基站射频收发信机指标分解讲课稿
- 格式:docx
- 大小:2.31 MB
- 文档页数:20
5G NR射频指标发射部分释义5G频段分两部分:FR1和FR25G频段FR1和FR2下面是FR1也就是 sub 6G的频段表:sub 6G频段国内运营商移动部署的5G频段是n41和n79,联通和电信部署的频段都是n78,具体频率范围如下:中国移动:n41:2515~2675MHz,n79:4800~4900MHz;中国电信:n78:3400~3500MHz;中国联通:n78:3500~3600MHz;3GPP中关于5G FR1(sub 6G)的射频指标要求都在38.101中,其中38.101-1和38.101-2分别定义的是SA架构下FR1(sub 6G)和FR1(毫米波)下的射频指标要求,38.101-3是ENDC 和5G CA组合下的5G射频指标要求,ENDC就是我们现阶段国内运营商正在推行的NSA架构。
因为NSA架构属于过渡阶段,运营商重点部署的是SA架构,因此本文重点讲述SA架构下5G的射频指标,也就是38.101-1。
3GPP相关文档下载地址:https:///ftp/Specs/archive/38_series/发射指标:6 发射特性6.2 Transmitter power发射功率;6. 2.1 UE maximum output power最大发射功率以上测试取样周期至少为1个子帧,1ms,除非特别说明,对各自支持的所有带宽都有效不同class对应的最大发射功率表6. 2.2 UE maximum output power reduction最大发射功率回退5G NR允许终端在特定的调制方式、特定的RB分配机制下,适当回退最大发射功率,以适应高阶调制带来的发射指标超标或者占用带宽超标的问题;6. 2.3 UE additional maximum output power reduction额外最大发射功率回退额外最大功率回退是网络端基于杂散的额外要求而设定的,额外最大功率回退值和最大功率回退值不能重复叠加,取最大值做回退,特定频段特定RB信令连接的最大功率回退6.3 Output power dynamics输出功率动态范围6.3.1 Minimum output power最小输出功率The minimum controlled output power of the UE is defined as the power in the channel bandwidth for all transmit bandwidth configurations (resource blocks), when the power is set to a minimum value.The minimum output power is defined as the mean power in at least one sub-frame 1 ms. The minimum output power shall not exceed the values specified in Table 6.3.1-1.最小发射功率的概念我们不应该陌生,无论是Wcdma还是LTE都有这项指标要求,在最小1个子帧(1ms)的测试周期内,所有带宽和RB配置下,都应该满足最小发射功率小于某个规定的大小。
摘要:射频收发信机是移动通信系统中的一个重要组成部分,射频收发信机性能对整个移动通信系统的性能有着重要的影响。
本文基于第三代移动通信标准TD-SCDMA系统用户终端设备射频收发信机的研究开发,分析了TD-SCDMA用户终端射频收发信机的主要性能指标要求,并对射频收发信机主要指标的测试进行了论述。
1、引言:在ITU最终确定的5种RTT(无线传输技术)建议中,TD-SCDMA是由中国标准化组织(CWTS)代表中国向ITU提交的。
TD-SCDMA提案是在SCDMA无线本地环路(SCDMA-WLL)先进技术以及成功应用的基础上提出的。
它采用时分双工(TDD)方式,运用了多项先进的技术,如:智能天线(Smart Antenna)技术、多用户检测(Joint Detection)技术、同步码分多址(SCDMA)技术、软件无线电(Software Radio)技术等。
前不久,大唐电信中央研究院与重庆邮电学院联合成功开发了TD-SCDMA 试验系统用户终端设备。
TD-SCDMA终端无线接口的相关特性指标与射频收发信机息息相关。
本文介绍分析了TD-SCDMA系统用户终端收射频收发信机的主要性能指标,并对一些收发信机射频指标的测试进行了论述。
2、指标分析下面结合TD-SCDMA相关标准文档,对TD-SCDMA用户终端收发信机的一些指标参数进行分析,并作为射频收发信机设计的重要依据。
这里主要分析如下几个指标参数:1.接收灵敏度;2.邻道选择性(ACS)与干扰;3.线性和动态范围。
接收灵敏度接收灵敏度(Psen)是TD-SCDMA终端射频收信机重要的指标参数,合理地确定接收灵敏度直接地决定了TD-SCDMA终端射频收发信机的性能及其可实现性。
接收灵敏度是指在确保误比特率(BER)不超过某一特定值的情况下,在用户终端天线端口测得的最小接收功率,这里BER通常取为0.001。
接收灵敏度表征着TD-SCDMA终端接收机接收能力的强弱。
美信Maxim技术文档《基站收发信机设计》,以WCDMA为例进行讲解基站收发信机射频前端指标分解和设计。
虽然文档以WCDMA为例进行讲解,但宽带收发信机射频前端原理基本一致,因此适用于LTE等其他制式的设计。
以下为学习笔记和总结。
1.接收机接收机主要射频指标包括Reference Sensitivity Level,Adjacent Channel Selectivity(ACS),Blocking(In-Band和Out-of-Band),Receiver Inter-modulation。
其中带内blocking指标和ACS 分析类似,考量的都是工作带内信道外干扰信号对接收机影响的分析,因此Bolcking指标支队Out-of-band指标进行了讲解和说明。
1.1Reference Sensitivity Level接收机的最小可接收电平(接收机灵敏度)= -174dBm/Hz + 10logBW + NF + Eb/N01.Eb/No由基带解调能力决定,与射频前端无关;2.BW由无线系统协议标准定义;3.-174dBm/Hz及总的热噪声;因此针对某一无线系统设计,灵敏度指标的分解即根据协议灵敏度指标要求来设计接收机的噪声系数(Noise Figure)要求,以保证满足灵敏度指标允许的最大输入噪声(总噪声,包括输入热燥和引入的系统噪声)上图说明如下:Step1:系统要求灵敏度指标为-121dBm/3.84MHz;Step2:Eb/No = 5dB ——不考虑编码增益允许的总输入噪声=-121dBm – 5dB = -126dBm Step3:12.2Kbps数据速率到3.84Mcps码片速率的扩频增益为:10*log(3.84M/12.2K) ≈25dB,考虑扩频增益后总的输入噪声要求为-101dBm;Step4:3.84MHz带内总的热噪声= -174dBm + 10log3.86MHz/1Hz = -108.1dBm所以为满足灵敏度指标要求,系统接收机连续噪声系数需要≤-101dBm+108.1dBm=7.1dB接收机的其他指标都是基于灵敏度指标满足设计要求为前提。
因此设计首先要满足灵敏度指标要求,再在此基础上进行其他指标的分解和设计。
而对于接收机灵敏度指标的射频前端设计就是系统分解下来NF指标的设计。
Note:Noise FigureSNR = Ps/PiF = SNRin/SNRout (1~正无穷) ——Noise Factor噪声因子NF(dB) = 10logF (0~正无穷)——Noise Figure噪声系数,Noise Factor的dB形式;1.2Adjacent Channel Selectivity (ACS)ACS和带内阻塞指标分析类似,考量的是接收频带内存在大的干扰信号时接收机的接收能力。
该指标主要通过上行信道成型滤波器、接收通道增益线性范围以及AGC功能来保证。
这里以ACS为例进行指标分解进行说明。
Step1:协议要求允许领导干扰恶化灵敏度6dB,即邻道干扰需要满足-115dBm有用信号下得BER要求;Step2:基带解调门限Eb/N0 (5dB)——-120dBm;Step3:25dB扩频增益——-95dBm;Step4:扣除灵敏度指标下信道内输入总噪声-101dBm ——-95dBm(3.16E-13W)- -101dBm(7.94E-14W)= 2.36795E-13W(-96.2563dBm),即扣除系统噪声外允许引入的其他噪声功率Step5/6:协议要求的最大邻道干扰电平-52dBm——-52dBm –96.3dBm = 44.3dB,即,邻道最小抑制比。
以上分析没有考虑大的干扰信号下,接收通道非线性失真的影响。
实际设计中需要针对系统要求的接收信道要求的信号接收功率动态范围(混频器,ADC等器件的指标考虑链路增益设计-AGC,以及增益变化对接收链路NF的影响)1.3Out-of-Band Blocking带外阻塞抑制和ACS/In-band blocking指标分析方法一样。
只是带外阻塞指标要求干扰电平更高。
对于基站接收机来说,带外干扰信号在进入接收机后首先经过了腔体滤波器/双工器对带外干扰进行了一次抑制。
系统设计需要根据讲带外抑制指标分解给滤波器设计规格。
对于co-location指标,也是带外的阻塞干扰信号的一种更严格的应用场景,是较常规阻塞更严格的一种情况。
1.4Receiver Inter-modulation接收机互调是考量天线口存在两个干扰信号时,其互调产物如果落在信道内时会烦扰接收机接收有用信号。
Step1~4:同1.2;Step5:干扰信道电平-48dBm;Step6:IM3产物不能大于-96.3Bm,即IM3相对-48dBm干扰信号电平为:48.3dB;Step7:天线IIP3 = IM3/2 + P_干扰信号= 48.3dB/2 – 48dBm = -23.9dBm针对接收机互调指标,协议对干扰信号的类型和干扰信号相对载波位置进行了明确的定义,以保证测试可考量性。
1.5Receiver设计架构1.5.1 接收机设计架构介绍当前基站接收机一般采用ZIF设计结构或一次下变频中频欠采样架构(数字与在将中频下变频到基频)目前基于RFIC的LTE基站接收机基本采用ZIF方案。
优点:ZIF大大简化了接收机射频链路设计,节省了产品体积。
ADC工作低频,可以提供更有的性能。
频率规划简单,无需镜像抑制。
缺点:基带直流失调降低了系统的总体动态范围;对镜频抑制的需求,使得多载波应用中所能容许的I/Q失配非常小;偶次谐波失真降低了灵敏度;低辐射对LO泄漏指标的要求更加苛刻;动态范围低于其它结构。
该架构的接收机设计,是在模拟域通过混频器先将射频信号下变频到中频,在中频对接收信号进行采样和数字化,然后在数字域再通过DDC(Digital Down Conversion)模块将中频信号变换到基带频率。
该设计架构较ZIF的频点规划少复杂一些,需要考虑半中频、镜像等信号的影响合理的选在本振模式和中频频点,而且对ADC的性能要求更高,但是相对ZIF架构有更高的动态范围。
1.5.2 ZIF镜像抑制介绍负频率概念?1.6ADC指标分析1.6.1 RF前端增益确定1.确定系统噪声系数如1.1分析,WCDMA系统NF<7.1dB即可满足协议要求的灵敏度指标要求。
为了保证更优的指标和设计余量,NF设计指标定位4dB(NFsys),假设ADC对系统噪声系数影响为0.5dB,模拟电路总的噪声系数为3.5dB(RF前端NF1)。
ADC的参数如下:基于以上ADC参数,其等效噪声系数NF2如下:如下图示,确定RF前端的增益PG1和ADC的等效噪声系数NF2(27.2dB,ADC自身底噪相对于热噪声)。
2.RF前端增益PG1确定增益计算公式如下:1.6.2 无阻塞条件下天线口和ADC口功率对应关1.6.3 ADC阻塞信号电平对RF前端增益要求ADC输入端的最高阻塞信号电平(工作频带内和工作频带外);阻塞电平分析时需要考虑余量(ADC满量程电平和ADC最大输入端电平差),通常我们不希望阻塞信号的峰值电平高于ADC满量程电平。
假设预留7dB余量,天线口阻塞电平为-30dBm,计算从天线口到ADC输入口的增益PG1:= FS –7dB –阻塞信号电平——FS为ADC满量程输入电平Full-scale= +4dBm – 7dB – (-30dBm)= 27dB, 或从33dB标称增益降低6dB如果接收机链路(包括ADC)的动态不能满足设计要求时,需要通过AGC功能实现大小信号下接收机性能。
从在阻塞时电路噪声和失真会恶化系统噪声系数:2.发射机发射机主要性能要求:1.信号质量(EVM)2.杂散辐射产物(ACLR,SEM)2.1Transmitter设计架构介绍2.2可能出现的问题➢噪声底➢交调/ 邻道泄漏抑制➢LO 泄漏➢镜像边带2.3IMD和ACLR1.对宽带无线系统,IMD不仅影响ACLR,还影响EVM。
对ACLR的影响更大。
——OIP3是关键参数,Third Order Intercept Point(IP3). OIP3 = IM/2 + Po2.降低输出功率可以改善ACLR,但最终收底噪限制;3.利用3阶交调OIP3简单估算ACLR–Pt = 包括所有载波的总输出功率,利用两个单频载波在每载波输出功率为(Pt - 3dB) 状态下推算的IM3值可以估算:–单载波ACLR = | IM3 | -3 dB–双载波ACLR = | IM3 | - 9 dB–4载波及以上ACLR = | IM3 | - 12dB–估算中未计及噪声底2.4LO Leakage修正办法–改变基带I,Q信号中的DC偏移•需要较高的DAC分辨率–有源对消电路反馈环•此部分是数字预失真控制环路的一部分2.5Image suppression修正办法–调节I/Q输入的幅度和相位偏•需要较高的DAC分辨率–设置一个固定的偏移量作一阶–利用反馈环作有源修正•结合到数字预失真环路中实现3 PA设计架构3.1 PA设计架构介绍➢功率回退较低功率= 较低的交调= 较高邻道泄漏抑制ACLR直接影响效率; 对WCDMA应用,效率<5%➢开环射频预失真X➢闭环射频预失真X➢前馈X➢数字预失真3.2 数字预失真反馈侦测通道必须干净:这个通道内的失真无法消除,如果失真严重无法侦测到发射信号的实际失真情况,会引入反的修正修过。