在数轴上表示不等式的解集
- 格式:doc
- 大小:302.63 KB
- 文档页数:5
2021-2022学年北师大版八年级数学下册《2-3不等式的解集》同步练习题(附答案)1.如图,数轴上表示的解集是()A.﹣3<x≤2B.﹣3≤x<2C.x>﹣3D.x≤22.在数轴上表示﹣2≤x<1正确的是()A.B.C.D.3.在数轴上表示不等式x>﹣1的解集正确的是()A.B.C.D.4.在数轴上表示不等式﹣1<x⩽2,其中正确的是()A.B.C.D.5.交通法规人人遵守,文明城市处处安全.在通过桥洞时,我们往往会看到如图所示的标志,这是限制车高的标志.则通过该桥洞的车高x(m)的范围在数轴上可表示为()A.B.C.D.6.定义新运算“⨂”,规定:a⨂b=a﹣2b.若关于x的不等式x⨂m>3的解集为x>﹣1,则m的值是()A.﹣1B.﹣2C.1D.27.下列解集中,不包括﹣4的是()A.x≤﹣3B.x≥﹣4C.x≤﹣5D.x≥﹣68.已知关于x的不等式组有解,则a的取值不可能是()A.0B.1C.2D.39.如果不等式组无解,则下列数轴示意图正确的是()A.B.C.D.10.若不等式组无解,则a的取值范围是.11.若关于x的不等式组有解,则m的取值范围为.12.已知关于x的不等式组有实数解,则m的取值范围是.13.如图,此不等式的解集为.14.若关于x的一元一次不等式组有解,则m的取值范围为.15.若关于x的不等式组的解集是x<4,则P(m+1,2﹣m)在第象限.16.若不等式(a+1)x>a+1的解集是x<1,则a的取值范围是.17.若关于x的不等式(a+1)x>a+1的解集为x>1,则a的取值范围是.18.在数轴上表示下列不等式:(1)x>﹣2;(2)﹣1≤x<3.19.分别用含x的不等式表示如图数轴中所表示的不等式的解集:①;②.20.如图,在数轴上,点A、B分别表示数1和﹣2x+3.(1)求x的取值范围;(2)将x的取值范围在数轴上表示出来.21.解不等式组.请结合题意,完成本题的解答.(1)解不等式①,得.(2)解不等式③,得.(3)把不等式①、②和③的解集在数轴上表示出来.(4)从图中可以找出三个不等式解集的公共部分,得不等式组的解集.参考答案1.解:由图可得,x>﹣3且x≤2∴在数轴上表示的解集是﹣3<x≤2,故选:A.2.解:﹣2是实心点,方向向右,1是空心点,方向向左,如图所示:故选:D.3.解:在数轴上表示不等式x>﹣1的解集如下:故选:A.4.解:“>”空心圆圈向右画折线,“≤”实心圆点向左画折线.故在数轴上表示不等式﹣1<x⩽2如下:故选:A.5.解:由题意可得:通过该桥洞的车高x(m)的取值范围是:0<x≤4.5.在数轴上表示如图:故选:D.6.解∵a⊗b=a﹣2b,∴x⨂m=x﹣2m.∵x⨂m>3,∴x﹣2m>3,∴x>2m+3.∵关于x的不等式x⨂m>3的解集为x>﹣1,∴2m+3=﹣1,∴m=﹣2.故选:B.7.解:A选项,﹣3以及比﹣3小包括﹣4,不合题意;B选项,可以等于﹣4,不合题意;C选项,﹣5以及比﹣5小的数不包括﹣4,符合题意;D选项,﹣6以及比﹣6大的数包括﹣4,不合题意;故选:C.8.解:∵关于x的不等式组有解,∴a<3,∴a的取值可能是0、1或2,不可能是3.故选:D.9.解:若不等式组无解,则数轴示意图正确的是:故选:D.10.解:因为不等式组无解,所以a≤﹣3,故答案为:a≤﹣311.解:不等式组有解,则m≤x<2,解得m<2.故答案为:m<2.12.解:已知关于x的不等式组有实数解,则两个不等式一定有公共部分,则m的取值范围是m>3.故答案为:m>3.13.解:根据数轴可知:此不等式的解集为﹣2<x≤3.故答案为:﹣2<x≤3.14.解:解不等式2x>﹣m得:x>﹣,∵不等式组有解,∴﹣<2,∴﹣m<4,∴m>﹣4,故答案为:m>﹣4.15.解:∵关于x的不等式组的解集是x<4,∴m≥4.∴m+1>0,2﹣m<0,∴P(m+1,2﹣m)在第四象限.故答案为:四.16.解:不等式(a+1)x>a+1两边都除以a+1,得其解集为x<1,∴a+1<0,解得:a<﹣1,故答案为:a<﹣1.17.解:∵关于x的不等式(a+1)x>a+1的解集为x>1,∴a+1>0,解得a>﹣1,故答案为:a>﹣1.18.解:(1)将x>﹣2表示在数轴上如下:(2)将不等式组﹣1≤x<3表示在数轴上如下:.19.解:①数轴表示不等式解集为x>0,②数轴表示不等式解集为x≤3,故答案为:x>0;x≤3.20.解:(1)由数轴可知:﹣2x+3>1,解得:x<1,即x的取值范围是x<1;(2)在数轴上表示为:.21.解:(1)解不等式①,得x≥﹣3,依据是:不等式的基本性质.(2)解不等式③,得x<1.(3)把不等式①,②和③的解集在数轴上表示出来.(4)从图中可以找出三个不等式解集的公共部分,得不等式组的解集为:﹣2<x<1,故答案为:(1)x≥﹣3;(2)x<1;(4)﹣2<x<1.。
经典例题透析类型一:解一元一次不等式组1、解不等式组,并把它的解集在数轴上表示出来。
思路点拨:先求出不等式①②的解集,然后在数轴上表示不等式①②的解集,求出它们的公共部分即不等式组的解集。
解析:解不等式①,得x≥-;解不等式②,得x<1。
所以不等式组的解集为-≤x<1在数轴上表示不等式①②的解集如图。
总结升华:用数轴表示不等式组的解集时,要切记:大于向右画,小于向左画。
有等号画实心圆点,无等号画空心圆圈。
举一反三:【变式1】解不等式组:解析:解不等式①,得:解不等式②,得:在数轴上表示这两个不等式的解集为:∴原不等式组的解集为:【变式2】解不等式组:思路点拨:在理解一元一次不等式组时要注意以下两点:(1)不等式组里不等式的个数并未规定;(2)在同一不等式组里的未知数必须是同一个.(3)注意在数轴表示解集时“空心点”与“实心点”的区别解法一:解不等式①,得:解不等式②,得:解不等式③,得:在数轴上表示这三个不等式的解集为:∴原不等式组的解集为:解法二:解不等式②,得:解不等式③,得:由与得:再与求公共解集得:.【变式3】解不等式组:解析:解不等式①得:x>-2解不等式②得:x<-7∴不等式组的解集为无解【变式4】解不等式:-1<≤5思路点拨:(1)把连写不等式转化为不等式组求解;(2)根据不等式的性质,直接求出连写不等式的解集。
解法1:原不等式可化为下面的不等式组解不等式①,得x>-1,解不等式②,得x≤8所以不等式组的解集为-1<x≤8。
即原不等式的解集为-1<x≤8解法2:-1<≤5,-3<2x-1≤15,-2<2x≤16,-1<x≤8。
所以原不等式的解集为-1<x≤8总结升华:对于连写形式的不等式可以化成不等式组来求解,而对于只有中间部分含有未知数的连写形式的不等式也可以按照解不等式的步骤求解,如解法2.【变式5】求不等式组的整数解。
思路点拨:按照不等式组的解法,先求出每个不等式的解集,在数轴上表示出各个不等式的解集,取其公共部分得到不等式的解集,再在不等式组的解集内求出符合要求的整数解。
励志长廊:鸟欲飞高先振翅,人求上进先读书。
寒假作业之七 不等式的解集学习目标及导航预习课本10-11页内容,掌握11页议一议的数轴表示方法。
1.正确理解不等式解和解集的概念(1)不等式的解:能使不等式成立的未知数的值,叫做不等式的解。
如6、7、8都是x >5的解(2)不等式的解集:如6,7,8,9,10…都是x >5的解,不等式的解不唯一,因此把所有满足不等式的解集合在一起,构成不等式的解集。
(3)解不等式:求不等式解集的过程叫解不等式。
2.利用数轴表示不等式的解集如下图,不等式x >5的解集可以用数轴上表示5的点的右边部分来表示,在数轴上表示5的点的位置上画空心圆圈,表示5不在这个解集内.如下图,不等式x -5≤-1的解集x ≤4可以用数轴上表示4的点及其左边部分来表示,在数轴上表示4的点的位置上画实心圆点,表示4在这个解集内.题型归类:不等式的解和解集的概念:1.下列说法正确的是( B )A . x=3是不等式x+1>2的解集B . x=5是不等式-3x <6的一个解C . 不等式-4x>8的解集为x=-2 D. 不等式-6x<18的解集为x<-3不等式解集的表示方法:2.如图所示,在数轴上表示不等式x ≥-1的解集,正确的是( C ) 1.下列说法错误的是( C )A . x=-3是不等式-4x ≤12的一个解B . x=0.5不是不等式2 x+1>0的解C . x>4中的任何一个数都使x-1>0成立,因而x>4是x-1>0的解集学号: 预估时间: 40分钟○○ · ·1 0 -2-1 C 10 -2-1 1 0 -2-1 1 0 -2-1 DBAD. 不等式-6x<18的整数解有无数多个2.下列不等式的解集中,不包括-4的是( C )A. x ≤-4B. x ≥-4C. x ≤-5D. x ≥-53.不等式-3≤x <2的整数解的个数是( B )A.4个B.5个C.6个D.无数个4.(1)不等式31x -<的正整数解是 1,2,3 ;(2)不等式52x x <的解集是 x<0 ;(3)不等式215x +<的非负整数解为 0,1 ,215x +>的非负整数解有 无数 个;5.将下列不等式的解集分别表示在数轴上:(1)x ≤2 (2)2x+5<3x-2 (3)-1≤x ≤3图略 x>7,图略 图略6. 写出图(1),(2)所表示的不等式的解集:x ≥3-2≤x<47.若不等式(a+2)x>(a+2)的解集为x<1,则a 的取值范围为 a<-28.写出一个不等式,使它的解集满足下列条件:(1)它的正整数解为3,4,5 (2)它的非负整数解为0,1,2,3答案不唯一 3≤x<6 -5<x <4选做题目:9.已知关于x 的不等式m-2x<3的解集如图所示,则m= 710. 如果不等式30x m -≤的正整数解是123,,,那么m 的取值范围是什么?并在数轴上表示出来.9<m ≤12 图略(2) 4(1)。
在数轴上表示不等式的解集常考题(详细的答案解析)6.5在数轴上表示不等式的解集常考题一、选择题(共24小题)1、(2009•河池)一个不等式的解集为﹣1<x≤2,那么在数轴上表示正确的是()A、B、C、D、2、(2008•重庆)不等式2x﹣4≥0的解集在数轴上表示正确的是()A、B、C、D、3、(2008•河北)把某不等式组中两个不等式的解集表示在数轴上,如图所示,则这个不等式组可能是()A、B、C、D、4、(2007•武汉)如图,在数轴上表示某不等式组中的两个不等式的解集,则该不等式组的解集为()A、x<4B、x<2C、2<x<4D、x>25、(2007•内江)不等式2(x+1)<3x的解集在数轴上表示出来应为()A、B、C、D、6、(2007•金华)不等式2x﹣6>0的解集在数轴上表示正确的是()A、B、C、D、7、(2007•福州)解集在数轴上表示为如图所示的不等式组是()A、B、C、D、8、(2006•宿迁)若关于x的不等式x﹣m≥﹣1的解集如图所示,则m等于()A、0B、1C、2D、39、(2006•泸州)不等式:2x+1≥3的解集在数轴上表示正确的是()A、B、C、D、10、(2006•柳州)如图,图中阴影部分表示x的取值范围,则下列表示中正确的是()A、x>﹣3<2B、﹣3<x≤2C、﹣3≤x≤2D、﹣3<x<211、(2006•衡阳)不等式组:的解集在数轴上可表示为()A、B、C、D、12、(2006•长春)在数轴上表示不等式2x﹣6≥0的解集,正确的是()A、B、C、D、13、(2005•盐城)将不等式组的解集在数轴上表示出来,应是()A、B、C、D、14、(2005•黄石)已知关于x的不等式2x+m>﹣5的解集如图所示,则m的值为()A、1B、0C、﹣1D、﹣215、(2003•桂林)不等式组的解集在数轴上表示,正确的是()A、B、C、D、16、(2003•常州)已知关于x的不等式2x﹣m>﹣3的解集如图,则m的值为()A、2B、1C、0D、﹣117、若不等式组的解集为﹣1≤x≤3,则图中表示正确的是()A、B、C、D、18、满足﹣1<x≤2的数在数轴上表示为()A、B、C、D、19、在数轴上表示不等式x>﹣2的解集,正确的是()A、B、C、D、20、如图,用不等式表示数轴上所示不等式组的解集,正确的是()A、x<﹣1或x≥﹣3B、x≤﹣1或x>3C、﹣1≤x<3D、﹣1<x≤321、不等式组的解集在数轴上可表示为()A、B、C、D、22、下图所表示的不等式组的解集为()A、x>3B、﹣2<x<3C、x>﹣2D、﹣2>x>323、关于x的不等式﹣2x+a≤2的解集如图所示,那么a的值是()A、﹣4B、﹣2C、0D、224、(2010•黔南州)已知⊙O1和⊙O2的半径分别为1和4,如果两圆的位置关系为相交,那么圆心距O1O2的取值范围在数轴上表示正确的是()A、B、C、D、二、填空题(共2小题)25、表示不等式组的解集如图所示,则不等式组的解集是_________.26、图中是表示以x为未知数的一元一次不等式组的解集,那么这个一元一次不等式组可以是_________.答案与评分标准一、选择题(共24小题)1、(2009•河池)一个不等式的解集为﹣1<x≤2,那么在数轴上表示正确的是()A、B、C、D、考点:在数轴上表示不等式的解集。
索罗学院
在数轴上表示不等式的解
疑惑:不等式的解在数轴上的表示方法
解析:不等式的解集指的是一个范围,题目经常要求我们在数轴上表示不等式的解集,在数轴上表示时需要注意:如果带有等号,也就是取到了端点,此时在端点处需标上实心圆,反之不带等号则在端点处标记空心圆。
几种常见情况如下:1、不等式解集表示单方向时,在数轴上的表示方法(1)x>3 (2)x≤-1 2、不等式解集表示一个公共区域或多个区域时,在数轴上表示方法 (1)-1≤x<3 (2)x>2 且x≤-2
结论:当不等式的解集取到端点时,需要在端点处标记实心圆,反之没有取到端点,则标记空心圆。
本文由索罗学院整理索罗学院是一个免费的中小学生学习网,上面有大量免费学习视频,欢迎大家前往观看!。
专题29 在数轴上表示不等式的解集一、单选题1.一个不等式组的解集在数轴上的表示如图,则这个不等式组的解集是()A.-1≤x<3B.-1<x≤3C.-1<x<3D.-1≤x≤3【答案】A【分析】根据在数轴上表示不等式解集的方法进行解答即可.【详解】解:∵-1处是实心圆点且折线向右,3处是空心圆点且折线向左,∵-1≤x<3.故选:A.【点睛】本题考查的是在数轴上表示不等式的解集,熟知“小于向左,大于向右”是解答此题的关键.2.不等式组24020xx-⎧⎨+>⎩的解集在数轴上表示正确的是()A.B.C.D.【答案】C【分析】先求出不等式组的解集,再在数轴上表示出来即可.【详解】解:24020xx-⎧⎨+>⎩①②,解不等式∵,得2x,解不等式∵,得2x>-,∴不等式组的解集是22x-<,在数轴上表示为:,故选:C.【点睛】本题考查了一元一次不等式组和在数轴上表示不等式组的解集,能求出不等式组的解集是解题的关键.3.不等式组5031xx+⎧⎨->⎩的解集在数轴上表示为()A.B.C.D.【答案】C【分析】先将每一个不等式解出来,然后根据求解的口诀即可解答.【详解】解:50,1xx+≥⎧⎨⎩3-②>,①,解不等式∵得:x≥﹣5,解不等式∵得:x<2,由大于向右画,小于向左画,有等号画实点,无等号画空心,∵不等式50,1xx+≥⎧⎨⎩3->,的解集在数轴上表示为:故选:C.【点睛】本题考查了不等式组的解集在数轴上表示,不等式组解集的表示方法:大小小大中间找,大大小小无处找,同大取大,同小取小.4.不等式3x﹣1>5的解集在数轴上表示正确的是()A.B.C.D.【答案】A【分析】依次移项、合并同类项、系数化为1即可得.【详解】解:3x ﹣1>5,3x >5+1,3x >6,x >2,故选A .【点睛】本题主要考查解一元一次不等式,解题的关键是掌握解一元一次不等式的基本步骤.5.不等式3x -2>4的解集在数轴上表示正确的是∵ ∵A .B .C .D .【答案】B【解析】不等式移项得:3x >6∵解得:x >2∵表示在数轴上得:∵故选B∵6.把不等式组12239x x +≥⎧⎨--≥-⎩的解用数轴上的点表示出来,则其解集构成的图形为( )A .射线B .线段C .直线D .长方形【答案】B【分析】先求出不等式组的解集,并在数轴上表示出来,观察数轴即可得出结论【详解】解:12239x x +≥⎧⎨--≥-⎩①②解不等式∵得:1≥x解不等式∵得:3x ≤不等式组的解集是:13x ≤≤其解集构成的图形为:线段故选:B【点睛】本题考查了不等式组的解法,用数轴表示不等式的解集时,要注意“两定”:一是定界点,一般在数轴上只标出原点和界点即可.定边界点时要注意,点是实心还是空心,若边界点含于解集为实心点,不含于解集即为空心点;二是定方向,定方向的原则是:“小于向左,大于向右”.7.如图,是关于x 的不等式2x -m< -1的解集,则m 的值为( )A .2m ≤-B .1m ≤-C .2m =-D .1m =- 【答案】D【分析】根据不等式的解集,可得关于m 的方程,根据解方程,可得答案.【详解】解不等式2x -m< -1得:12m x -< , 因为由图可得不等式的解集为1x <-, 所以112m -=-, 所以m=-1.故选:D .【点睛】考查了不等式的解集,解题关键是当题中有两个未知字母时,应把关于某个字母的不等式中的字母当成未知数,求得解集,再根据数轴上的解集进行判断,求得另一个字母的值.8.把不等式2x ﹣1>﹣5的解集在数轴上表示,正确的是( )A .B .C .D .【答案】C【分析】 按照移项,合并,系数化为1的方法计算即可.【详解】移项得:2x >1﹣5,合并得:2x >﹣4,解得:x >﹣2,故选:C .【点睛】本题考查解不等式,熟练掌握解不等式的一般步骤是解决本题的关键.9.如图,数轴上表示一个不等式的解集是( )A .2x ≥-B .2x -≤C .2x >-D .2x <-【答案】C【分析】根据在数轴上表示不等式解集的方法解答即可.【详解】∵-2处是空心圆圈,且折线向右,∵这个不等式的解集是x >-2.故选C .【点睛】考查的是在数轴上表示不等式的解集.在数轴上实心圆点包括该点,空心圆圈不包括该点,大于向右小于向左.10.不等式213x +≥的解集在数轴上表示正确的是( )A .B .C .D .【答案】D【分析】 解不等式求得不等式的解集,然后根据数轴上表示出的不等式的解集,再对各选项进行逐一分析即可.【详解】解:不等式213x +≥的解集为:1≥x ,故选:D .【点睛】本题考查的解一元一次不等式以及在数轴上表示不等式解集,熟知实心圆点与空心圆点的区别是解答此题的关键.11.用不等式表示如图所示的解集正确的是( )A .x >2B .x ≥2C .x <2D .x ≤2【答案】C【分析】根据不等式组解集在数轴上的表示方法可知不等式的解集.【详解】解:观察数轴可知:向左画又是空心圆,即表示小于2的数.故选:C .【点睛】本题考查了不等式解集的数轴表示法,明确“>”、“<”、“实心圆点”、“空心圆”的含义是解答本题的关键. 12.不等式组21512x x ->⎧⎪⎨+⎪⎩①②中,不等式∵和∵的解集在数轴上表示正确的是( ) A . B .C .D . 【答案】C【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解,确定不等式组的解集.【详解】解:解不等式∵,得:1x <,解不等式∵,得:3x -,则不等式组的解集为31x -<≦,将两不等式解集表示在数轴上如下:故选:C .【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.13.不等式x +2≥3的解集在数轴上表示正确的是( )A .B .C .D .【答案】C【分析】根据解一元一次不等式基本步骤:移项、合并同类项可得.【详解】解:∵23x +≥,∵32x ≥-,∵1x ≥,故选:C .【点睛】本题主要考查了解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.14.不等式组()2160.510.5x x ⎧+<⎨+≥⎩的解集在数轴上表示正确的是( )A .B .C .D .【答案】A【分析】准确求解不等式组,在进行判断即可.【详解】()2160.510.5x x ⎧+<⎨+≥⎩①②解不等式∵得:x <2,解不等式∵得:x≥﹣1,则不等式组的解集为﹣1≤x <2,在数轴上表示为:故选:A .【点睛】本题主要考查解一元一次不等式组,熟练掌握一元一次不等式组的解法是解题的关键.15.在数轴上表示不等式240x -的解集,正确的是( )A .B .C .D .【答案】B【分析】先根据不等式的解法求出解,然后在数轴上表示,选出正确答案即可.【详解】x-,解:240x,24x2x,∵不等式的解集为:2在数轴上表示为:,故选:B.【点睛】本题考查求一元一次不等式解集及在数轴上表示不等式的解集,熟练掌握不等式的解法及在数轴上表示解集是解题关键.x-≤的解集在数轴上表示正确的是()16.不等式2A.B.C.D.【答案】C【分析】先求出不等式的解集,再在数轴上表示出来即可.【详解】把x的系数化为1得,x≥−2.在数轴上表示为:故选:C.【点睛】本题考查的是在数轴上表示不等式的解集,熟知实心圆点与空心圆点的区别是解答此题的关键.17.不等式x-1>0的解集在数轴上表示正确的是( )A .B .C .D .【答案】A【分析】 先求出不等式的解集,然后在数轴上表示即可.【详解】∵x -1>0,∵x>1,在数轴上表示为:故选A.【点睛】此题主要考查了在数轴上表示不等式的解集,关键是用数轴表示不等式的解集时,要注意“两定”:一是定界点,一般在数轴上只标出原点和界点即可.定界点时要注意,点是实心还是空心,若边界点含于解集为实心点,不含于解集即为空心点;二是定方向,定方向的原则是:“小于向左,大于向右”.18.在数轴上表示不等式组20260x x +>⎧⎨-⎩的解集,正确的是( ) A .B .C .D .【答案】A【解析】 20260x x +>⎧⎨-≤⎩①② 解∵得,2x >- ;解∵得,3x ≤ ;∵不等式组的解集是:23x -<≤ .故选A.点睛:不等式组的解法是,先分别解两个不等式,求出它们的解集,再求两个不等式解集的公共部分.不等式组解集的确定方法是:同大取大,同小取小,大小小大取中间,大大小小无解.在数轴上的表示时注意, 空心圈表示不包含该点,实心点表示包含该点.19.若关于x 的不等式(1)1a x a -+>-的解集如图所示,则a 必满足( )A .0a <B .1a >C .1a <-D .1a <【答案】B【分析】由不等式的解集可知1-a <0,由此得a 的范围.【详解】解:由图可知:不等式(1)1a x a -+>-的解集为:x <-1,即()11a x a ->-,则1-a <0,∵a >1,故选B .【点睛】本题考查了运用数轴表示不等式的解集.关键是由不等式解集的结果得出不等式,求字母a 的值. 20.不等式组1021x x +≥⎧⎨-≤⎩的解集在数轴上表示正确的( )A .B .C .D .【答案】D【分析】先分别求出各不等式的解集,再求其公共解集即可.【详解】解:1021x x +≥⎧⎨-≤⎩①②由∵得x ≥﹣1,由∵得x ≤3,根据“小大大小中间找”的原则可知不等式组的解集为﹣1≤x ≤3.故选:D .【点睛】把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.求不等式组的解集应遵循“同大取较大,同小取较小,小大大小中间找,大大小小解不了”的原则.21.下列不等式组的解集,在数轴上表示为如图所示的是( )A .1020x x ->⎧⎨+≤⎩B .1020x x +>⎧⎨+≤⎩C .1020x x +>⎧⎨-≤⎩D .1020x x -≤⎧⎨+<⎩ 【答案】C【分析】由数轴可得表示的解集为12x -<≤,把各个选项求出解集,即可解答.【详解】数轴表示的解集为12x -<≤.解不等式组1020x x ->⎧⎨+≤⎩,得:12x x >⎧⎨≤-⎩,解集为空集,故A 不符合题意. 解不等式组1020x x +>⎧⎨+≤⎩,得:12x x >-⎧⎨≤-⎩,解集为空集,故B 不符合题意.解不等式组1020xx+>⎧⎨-≤⎩,得:12xx>-⎧⎨≤⎩,解集为12x-<≤,故C符合题意.解不等式组1020xx-≤⎧⎨+<⎩,得:12xx≤⎧⎨<-⎩,解集为2x<-,故D不符合题意.故选C.【点睛】本题考查在数轴上表示不等式的解集以及解不等式组,解决本题的关键是求出不等式组的解集.22.不等式组10840xx-⎧⎨-≤⎩>的解集在数轴上表示为().A.B.C.D.【答案】A【分析】解不等式组,看解集表示是否正确即可.【详解】解:10 840 xx-⎧⎨-≤⎩>①②解不等式∵得,1x>,解不等式∵得,2x≥,不等式组的解集为:2x≥.故选:A.【点睛】本题考查了一元一次不等式组的解法及在数轴上表示解集,解题关键是熟练的运用解不等式组的方法进行计算.23.不等式325132x x++≤-的解集表示在数轴上是()A.B.C.D.【答案】B【分析】根据一元一次不等式的解法,去分母,去括号,移项,合并同类项,系数化为1即可得解.【详解】解:去分母,得,2(3x+2)≤3(x+5)﹣6,去括号,得6x+4≤3x+15﹣6,移项、合并同类项,得3x≤5,系数化为1,得,x≤53,在数轴上表示为:故选:B.【点睛】本题考查了解一元一次不等式,以及在数轴上表示不等式的解集,>向右画,<向左画,≤与≥用实心圆点,<与>用空心圆圈.24.不等式-3<a≤1的解集在数轴上表示正确的是()A.B.C.D.【答案】A【分析】根据在数轴上表示不等式解集的方法求解即可.【详解】解:∵-3<a≤1,∵1处是实心原点,且折线向左.故选:A .【点睛】本题考查了在数轴上表示不等式的解集,掌握“小于向左,大于向右”是解题的关键.25.不等式组111x x -<⎧⎨≥-⎩的解集在数轴上表示正确的是( ) A .B .C .D . 【答案】B【分析】先根据不等式组求出解集,然后在数轴上准确的表示出来即可.【详解】111x x -<⎧⎨-⎩①② 由不等式∵组得,x<2∵不等式组的解集为:21x x ⎧⎨≥-⎩< 其解集表示在数轴上为, 故选B .【点睛】此题主要考查不等式组的解法及在数轴上表示不等式组的解集.不等式组的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.26.不等式x <2的解集在数轴上表示为( )A.B.C.D.【答案】B【分析】根据不等式组解集在数轴上的表示方法就可得到.【详解】解:x<2的解集表示在数轴上2左边的数构成的集合,在数轴上表示为:故选:B【点睛】不等式组解集在数轴上的表示方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.27.不等式2x+1≤5的解集,在数轴上表示正确的是()A.B.C.D.【答案】C【分析】先移项得到2x≤4,再把系数化为1得到不等式的解集,然后利用数轴表示出解集即可得答案.【详解】2x+1≤5移项得:2x≤5﹣1,系数化为1得:x≤2.故选:C.【点睛】本题考查了一元一次不等式的解法和在数轴上表示不等式的解集,熟知“小于向左,大于向右,在表示解集时≥、≤要用实心圆点表示;<,>要用空心圆点表示”是解答此题的关键.28.已知两个不等式的解集在数轴上如右图表示,那么这个解集为()A .≥-1B .>1C .-3<≤-1D .>-3【答案】A【解析】>-3 ,≥-1,大大取大,所以选A29.在平面直角坐标系中,点P (2x+4,x ﹣3)在第四象限,则x 的取值范围表示在数轴上,正确的是( ) A . B .C .D .【答案】A【解析】根据题意,得:24030x x +>⎧⎨-<⎩①②∵解不等式∵,得:x>−2∵解不等式∵,得:x<3∵则不等式组的解集为−2<x<3∵故选A.二、填空题30.不等式0ax b +>的解集在数轴上表示如图所示,则该不等式的解集为 ___________________.【答案】x >-3【分析】根据不等式解集的数轴表示法可以得到解答.【详解】解:阅读数轴,折线向右且表示3的点为空心,所以不等式的解集为x>-3.故答案为x>-3.【点睛】本题考查不等式的解集,熟练掌握解集的数轴表示法是解题关键.31.一个一元一次不等式组的解集在数轴上的表示如图,则该不等式组的解集是_______.【答案】13x -≤<【分析】根据一元一次不等式的解集在数轴上的表示方法即可得.【详解】由数轴图可知,该不等式组的解集是13x -≤<,故答案为:13x -≤<.【点睛】本题考查了一元一次不等式的解集在数轴上的表示,掌握理解不等式的解集在数轴上的表示方法是解题关键.32.某个关于x 的不等式的解集在数轴上的表示如图所示,这个不等式的解集是_____.【答案】x ≥﹣2【分析】根据不等式的解集在数轴上的表示方法解答即可.【详解】解:∵﹣2处是实心圆点,且折线向右,∵x ≥﹣2.故答案为:x ≥﹣2.【点睛】本题考查了不等式的解集在数轴上的表示方法,一般的,不等式的解集在数轴上遵循“小于向左,大于向右;边界含于解集为实心点,不含于解集为空心点”.33.若关于x 的不等式的解集在数轴上表示如图,请写出此解集为______.【答案】21x -<≤【分析】根据不等式的解集与数轴的关系即可解答.【详解】由数轴知,此不等式的解集为21x -<,故答案为:21x -<.【点睛】本题考查了在数轴上表示不等式的解集,熟练掌握不等式的解集与数轴的关系是解答的关键.34.如图,张小雨把不等式3x >2x -3的解集表示在数轴上,则阴影部分盖住的数字是____.【答案】-3【分析】先求出不等式的解,即可求出答案.【详解】由3x >2x -3∵解得:x∵-3∵∵阴影部分盖住的数字是:-3.故答案是:-3.【点睛】本题主要考查解一元一次不等式以及不等式的解在数轴上的表示,掌握一元一次不等式的解在数轴上的表示方法,是解题的关键.35.关于x 的某个不等式组的解集在数轴上表示如图所示,则这个不等式组的解集为______________.【答案】﹣1≤x ≤4【解析】【分析】∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵【详解】∵∵∵−1∵∵∵∵∵∵∵∵∵∵∵∵∵∵x1≥﹣∵∵4∵∵∵∵∵∵∵∵∵∵∵∵x4≤∵∵∵∵∵∵∵∵∵∵1x4-≤≤∵∵∵∵∵∵1x4-≤≤∵∵【点睛】∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵36.如图∵∵,表示的不等式的解集是________.【答案】x∵2【解析】由数轴得不等式的解集是x∵2∵故答案为x∵2.37.关于x的不等式﹣2x+a≥4的解集如图所示,则a的值是__.【答案】2.【分析】由不等式﹣2x+a≥4可得x≤42a-,然后由数轴可得x≤﹣1,进而问题可求解.【详解】解:∵﹣2x+a≥4,∵x≤42a-,∵x≤﹣1,∵41 2a-=-,∵a=2,故答案为2.【点睛】本题主要考查含参数的不等式的解法,熟练掌握一元一次不等式的解法是解题的关键.38.根据如图所示,用不等式表示公共部分x 的范围______.【答案】32x -≤<【分析】根据实心圆点包括该点,空心圆圈不包括该点,大于向右小于向左,公共部分即是解集;【详解】由图示可以看出,从-3出发向右画出的折线且表示-3的点是实心圆,表示3x ≥-;从2出发向左画出的折线且表示2的点是空心圆,表示2x <,∵这个不等式组的解集为:32x -≤<.故答案是32x -≤<.【点睛】本题主要考查了数轴上不等式的解集,准确分析判断是解题的关键.39.一个关于 x 的一元一次不等式组的解在数轴上的表示如图所示,则该不等式组的解是__________.【答案】3x >【分析】数轴的某一段上面,表示解集的线的条数,与不等式的个数一样,那么这段就是不等式组的解集.实心圆点包括该点,空心圆圈不包括该点,大于向右小于向左.两个不等式的公共部分就是不等式组的解集.【详解】解:由图示可看出,从1出发向右画出的线且1处是实心圆,表示x ≥1;从3出发向右画出的线且3处是空心圆,表示x >3,不等式组的解集是指它们的公共部分,所以这个不等式组的解为:3x >,故答案为: 3x >.【点睛】等式的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.40.不等式3x+2>2(x-1)的解集为_____,在数轴上表示为.【答案】x>-4,数轴上表示见解析【解析】【分析】利用不等式的基本性质,把不等号右边的x移到左边,合并同类项即可求得原不等式的解集.【详解】3x+2>2(x-1),3x-2x>-2-2,x>-4,把解集表示在数轴上为.故答案是:x>-4,数轴上表示见解析.【点睛】考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.解不等式要依据不等式的基本性质:(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变;(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变.41.如果关于x的不等式x≥12a-的解集在数轴上表示如图所示,那么a的值为_____.【答案】-3【分析】根据不等式的解集及其在数轴上的表示得出关于a的方程,解之可得答案.【详解】解:根据题意知:12a-=﹣2,∵a﹣1=﹣4,则a=﹣3,故答案为:﹣3.【点睛】本题主要考查解一元一次不等式及不等式解集在数轴上的表示,解题的关键是根据解集在数轴上的表示得出关于a的方程.42.关于x的不等式2x﹣a≤﹣1的解集如图所示,则a的值是_____.【答案】-1【分析】首先解不等式2x﹣a≤﹣1可得x≤12a-,根据数轴可得x≤﹣1,进而得到12a-=﹣1,再解方程即可.【详解】∵2x﹣a≤﹣1,∵x≤1 2a-,∵x≤﹣1,∵12a-=﹣1,解得:a=﹣1,故答案为:﹣1.【点睛】此题主要考查了在数轴上表示不等式的解集,关键是正确解出不等式的解集.43.将数轴上x的范围用不等式表示:__________.【答案】x>2【解析】【分析】根据在数轴上表示不等式解集的方法得出该不等式的解集即可.【详解】解:数轴上表示不等式解集的方法可知,该不等式的解集为:x>2.故答案为:x>2.【点睛】本题考查了在数轴上表示不等式的解集,熟知实心圆点与空心原点的区别是解题的关键.44.若不等式(a -3)x <3-a 的解集在数轴上表示如图所示,则a 的取值范围是______.【答案】a <3【解析】【分析】由图示可知:不等式的解集为:x >-1,根据不等式的性质可知:a -3<0,解之即可.【详解】解:由图示可知:不等式的解集为:x >-1,根据题意得:a -3<0,解得:a <3,故答案为:a <3.【点睛】本题考查解一元一次不等式和在数轴上表示不等式的解集,正确掌握不等式的性质是解题的关键.三、解答题45.解不等式,并把解集表示在数轴上:23x->72x+.【答案】x <-33,数轴表示见解析【分析】先根据不等式的解法求解不等式,然后在数轴上表示出解集.【详解】 解:23x->72x+,去分母得:2x -12>21+3x ,移项得:2x -3x >12+21,合并同类项得:-x >33系数化为1得:x <-33,在数轴上表示为:【点睛】本题考查了解一元一次不等式,解答本题的关键是掌握不等式的解法以及在数轴上表示不等式的解集.46.解不等式并把不等式的解集在数轴上表示出来.5(x-2)+8<6(x-1)+7【答案】3x>-【分析】利用不等式的基本性质,把不等号右边的x移到左边,合并同类项即可求得原不等式的解集.【详解】解:5(x−2)+8<6(x−1)+7,5x−10+8<6x−6+7,整理得:−x<3,解得:x>−3,画图如下:【点睛】此题考查了解一元一次不等式,掌握不等式的性质是本题的关键,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.47.解不等式:11126x x-+<-,并把它的解集表示在数轴上.【答案】2x<,表示在数轴上见解析【分析】先去分母,再去括号,移项、合并同类项,把x 的系数化为1即可.【详解】去分母,得:()()3161x x -<-+,去括号,得:3361x x -<--,移项,得:3613x x +<-+,合并同类项,得:48x <,系数化为1,得:2x <,将不等式的解集表示在数轴上如下:【点睛】本题考查了解一元一次不等式,熟知解一元一次不等式的基本步骤是解答此题的关键.48.解不等式,并把解集表示在数轴上21132x x -+-< 【答案】x >-1,图详见解析【分析】先根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1得解集,再将解集表示在数轴上.【详解】 解:21132x x -+-< 6-2(2-x)<3(x+1)6-4+2x<3x+32x -3x<3+4-6-x<1x>-1故不等式的解集为x>-1表示在数轴上如下:【点睛】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.49.解不等式,并在数轴上表示解集:231232x x --≥-. 【答案】117x ≤,图详见解析 【分析】先去分母、移项合并,然后把系数化为1得到不等式的解集,然后用数轴表示其解集.【详解】去分母,得:()()2233112x x -≥--去括号,得:249312x x -≥--,移项,得:293124x x -≥--+,合并同类项,得:711x -≥-,系数化为1,得:117x ≤, 将解集表示在数轴上如下:【点睛】本题主要考查了解一元一次不等式,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.50.解不等式3185315x x +-->,并把解集在数轴上表示出来.【答案】3x <,见解析【分析】根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得.【详解】解: 3185315x x +--> ()()33518x x +-->.39558x x +-+>3 5895x x ->--26x ->-.3x <.它在数轴上的表示如图所示:【点睛】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.51.解不等式组()453142? 3x x x x ⎧-<-⎪⎨+-≥⎪⎩,并将解集在数轴上表示出来. 【答案】12x ≤,数轴上表示见解析 【分析】先求出每个不等式的解集,再根据找不等式组解集的规律找出不等式组的解集,最后在数轴上表示出来即可.【详解】 ()453142?3x x x x ⎧-<-⎪⎨+-≥⎪⎩①②, 解不等式∵得:2x <,解∵得:12x ≤, ∵不等式组的解集为1 2x ≤在数轴上表示不等式组的解集为:【点睛】本题考查了解一元一次不等式(组),在数轴上表示不等式组的解集的应用,解此题的关键是能根据不等式的解集找出不等式组的解集.52.(1)解方程:(x +1)2=214; (2)解不等式:3136x x ->-,并把不等式的解集在数轴上表示出来. 【答案】(1)1215,22x x ==-;(2)3x >,数轴见解析. 【分析】(1)利用平方根定义进行求解可得答案;(2)根据解一元一次不等式基本步骤:去分母、移项、合并同类项、系数化为1可得.【详解】解:(1)∵(x +1)2=94, ∵x +1=±32, 则x =﹣1±32, ∵x 1=12,x 2=﹣52; (2)∵3136x x ->-, ∵2x >6﹣x +3,2x +x >6+3,3x >9,∵x >3,将解集表示在数轴上如下:【点睛】本题考查了利用平方根解方程、解一元一次不等式等知识,是重要考点,难度较易,掌握相关知识是解题关键.53.解不等式组:2(21)3(1)1132x x x x x -+⎧⎪+-⎨<-⎪⎩,并把不等式组的解集表示在数轴上.【答案】不等式组的的解集为15x -<,数轴见解析【分析】先分别求解不等式,再根据数轴表示不等式解集的方法准确画出图形即可.【详解】解:()()221311122x x x x x ⎧-+⎪⎨+-<-⎪⎩①②, 由∵得:5x ,由∵得:1x >-,∴不等式组的的解集为15x -<.【点睛】本题考查解不等式组及在数轴上表示不等式组的解集,准确求解不等式组并理解数轴表示解集的细节是解题关键.54.解不等式,并把不等式(2)的解集在数轴上表示出来.(1)46715x x -≥-;(2)235324x x +≥⎧⎨-≤⎩【答案】(1)3x ≤;(2)1≤x≤2,数轴表示见解析【分析】。
用数轴表示不等式的解集不等式是数学中常见的一种关系,它描述了数值之间的大小关系。
为了直观地表示不等式的解集,我们通常会使用数轴这个工具。
数轴是一条直线,上面标有坐标点,可以帮助我们更好地理解不等式的解集。
以不等式x > 2为例,我们可以使用数轴来表示其解集。
首先,在数轴上找到坐标点2,然后从这个点开始,向右无限延伸。
这样,数轴的右侧就表示了不等式x > 2的解集,即所有大于2的实数。
我们可以用一个箭头来表示这个解集,如图所示:------------------------------------->-3 -2 -1 0 1 2 3 4 5在数轴上,箭头的方向指向无穷大的方向,表示解集的范围。
箭头的起点是2,表示解集中的最小值。
箭头的长度是无限大,表示解集包含了所有大于2的实数。
同样地,我们可以用数轴来表示其他类型的不等式的解集。
例如,对于不等式x ≤ -1,我们可以找到坐标点-1,并从这个点向左无限延伸。
这样,数轴的左侧就表示了不等式x ≤ -1的解集,即所有小于等于-1的实数。
我们可以用一个箭头来表示这个解集,如图所示: <---------------------------------------3 -2 -1 0 1 2 3 4 5在数轴上,箭头的方向指向负无穷的方向,表示解集的范围。
箭头的起点是-1,表示解集中的最小值。
箭头的长度是无限大,表示解集包含了所有小于等于-1的实数。
在实际应用中,不等式的解集往往不仅仅是一个区间,可能是多个区间的并集。
例如,对于不等式-2 < x ≤ 1,我们可以找到坐标点-2和1,并在这两个点之间绘制一个闭合区间。
这样,数轴上的这个闭合区间表示了不等式-2 < x ≤ 1的解集,即所有大于-2且小于等于1的实数。
我们可以用一个实心圆点和一个实心方块来表示这个解集,如图所示:○--------------------------------□-3 -2 -1 0 1 2 3 4 5在数轴上,实心圆点表示解集中的最小值-2,实心方块表示解集中的最大值1。
1.如图,数轴上所表示关于的不等式组的解集是()
A. B.
C. D.
2.已知不等式组的两个不等式的解集在数轴上如图表示,那么这个不等式组的解集为()
A. B.
C. D.
3.一个不等式组的解集在数轴上的表示如图,则这个不等式组的解集是()
A. B.
C. D.
4.不等式组的解集在数轴上表示为如图,则原不等式组的解集为()
A. B. C. D.
5.如图,在数轴上表示某不等式组中的两个不等式的解集,则该不等式组的解集为()
A. B.
C. D.
6.如图,在数轴上表示某不等式组中的两个不等式的解集,则该不等式组的解集为()
A. B.
C. D.
7.如图,在数轴上表示某不等式组中的两个不等式的解集,则该不等式组的解集为()
A. B. C. D.
8.把一个不等式组的解集表示在数轴上,如图所示,那么这个不等式组的解集是()
A. B. C. D.
9.把一个不等式组的解集表示在数轴上,如图所示,则该不等式组的解集为( )
A. B. C.
D.
10.不等式组的解集在数轴上可以表示为( )
A.
B.
C.
D.
11.不等式组的解集在数轴上可以表示为( )
A.
B.
C.
D.
12.不等式组的解集在数轴上可表示为( )
A.
B.
C.
D.
13.不等式组的解集在数轴上可表示为( )
A.
B.
C.
D.
14.不等式组的解集在数轴上的正确表示是( )
A.
B.
C.
D.
15.如果一个不等式组的解集在数轴上的表示如图所示,则该不等式组的解集是( )
A. B. C. D.
16.已知点在第四象限,则的取值范围在数轴上表示正确的是( )
A.
B.
C.
D.
17.已知点在第一象限,则的取值范围在数轴上表示正确的是( )
A.
B.
C.
D.
18.如果点在第四象限,那么的取值范围在数轴上表示正确的是( )
A.
B.
C.
D.
19.如果点在平面直角坐标系的第四象限内,那么的取值范围在数轴上可表示
为( )
A.
B.
C.
D.
20.如图所示,在数轴上表示某不等式中的两个不等式的解集,则该不等式组的解集为________.
21.已知不等式组的解集用数轴表示如图所示:请写出满足解集的一个不等式组是________.
22.不等式的解集在数轴上表示如下图所示.则该不等式可能是________.
23.已知一个不等式的解集在数轴上表示如图所示,则此不等式解集是________.
24.如图所示,数轴上所表示的不等式的解集分别是________.
25.解不等式
,并把解集在数轴上表示出来.
26.在数轴上表示下列不等式的解集.
.
27.在数轴上表示下列不等式的解集:
.。