位y(n)=x(n-n0)的生成函数sigshift.m(6)序列翻褶y(n)=x(-n)生成函数sigfold.m(7)奇偶综合函数evenodd.m(8)求卷积和2.产生系列序列,并绘出离散图。
(1) x1(n)=3δ(n-2)-δ(n+4) -5≤n≤5(2) x3(n)=cos(0.04πn)+0.2w(n) 0≤n≤50其中:w(n)是均值为0,方差为1 的白噪声序列。
3.设线性移不变系统的抽样响应h(n)=(0.9)^n*u(n),输入序列x(n)=u(n)-u(n-10),求系统的输出y(n).实验二 系统响应及系统稳定性1.实验目的(1)掌握 求系统响应的方法。
(2)掌握时域离散系统的时域特性。
(3)分析、观察及检验系统的稳定性。
2.实验原理与方法在时域中,描写系统特性的方法是差分方程和单位脉冲响应,在频域可以用系统函数描述系统特性。
《信号与系统》实验报告湖南工业大学电气与信息工程学院实验一用同时分析法观测50Hz非正弦周期信号的分解与合成一、实验目的1、用同时分析法观测50Hz非正弦周期信号的频谱,并与傅立叶级数各项的频率与系数作比较。
2、观测基波和其谐波的合成。
二、实验设备1、信号与系统实验箱:TKSS -A型或TKSS -B 型TKSS -C 型;2、双踪示波器三、实验原理1、 一个非正弦周期函数可以用一系列频率成整数倍的正弦函数来表示,其中与非正弦具有相同频率的成分称为基波或一次谐波,其他成分则根据其频率为基波频率的2、3、4、…、n 等倍数分别称为二次、三次、四次、…、n 次谐波,其幅度将随着谐波次数的增加而减小,直至无穷小。
2、 不同频率的谐波可以合成一个非正弦周期波,反过来,一个非正弦周期波也可以分解为无限个不同频率的谐波成分,3、 一个非正弦周期函数可以用傅立叶级数来表示,级数各项系数之间的关系可用一个频谱来表示,不同的非正弦周期函数具有不同的频谱图,各种不同波形及其傅氏级数表达式见表2-1,方波频谱图如图2-1表示Um1351/91/51/71/3790ωωωωωω图1-1 方波频谱图表2-1 各种不同波形的傅立叶级数表达式UmtTU 2τ方波Um0TU 2τ正弦整流全波UmTU 2τ三角波Um0T2τ正弦整流半波t tUm0tT U 2τ矩形波U1、方波 ())7s i n 715s i n 513s i n 31(s i n 4 ++++=t t t t u t u mωωωωπ 2、三角波())5s i n 2513sin 91(sin 82++-=t t t u t u mωωωπ3、半波())4c o s 1512cos 31sin 421(2 +--+=t t t u t u m ωωωππ 4、全波 ())6c o s 3514cos 1512cos 3121(4 +---=t t t u t u m ωωωπ5、 矩形波())3cos 3sin 312cos 2sin 21cos (sin 2 ++++=t T t T t T U T U t u m m ωτπωτπωτππτ实验装置的结构如图1-2所示DC20f f f f f f 3456图1-2信号分解于合成实验装置结构框图图中LPF 为低通滤波器,可分解出非正弦周期函数的直流分量。
备注:(1)、按照要求独立完成实验内容。
(2)、实验结束后,把电子版实验报告按要求格式改名(例:09号_张三_实验七.doc)后,实验室统一刻盘留档。
实验三零极点分布对系统频率响应的影响一、实验目的学习用分析零极点分布的几何方法分析研究信号和系统频率响应。
二、实验原理如果知道信号的Z变换以及系统的系统函数H(z),可以得到它们的零极点分布,由零极点分布可以很方便地对它们的频率响应进行定性分析。
信号的幅度特性由零点矢量长度之积除以极点矢量的长度之积,当频率ω从0变化到2π时,观察零点矢量长度和极点矢量长度的变化,重点观察那些矢量长度较短的情况。
另外, 由分析知道, 极点主要影响频率响应的峰值,极点愈靠近单位圆,峰值愈尖锐;零点主要影响频率特性的谷值,零点愈靠近单位圆,谷值愈深,如果零点在单位圆上,那么频率特性为零。
根据这些规律可以定性画出频率响应的幅度特性。
峰值频率和谷值频率可以近似用响应的极点和零点的相角表示,例如极点z1=0.9ejπ/4,峰值频率近似为π/4,极点愈靠近单位圆,估计法结果愈准确。
本实验借助计算机分析信号和系统的频率响应,目的是掌握用极、零点分布的几何分析法分析频率响应,实验时需要将z=ejω代入信号的Z变换和系统函数中,再在0~2π之间,等间隔选择若干点,并计算它的频率响应。
三、实验内容(包括代码与产生的图形)要求:不仅打印幅度特性曲线,而且要有系统频率特性的文字分析。
1. 假设系统用下面差分方程描述:y(n)=x(n)+ay(n-1)假设a=0.7, 0.8, 0.9 ,分别在三种情况下分析系统的频率特性,并打印幅度特性曲线。
a=0.7代码:B=1;a=0.7A=[1,-a];subplot(3,1,3);zplane(B,A);xlabel('ʵ²¿Re');ylabel('Ð鲿Im');title('y(n)=x(n)-ay(n-1)´«Ê亯ÊýÁã¡¢¼«µã·Ö²¼');grid on[H,w]=freqz(B,A,'whole');subplot(3,1,2);plot(w/pi,abs(H),'linewidth',2);grid on;xlabel('\omega/\pi');ylabel('|H(e^j^\omega)|');title('·ùƵÏìÓ¦ÌØÐÔ');axis([0,2,0,6]);subplot(3,1,1);plot(w/pi,angle(H),'linewidth',2);grid on;axis([-0.1,2.1,-3,3]);xlabel('\omega/\pi');ylabel('\phi(\omega)');title('ÏàÆµÏìÓ¦ÌØÐÔ');图像:-505-101实部Re虚部I my(n)=x(n)-ay(n-1)传输函数零、极点分布00.20.40.60.81 1.2 1.4 1.6 1.825ω/π|H (e j ω)|幅频响应特性0.20.40.60.81 1.2 1.41.61.82-22ω/πφ(ω)相频响应特性a=0.8代码:B=1;a=0.8A=[1,-a];subplot(3,1,3);zplane(B,A); xlabel('ʵ²¿Re'); ylabel('Ð鲿Im');title('y(n)=x(n)-ay(n-1)´«Ê亯ÊýÁã¡¢¼«µã·Ö²¼'); grid on[H,w]=freqz(B,A,'whole'); subplot(3,1,2);plot(w/pi,abs(H),'linewidth',2); grid on ;xlabel('\omega/\pi'); ylabel('|H(e^j^\omega)|'); title('·ùƵÏìÓ¦ÌØÐÔ'); axis([0,2,0,6]);subplot(3,1,1);plot(w/pi,angle(H),'linewidth',2); grid on ;axis([-0.1,2.1,-3,3]); xlabel('\omega/\pi');ylabel('\phi(\omega)'); title('ÏàÆµÏìÓ¦ÌØÐÔ');图像:-6-4-20246实部Re虚部I my(n)=x(n)-ay(n-1)传输函数零、极点分布00.20.40.60.81 1.2 1.4 1.61.825ω/π|H (e j ω)|幅频响应特性0.20.40.60.81 1.2 1.41.61.82-202ω/πφ(ω)相频响应特性a=0.9代码:B=1;a=0.9A=[1,-a];subplot(3,1,3);zplane(B,A); xlabel('ʵ²¿Re'); ylabel('Ð鲿Im');title('y(n)=x(n)-ay(n-1)´«Ê亯ÊýÁã¡¢¼«µã·Ö²¼'); grid on[H,w]=freqz(B,A,'whole'); subplot(3,1,2);plot(w/pi,abs(H),'linewidth',2); grid on ;xlabel('\omega/\pi'); ylabel('|H(e^j^\omega)|'); title('·ùƵÏìÓ¦ÌØÐÔ'); axis([0,2,0,6]);subplot(3,1,1);plot(w/pi,angle(H),'linewidth',2); grid on ;axis([-0.1,2.1,-3,3]); xlabel('\omega/\pi'); ylabel('\phi(\omega)'); title('ÏàÆµÏìÓ¦ÌØÐÔ');图像:-505-101实部Re虚部I my(n)=x(n)-ay(n-1)传输函数零、极点分布00.20.40.60.81 1.2 1.4 1.6 1.825ω/π|H (e j ω)|幅频响应特性0.20.40.60.81 1.2 1.41.61.82-22ω/πφ(ω)相频响应特性分析:由y (n )=x (n )+ay (n -1)可知:H[z]=B[z]/A[z]=1/(1-az^(-1))系统极点z=a ,零点z=0,当B 点从w=0逆时针旋转时,在w=0点,由于极点向量长度最短,形成波峰,并且当a 越大,极点越接近单位圆,峰值愈高愈尖锐;在w=pi 点形成波谷;z=0处零点不影响幅频响应。
实验报告思考题要点提示数字信号处理实验一:信号、系统及系统响应1、简述线性卷积结果y (n)的非零区间与x (n )、h (n )非零区间的关系?激励x (n )延时时输出如何变化?由线性移不变系统特性可知,当激励x (n )延时n 0时,输出y (n )也延时n 0。
2、 简述系统函数零极点分布与系统幅频特性间的对应关系。
(1) 位于原点处的零、极点对幅频特性没有影响,只影响相频特性。
(2) 极点位置主要影响幅频特性峰值的位置及尖锐程度,极点越靠近单位圆,所对应的峰值越尖锐。
(3) 零点位置主要影响幅频特性谷值的位置及形状,零点越靠近单位圆,谷值越小。
3、 y (n )=x (n )*h (n ),当输入x (n )有一时移时y (n )与)e (Y j ω有无变化,并说明为什么?由线性移不变系统特性可知,当激励x (n )延时n 0时,输出y (n )也延时n 0。
所以当输入x (n )有一时移时,y(n )也有同样的时移。
)()]([)()]([00ωωωj j e Y e n n y DTFT DTFT e Y n y DTFT n j -=-=的时移特性可知,由设,即时域位移,频域相移,所以幅频特性)e(Y j ω无变化。
数字信号处理实验二:信号的谱分析1、 描述随着DFT 变换点数N 的增加,X (k )的幅度谱的变化并解释原因。
随着DFT 变换点数N 的增加,X (k )的幅度谱序列间隔越来越密,其包络逐渐逼近x (n )的幅度谱)(ωj e X 。
这是因为M 点有限长序列x (n )的N 点DFT 是对有限长序列x (n )的频谱)(ωj e X 在频域0~2π区间内的N 点等间隔抽样。
即: k Nj e X n x DFT k X πωω2)()]([)(=== 因此变换点数越多,抽样间隔越小。
2、 用DFT 对连续非周期信号进行谱分析,试分析(1)采样点数足够多(即数据截断长度足够长)的情况下,采样频率对谱分析的影响;(2)采样频率足够高(即无明显的频域混叠现象)时,采样点数N (相应地时窗截断长度NT s )对谱分析的影响。
信号与系统实验实验一常用信号分类与观察 (2)实验二阶跃响应与冲激响应 (5)实验三信号卷积实验 (8)实验四矩形脉冲信号的分解 (13)实验五矩形脉冲信号的合成 (18)实验六抽样定理与信号恢复 (20)实验七一阶电路的暂态响应 (26)实验八二阶电路的暂态响应 (30)实验九有源无源滤波器 (34)实验一常用信号分类与观察一、实验目的1、观察常用信号的波形特点及产生方法。
2、学会使用示波器对常用波形参数的测量。
二、实验内容1、信号的种类相当的多,这里列出了几种典型的信号,便于观察。
2、这些信号可以应用到后面的“基本运算单元”和“无失真传输系统分析”中。
三、实验仪器1、信号与系统实验箱一台(主板)。
2、20MHz双踪示波器一台。
四、实验原理对于一个系统特性的研究,其中重要的一个方面是研究它的输入输出关系,即在一特定的输入信号下,系统对应的输出响应信号。
因而对信号的研究是对系统研究的出发点,是对系统特性观察的基本手段与方法。
在本实验中,将对常用信号和特性进行分析、研究。
信号可以表示为一个或多个变量的函数,在这里仅对一维信号进行研究,自变量为时间。
常用信号有:指数信号、正弦信号、指数衰减正弦信号、抽样信号、钟形信号、脉冲信号等。
1、指数信号:指数信号可表示为()atf t Ke。
对于不同的a取值,其波形表现为不同的形式,如图1-1所示:图1-1 指数信号2、指数衰减正弦信号:其表达式为(0)()sin()(0)att f t Ket t ω-<⎧=⎨>⎩,其波形如图1-2所示:图1-2 指数衰减正弦信号3、抽样信号:其表达式为:sin ()a t S t t=。
()a S t 是一个偶函数,t =±π,±2π,…,±n π时,函数值为零。
该函数在很多应用场合具有独特的运用。
其信号如图1-3所示:图1-3 抽样信号4、钟形信号(高斯函数):其表达式为:()2t f t Eeτ⎛⎫- ⎪⎝⎭=,其信号如图1-4所示:图1-4钟形信号5、脉冲信号:其表达式为)()()(T t u t u t f --=,其中)(t u 为单位阶跃函数。
信号与系统实验报告目录1. 内容概要 (2)1.1 研究背景 (3)1.2 研究目的 (4)1.3 研究意义 (4)2. 实验原理 (5)2.1 信号与系统基本概念 (7)2.2 信号的分类与表示 (8)2.3 系统的分类与表示 (9)2.4 信号与系统的运算法则 (11)3. 实验内容及步骤 (12)3.1 实验一 (13)3.1.1 实验目的 (14)3.1.2 实验仪器和设备 (15)3.1.4 实验数据记录与分析 (16)3.2 实验二 (16)3.2.1 实验目的 (17)3.2.2 实验仪器和设备 (18)3.2.3 实验步骤 (19)3.2.4 实验数据记录与分析 (19)3.3 实验三 (20)3.3.1 实验目的 (21)3.3.2 实验仪器和设备 (22)3.3.3 实验步骤 (23)3.3.4 实验数据记录与分析 (24)3.4 实验四 (26)3.4.1 实验目的 (27)3.4.2 实验仪器和设备 (27)3.4.4 实验数据记录与分析 (29)4. 结果与讨论 (29)4.1 实验结果汇总 (31)4.2 结果分析与讨论 (32)4.3 结果与理论知识的对比与验证 (33)1. 内容概要本实验报告旨在总结和回顾在信号与系统课程中所进行的实验内容,通过实践操作加深对理论知识的理解和应用能力。
实验涵盖了信号分析、信号处理方法以及系统响应等多个方面。
实验一:信号的基本特性与运算。
学生掌握了信号的表示方法,包括连续时间信号和离散时间信号,以及信号的基本运算规则,如加法、减法、乘法和除法。
实验二:信号的时间域分析。
在本实验中,学生学习了信号的波形变换、信号的卷积以及信号的频谱分析等基本概念和方法,利用MATLAB工具进行了实际的信号处理。
实验三:系统的时域分析。
学生了解了线性时不变系统的动态响应特性,包括零状态响应、阶跃响应以及脉冲响应,并学会了利用MATLAB进行系统响应的计算和分析。
第1篇一、实验目的本次实验旨在通过一系列的通信原理实验,使学生深入理解并掌握通信系统的基本概念、原理和关键技术。
通过实验操作,培养学生动手能力、分析问题和解决问题的能力,同时增强对通信理论知识的实际应用能力。
二、实验内容1. 信号与系统基础实验- 信号波形观察与分析- 信号的时域与频域分析- 系统的时域与频域响应2. 模拟通信原理实验- 模拟调制与解调实验(如AM、FM、PM)- 信道特性分析- 噪声对通信系统的影响3. 数字通信原理实验- 数字调制与解调实验(如2ASK、2FSK、2PSK、QAM)- 数字基带传输与复用- 数字信号处理技术4. 现代通信技术实验- TCP/IP协议栈原理与实现- 无线通信技术(如Wi-Fi、蓝牙)- 物联网通信技术(如ZigBee)5. 通信系统设计实验- 基于MATLAB的通信系统仿真- 通信系统性能分析与优化三、实验步骤1. 实验准备- 熟悉实验原理和实验设备- 编写实验报告提纲- 准备实验数据和分析工具2. 实验操作- 按照实验步骤进行操作,记录实验数据 - 分析实验现象,总结实验规律- 对实验结果进行误差分析3. 实验报告撰写- 实验目的与背景- 实验原理与步骤- 实验结果与分析- 实验结论与讨论- 实验心得与体会四、实验报告格式1. 封面- 实验报告题目- 学生姓名、学号、班级- 指导教师姓名、职称- 实验日期2. 目录- 实验报告各部分标题及页码3. 正文- 实验目的与背景- 实验原理与步骤- 实验结果与分析- 实验结论与讨论- 实验心得与体会4. 参考文献- 列出实验过程中参考的书籍、论文、网络资源等五、实验报告撰写要求1. 实验报告内容完整、结构清晰、逻辑严谨2. 实验原理阐述准确,实验步骤描述详细3. 实验数据真实可靠,分析结论具有说服力4. 实验报告格式规范,语言表达流畅六、实验报告评价标准1. 实验原理掌握程度2. 实验操作熟练程度3. 实验数据分析能力4. 实验报告撰写质量5. 实验心得体会通过本次通信原理实验,学生将能够全面了解通信系统的基本原理和关键技术,提高实际应用能力,为今后从事通信领域的工作打下坚实基础。
数字信号实验报告实验三 离散傅立叶变换及其应用一、 实验目的:1.进一步加深DFT 算法的原理和基本性质的理解;2.学习用FFT 对信号进行谱分析的方法,并分析其误差及其原因;3.学习利用DFT 计算程序计算IDFT 的方法。
二、实验原理:1.N 点序列的DFT 和IDFT 变换定义式如下:kmNN kW k x m X ∑-==1][][, km N N mW m X Nk x --=∑=1][1][ 利用旋转因子kmN W 具有周期性,可以得到快速算法(FFT )。
在MATLAB 中,可以用函数X=fft(x) %计算N 点的DFT ,N 为序列x[k]的长度,即N=length (x ); X=fft (x ,N )%计算序列x[k]的N 点DFT ;x=ifft (X ) %计算N 点的IDFT ,N 为序列x[m]的长度; x=ifft (X ,N )%计算序列x[m]的N 点IDFT ;2. impz 函数是求解离散系统单位脉冲响应,并绘制其时域波形,其调用格式为: impz(b,a)例如:某离散LTI 系统的差分方程为:)()2(8.0)1()(k x k y k y k y =-+--,则对应的向量为a=[1,-1,0.8],b=[1],则该系统的单位脉冲响应)(k h 的波形,MATLAB 的程序如下:a=[1,-1,0.8]; b=[1]; impz(b,a); 其运行结果为:01020304050607080-0.8-0.6-0.4-0.200.20.40.60.81n (samples)A m p l i t u d eImpulse Response3.MATLAB 计算循环卷积函数的调用格式:y=circonv(x,h)4.求有限长序列的DTFT ,并画出它的幅度谱,相位谱,实部和虚部。
clear all x=[1,2,3,4,5]; k=-1:3;w=linspace(0,2*pi,512); H=x*exp(-j*k'*w);subplot(2,2,1);plot(w,abs(H));ylabel('幅度'); %画幅度特征曲线 subplot(2,2,2);plot(w,angle(H));ylabel('相角'); %画相位特征曲线 subplot(2,2,3);plot(w,real(H));ylabel('实部'); %画幅度实部特征曲线 subplot(2,2,4);plot(w,imag(H));ylabel('虚部'); %画幅度虚部特征曲线 其程序运行结果如下:2468051015幅度02468-4-2024相角2468-5051015实部02468-10-50510虚部三、实验内容:1.假设现含有3种频率成分,Hz f 201=,Hz f 5.202=,Hz f 403=,)2sin()2sin()2sin()(321t f t f t f t x πππ++=,取采样频率Hz f s 100=对)(t x 进行等间隔采样得)(k x ,对)(k x 加长度为128的矩形窗进行截断得有限长序列)(1k x ,对)(1k x 做128点的DFT ,画出原信号此时的频谱图,然后对)(1k x 做512的DFT ,画出原信号此时的频谱图,分析两副图的特点,总结实验中的主要结论。
实验报告课程名称: 数字信号处理院系部:电气与电子工程学院专业班级:信息1002学生姓名:王萌学号: 1101200219同组人:实验台号:指导教师:范杰清成绩:华北电力大学(北京)实验二 时域抽样与频域抽样一、实验目的加深理解连续时间信号的离散化过程中的数学概念和物理概念,掌握时域抽样定理的基本内容。
掌握由抽样序列重建原连续信号的基本原理与实现方法,理解其工程概念。
加深理解频谱离散化过程中的数学概念和物理概念,掌握频域抽样定理的基本内容。
二、 实验原理时域抽样定理给出了连续信号抽样过程中信号不失真的约束条件:对于基带信号,信号抽样频率fsam 大于等于2倍的信号最高频率fm ,即 fsam 2fm 。
时域抽样是把连续信号x(t)变成适于数字系统处理的离散信号x[k] ;信号重建是将离散信号x[k]转换为连续时间信号x(t)。
非周期离散信号的频谱是连续的周期谱。
计算机在分析离散信号的频谱时,必须将其连续频谱离散化。
频域抽样定理给出了连续频谱抽样过程中信号不失真的约束条件。
三、实验内容:1、利用MATLAB 实现对 的抽样)20π2cos()(t t x ⨯=程序代码:自己设计:w0=2*pi*20;t=0:0.0001:0.1;x=cos(w0*t);plot(t,x);hold on;t=0:0.01:0.1;x=cos(w0*t);stem(t,x);hold off;所给代码:t0 = 0:0.001:0.1;x0 =cos(2*pi*20*t0);plot(t0,x0,'r')hold on%信号最高频率fm为20 Hz,%按100 Hz抽样得到序列。
Fs = 100;00.010.020.030.040.050.060.070.080.090.1-1-0.8-0.6-0.4-0.20.20.40.60.81连续信号及其抽样信号t=0:1/Fs:0.1;x=cos(2*pi*20*t);stem(t,x);hold offtitle('连续信号及其抽样信号')自己设计的程序结果截图:实际截图:2、已知序列}2,1,0;1,1,1{][==kkx对其频谱X(ejW)进行抽样。
实验报告思考题要点提示数字信号处理实验一:信号、系统及系统响应1、简述线性卷积结果y (n)的非零区间与x (n )、h (n )非零区间的关系?激励x (n )延时时输出如何变化?由线性移不变系统特性可知,当激励x (n )延时n 0时,输出y (n )也延时n 0。
2、 简述系统函数零极点分布与系统幅频特性间的对应关系。
(1) 位于原点处的零、极点对幅频特性没有影响,只影响相频特性。
(2) 极点位置主要影响幅频特性峰值的位置及尖锐程度,极点越靠近单位圆,所对应的峰值越尖锐。
(3) 零点位置主要影响幅频特性谷值的位置及形状,零点越靠近单位圆,谷值越小。
3、 y (n )=x (n )*h (n ),当输入x (n )有一时移时y (n )与)e (Y j ω有无变化,并说明为什么?由线性移不变系统特性可知,当激励x (n )延时n 0时,输出y (n )也延时n 0。
所以当输入x (n )有一时移时,y(n )也有同样的时移。
)()]([)()]([00ωωωj j e Y e n n y DTFT DTFT e Y n y DTFT n j -=-=的时移特性可知,由设,即时域位移,频域相移,所以幅频特性)e(Y j ω无变化。
数字信号处理实验二:信号的谱分析1、 描述随着DFT 变换点数N 的增加,X (k )的幅度谱的变化并解释原因。
随着DFT 变换点数N 的增加,X (k )的幅度谱序列间隔越来越密,其包络逐渐逼近x (n )的幅度谱)(ωj e X 。
这是因为M 点有限长序列x (n )的N 点DFT 是对有限长序列x (n )的频谱)(ωj e X 在频域0~2π区间内的N 点等间隔抽样。
即:k Nj e X n x DFT k X πωω2)()]([)(=== 因此变换点数越多,抽样间隔越小。
2、 用DFT 对连续非周期信号进行谱分析,试分析(1)采样点数足够多(即数据截断长度足够长)的情况下,采样频率对谱分析的影响;(2)采样频率足够高(即无明显的频域混叠现象)时,采样点数N (相应地时窗截断长度NT s )对谱分析的影响。
实验三:离散时间信号的频域分析一.实验目的1.在学习了离散时间信号的时域分析的基础上,对这些信号在频域上进行分析,从而进一步研究它们的性质。
2.熟悉离散时间序列的3种表示方法:离散时间傅立叶变换(DTFT),离散傅立叶变换(DFT)和Z变换。
二.实验相关知识准备1.用到的MATLAB命令运算符和特殊字符:< > .* ^ .^语言构造与调试:error function pause基本函数:angle conj rem数据分析和傅立叶变换函数:fft ifft max min工具箱:freqz impz residuez zplane三.实验内容1.离散傅立叶变换在MATLAB中,使用fft可以很容易地计算有限长序列x[n]的离散傅立叶变换。
此函数有两种形式:y=fft(x)y=fft(x,n) 求出时域信号x的离散傅立叶变换n为规定的点数,n的默认值为所给x的长度。
当n取2的整数幂时变换的速度最快。
通常取大于又最靠近x的幂次。
(即一般在使用fft函数前用n=2^nextpow2(length(x))得到最合适的n)。
当x的长度小于n时,fft函数在x的尾部补0,以构成长为n点数据。
当x的长度大于n时,fft函数将序列x截断,取前n点。
一般情况下,fft求出的函数多为复数,可用abs及angle分别求其幅度和相位。
注意:栅栏效应,截断效应(频谱泄露和谱间干扰),混叠失真例3-1:fft函数最通常的应用是计算信号的频谱。
考虑一个由100hz和200hz正弦信号构成的信号,受零均值随机信号的干扰,数据采样频率为1000hz。
通过fft函数来分析其信号频率成分。
t=0:0.001:1;%采样周期为0.001s,即采样频率为1000hzx=sin(2*pi*100*t)+sin(2*pi*200*t)+1.5*rand(1,length(t));%产生受噪声污染的正弦波信号subplot(2,1,1);plot(x(1:50));%画出时域内的信号y=fft(x,512);%对x进行512点的fftf=1000*(0:256)/512;%设置频率轴(横轴)坐标,1000为采样频率subplot(2,1,2);plot(f,y(1:257));%画出频域内的信号实验内容3-2:频谱泄漏和谱间干扰假设现有含有三种频率成分的信号x(t)=cos(200πt)+sin(100πt)+cos(50πt)用DFT分析x(t)的频谱结构。
实验三1. 信号的尺度变换、翻转和时移信号的尺度变换、翻转和平移运算实际上是函数自变量的运算。
例1 已知某三角波脉冲信号f (t ),试绘制f (2t )、f (-2t )和f (2-2t )的波形。
t=-3:0.001:3; ft=tripuls(t,4,0.5);subplot(2,2,1);plot(t,ft);title('原始信号'); ft1=tripuls(2*t,4,0.5); %尺度变换 subplot(2,2,2);plot(t,ft1);title(尺度变换'); ft2=tripuls(-2*t,4,0.5); %翻转 subplot(2,2,3);plot(t,ft2);title('翻转'); ft3=tripuls(2-2*t,4,0.5); %时移 subplot(2,2,4);plot(t,ft3);title('时移'); f (t )、f (2t )、f (-2t )和f (2-2t )的波形如图1所示。
-4-202400.51原始信号-4-202400.51尺度变换-4-202400.51翻转-4-202400.51时移图1 信号的尺度变换、翻转和时移2. 信号的微分和积分连续信号的微分可用diff 函数来计算,连续信号的定积分可用quad 函数或quad8函数来计算。
其调用格式为:y=diff(x)/h其中x 为待微分的信号,h 为步长,y 为信号x 的微分。
y=quad(‘function-name ’,a,b)其中function-name 为被积函数名,a 、b 为积分区间的下限和上限,y 为积分后信号。
quad 和quad8都是积分函数,只是采用的积分方法不同而已。
quad 采用较低次的可塑性递回辛普森积分法则,quad8 采用可塑性递回八段Newton-Cotes 积分法则,quad8不管是在精度上还是在速度上都明显高于quad 。
例2 如图2所示的三角波脉冲信号f (t ),试利用MATLAB 绘制'()f t 和()t f t dt -∞⎰的波形。
为了使用quad 函数来计算三角波脉冲信号f(t)的积分,将f(t)编写成MATLAB 的函数文件,函数名为ft_tri.m 。
此函数文件如下:function yt=ft_tri(t) yt=tripuls(t,4,0.5);利用diff 和quad 函数,并调用ft_tri.m 即可计算三角波脉冲信号f (t )的微分、积分。
程序如下:h=0.001;t=-3:h:3; y1=diff(ft_tri(t))/h;subplot(1,2,1);plot(t(1:length(t)-1),y1);title('信号的微分'); t=-3:0.1:3; for x=1:length(t)y2(x)=quad('ft_tri',-3,t(x)); endsubplot(1,2,2);plot(t,y2); title('信号的积分'); 程序运行结果如图2所示。
-4-2024-1.2-1-0.8-0.6-0.4-0.200.20.4信号的微分-4-2024信号的积分图2 信号的微分和积分3. 信号的差分和迭分离散序列的差分为:()[][1]f k f k f k ∇=--,用diff 函数实现,其调用格式为y=diff(f)。
离散序列的迭分是21[]k k k f k =∑,与信号的相加运算不同,迭分运算把k 1到k 2之间的所有样本[]f k 加起来,在MATLAB 中用sum 函数实现,其调用格式为y=sum(f(k1:k2))。
例3计算指数信号( 1.6)()10k k k ε-≤,的能量。
解:离散信号的能量定义为2lim[]NN k NE f k →∞=-=∑根据上式,计算能量的程序如下: k=0:10; fk=(-1.6).^k; E=sum(abs(fk).^2) E =1.9838e+0044. 系统的冲激动响应和阶跃响应若系统的微分方程或传递函数为:()()()()n mi j iji j ay t bft ===∑∑10111011...()(),()...m m m m nn n nb s b sb s b Y s H s n m F s a s a sa s a ----++++==≥++++对于物理上可实现的系统,n m ≥。
一般情况下,系数a 0=1,若不为1则分子分母可以同时除以a 0。
由微分方程和传递函数的关系可知,传递函数和微分方程中的系数a i 和b i 是严格对应的,因此,两种形式给出系统函数都可以用下面的方法解决。
y=ipulse(b,a) ,用于绘制向量a 和b 定义的LTI (线性时不变)系统的冲激响应。
y=step(b,a) ,用于绘制向量a 和b 定义的LTI (线性时不变)系统的阶跃响应。
其中,a 和b 表示由系统微分方程中的a i 和b i 组成的系数向量。
例4 求系统''''7()4()6()()()y t y t y t f t f t ++=+的冲激响应和阶跃响应。
a=[7 4 6]; b=[1 1];subplot(1,2,1);impulse(b,a); %冲激响应 title('冲激响应');xlabel('时间');ylabel('幅值'); subplot(1,2,2);step(b,a); % 阶跃响应 title('阶跃响应');xlabel('时间');ylabel('幅值'); 系统的冲激响应和阶跃响应如图3所示。
5101520-0.1-0.050.050.10.150.20.25冲激响应时间 (sec)幅值051015200.050.10.150.20.250.30.35阶跃响应时间 (sec)幅值图3 系统的冲激响应和阶跃响应5. 系统的零状态响应LTI 连续系统以常系数微分方程描述,系统的零状态响应可通过求解初始状态为零的微分方程得到。
MATLAB 提供的零状态响应函数为lsim ,其调用格式为:y=lsim(sys,f,t)其中,t 是系统零状态响应的抽样点,f 是输入信号,sys 是LTI (线性时不变)系统的模型,可以是微分方程、差分方程或状态空间方程。
在求解微分方程时, LTI (线性时不变)系统的模型sys 要借助函数tf 来获得,其调用格式为: sys=tf(b,a)其中,a 、b 分别对应系统函数中输出和输入的系数向量。
例5已知系统'''()2()77()()y t y t y t f t ++=。
求当输入信号为()10sin 2f t t π=时,该系统的零状态响应。
sys=tf([1],[1 2 77]); t=1:0.01:5; f=10*sin(2*pi*t); y=lsim(sys,f,t); plot(t,y);系统的零状态响应如图9-11所示。
1 1.52 2.53 3.54 4.55图5 零状态响应6 离散系统的零状态响应 离散系统可以用差分方程来描述:[][]nmij i j ay k i b f k j ==-=-∑∑其中,[]f k 、[]y k 分别表示离散系统的输入和输出,n 表示差分方程的阶数。
已知差分方程的n 个初始状态和输入[]f k ,就可以利用迭代计算法来计算系统的输出。
[][][]nmj i i j b a y k y k i f k j a a ===--+-∑∑在零初始状态下,MATLAB 工具箱提供了一个filter 函数来计算差分方程的零状态响应,其调用格式如下:y=filter(b,a,f)其中,b 、a 分别是差分方程输入和输出各阶差分的系数所组成的向量,f 为输入序列,y 为输出序列。
注意:输出序列和输入序列的长度应当相等。
例6 已知某LTI 系统的输入输出关系为:11[][]M n y k f k n M-==-∑,输入信号为[][][]f k s k d k =+,其中[](2)*0.9ks k k =,[]d k 是随机信号。
试用MATLAB 编程求解系统的零状态响应。
随机信号[]d k 可以由rand 函数产生,假设M =5。
则程序如下: R=51; %信号长度d=rand(1,R)-0.5; %产生[-0.5 0.5]的随机数 k=0:R-1; s=2*k.*(0.9.^k); f=s+d; subplot(1,2,1) stem(k,f);title('输入信号f(k)'); axis([0 50 0 8]); M=5;b=ones(M,1)/M; a=1; y=filter(b,a,f); subplot(1,2,2) stem(k,y);title('系统响应y(k)');axis([0 50 0 8]);该系统的零状态响应如图6所示。
010********输入信号f(k)010********系统响应y(k)图6离散系统的零状态响应7离散系统的冲激响应在MATLAB 中,可以用impz 函数来求解系统的冲激响应,其调用格式为:h=impz(b,a,k)其中,b 、a 分别是差分方程输入、输出的系数向量,k 表示输出序列的时间取值范围,h 就是系统的单位冲激响应。
例7 某离散系统的差分方程为6[]5[1][2][]y k y k y k f k --+-=,初始条件为y[0]=0,y[1]=1,求其冲激响应、零状态响应和完全响应。
k=-10:20;a=[6 -5 1];b=[1];subplot(1,3,1),impz(b,a,k);title('冲激响应'); %冲激响应 kj=0:30;fk=cos(kj*pi/2);yf=filter(b,a,fk); %零状态响应subplot(1,3,2),stem(kj,yf);title('零状态响应'); axis([0 30 -0.15 0.2]); %完全响应 y(1)=0;y(2)=1; %初值 for m=3:length(kj);y(m)=(1/6)*(5*y(m-1)-y(m-2)+fk(m)); endsubplot(1,3,3),stem(kj,y);title('完全响应');axis([0 30 -0.15 1.1]); 程序运行结果如图7所示。
n (samples)A m p l i t u d e冲激响应零状态响应完全响应图7 离散系统的冲激响应、零状态响应和完全响应8卷和运算卷和是计算离散系统零状态响应的强有力的工具之一,卷和函数conv 的调用格式为: c=conv(a,b)其中,序列c 的时间起点为两个向量a 、b 的时间起点之和,终点为两两个向量a 、b 的时间终点之和,长度为a 、b 长度之和减1。