圆柱齿轮减速器设计难点分析
- 格式:pdf
- 大小:218.36 KB
- 文档页数:3
机械精度课程大作业两级圆柱齿轮减速器装配分析2014年12月目录一、减速器的工作原理及实际应用二、减速器的主要组成部件精度及配合选用分析三、相关零件图四、装配图(部分)一、减速器的工作原理和实际应用1、两级圆柱齿轮减速器的工作原理2、减速器的实际应用减速机是国民经济诸多领域的机械传动装置,食品轻工、电力机械、建筑机械、冶金机械、水泥机械、环保机械、电子电器、筑路机械、水利机械、化工机械、矿山机械、输送机械、建材机械、橡胶机械、石油机械等行业领域对减速机产品都有旺盛的需求。
二、减速器的组成部件精度及配合选用分析(部分装配图)1、轴的精度和配合选用1)确定尺寸精度如图,输出轴上Φ32mm轴径与一个轴承的内圈配合,Φ60mm的轴颈与齿轮基准孔配合,Φ45mm轴头与减速器外开始齿轮传动主动齿轮(图中未画出)基准孔配合,Φ68mm轴肩的两端面分别为齿轮和滚动轴承内圈的轴向定位基准面。
(轴装配图)该轴转速不高,承受载荷不大,有轴向力,故轴承采用7211 GB/T 297-1994圆锥滚子轴承,其额定动载荷为52800N。
经计算,该轴承的当量动载荷为3036N,与额定动载荷的比值小于0.07,则该轴承的负荷状态属于轻负荷。
轴承工作时承受定向负荷的作用,内圈与轴颈一起转动,外圈与箱体固定不旋转,因此轴承内圈属于负荷方向旋转。
根据以上计算,查表6.2可知,轴颈公差带代号为Φ55k6。
(表6.2)选取安装在Φ60mm轴颈上的从动轮的最高精度等级为7级,查表10.10(表10.10)确定齿轮内孔尺寸公差为IT7,轴比孔高一级,取IT6。
同理安装在该轴端部Φ45mm轴颈上的开式齿轮精度等级为9级,该轴头尺寸公差为IT7Φ60mm轴颈与齿轮基准孔的配合采用基孔制,齿轮基准孔公差带代号为Φ60H7。
(表3.10)查表3.10,考虑输出轴上齿轮传递扭矩较大,采用过盈配合,轴颈的尺寸公差带为Φ60r6,齿轮与轴配合代号为Φ58H7/r6。
圆柱齿轮减速器快速设计研究圆柱齿轮减速器是一种常见的机械传动装置,广泛应用于各种工业领域。
其设计过程中需要考虑到众多因素,如齿轮强度、传动效率、噪声等。
随着科技的发展,快速设计方法在许多领域得到了广泛应用,但在圆柱齿轮减速器设计方面的研究尚不充分。
因此,本文旨在探讨一种快速设计圆柱齿轮减速器的方法,以提高设计效率与质量。
圆柱齿轮减速器被广泛应用于各种机械系统中,如工业机器人、纺织机械、包装机械等。
随着技术的不断发展,减速器的设计也经历了多个阶段。
然而,目前圆柱齿轮减速器的设计过程中仍存在一些问题,如设计周期长、成本高、缺乏标准化等。
因此,研究一种快速、高效的圆柱齿轮减速器设计方法具有重要的现实意义。
本文提出了一种快速设计圆柱齿轮减速器的方法。
根据设计要求确定关键参数,如齿轮模数、齿数、螺旋角等。
然后,利用计算机辅助设计软件进行建模和仿真,以验证设计的合理性和可靠性。
在确定设计方案后,通过标准化和模块化手段进行生产制造,以降低成本和提高生产效率。
为验证本文提出的快速设计方法的有效性,我们进行了一系列实验。
实验中,我们按照给定的设计要求,使用本文提出的快速设计方法设计了一款圆柱齿轮减速器。
实验结果表明,该减速器具有良好的性能和稳定性。
与传统的减速器设计方法相比,本文提出的方法具有更高的设计效率和更低的成本。
本文研究了圆柱齿轮减速器的快速设计方法,通过确定关键参数、利用计算机辅助设计软件进行建模和仿真、标准化和模块化生产制造等步骤,实现了减速器的快速、高效设计。
实验结果表明,该方法具有较高的设计效率和较低的成本,有望为圆柱齿轮减速器的设计带来新的突破。
展望未来,我们认为以下几个方面值得进一步研究:1)深入研究圆柱齿轮减速器的动态性能和优化设计;2)加强减速器新材料和新工艺的研究和应用;3)推进减速器智能制造和数字化转型,实现减速器的定制化和多元化发展。
我们也希望相关领域的专家学者能够继续和支持圆柱齿轮减速器的快速设计研究,共同推动该领域的技术进步和发展。
单级圆柱齿轮减速器的优化设计单级圆柱齿轮减速器的优化设计齿轮减速器是一种常用的机械传动装置,广泛应用于各种机械设备中。
其中,单级圆柱齿轮减速器是一种常见的减速器类型,具有结构简单、传动效率高等优点。
本文将围绕单级圆柱齿轮减速器的优化设计展开讨论。
首先,我们需要明确单级圆柱齿轮减速器的工作原理。
单级圆柱齿轮减速器是通过两个相互啮合的圆柱齿轮进行传动的。
其中,一个齿轮称为主动齿轮,另一个齿轮称为从动齿轮。
主动齿轮通过电机等动力源驱动,从而带动从动齿轮旋转。
通过不同大小的齿轮组合,可以实现不同的减速比。
在进行优化设计时,我们可以从以下几个方面考虑:1. 齿轮材料的选择:齿轮材料的选择直接影响到减速器的使用寿命和传动效率。
一般来说,常用的齿轮材料有钢、铸铁、铜合金等。
在选择材料时,需要综合考虑其强度、硬度、耐磨性等因素,并根据具体应用场景进行选择。
2. 齿轮参数的优化:齿轮参数包括模数、压力角、齿数等。
通过优化这些参数,可以提高减速器的传动效率和承载能力。
例如,增大模数可以增加齿轮的强度和承载能力;选择合适的压力角可以减小齿轮啮合时的摩擦损失。
3. 齿轮啮合传动的优化:齿轮啮合传动是减速器最关键的部分,也是能量损失最大的部分。
通过优化齿轮啮合传动的设计,可以减小能量损失,提高传动效率。
例如,采用精密加工工艺可以提高齿轮的啮合精度;采用润滑油膜技术可以减小摩擦损失。
4. 减速器结构的优化:减速器的结构设计也会影响其性能。
通过优化结构设计,可以降低噪声、提高刚度、减小体积等。
例如,采用斜齿圆柱减速器可以减小噪声;采用刚性箱体结构可以提高刚度。
5. 传动效率的测试与改进:在优化设计完成后,需要对减速器的传动效率进行测试,并根据测试结果进行改进。
通过不断地测试与改进,可以逐步提高减速器的传动效率。
综上所述,单级圆柱齿轮减速器的优化设计涉及到多个方面,包括材料选择、齿轮参数优化、齿轮啮合传动优化、结构优化以及传动效率测试与改进等。
单极圆柱齿轮减速器的设计说明引言单极圆柱齿轮减速器是一种常用的传动装置,用于将高速旋转的输入轴的转速降低,同时增加输出轴的扭矩。
本文将详细介绍单极圆柱齿轮减速器的设计原理、构造特点以及设计过程。
设计原理单极圆柱齿轮减速器是通过齿轮传动来实现输入轴与输出轴的转速和扭矩传递的。
其基本原理如下: 1. 输入轴带动驱动齿轮转动,将动力传递给动力输出轴。
2. 齿轮的齿数和模数决定了减速器的减速比。
齿数越大、模数越小,减速比越大。
3. 齿轮的模数和齿宽需要满足强度和耐久性的要求。
4. 齿轮的组合方式可以是并列、串列或斜齿轮组合。
不同的组合方式会对传动效率、噪声和振动等性能产生影响。
构造特点单极圆柱齿轮减速器具有以下构造特点: 1. 主要由输入轴、输出轴和中间的齿轮组成。
其中,输入轴和输出轴一般位于减速器的两端,中间的齿轮则通过齿轮轴固定在减速器内部。
2. 齿轮一般采用钢材料制造,通过齿面热处理提高硬度和耐磨性能。
3. 减速器的外壳通常采用铸铁或铝合金制造,具有较好的刚性和密封性能。
4. 减速器的尺寸和质量与所传递的功率和扭矩密切相关,需要根据具体需求进行选择和设计。
设计过程单极圆柱齿轮减速器的设计过程如下: 1. 确定减速比:根据所需的转速和扭矩比例,计算减速机的减速比。
一般来说,减速比越大,输出扭矩越大,转速越低。
2. 计算齿轮参数:根据减速比和输入轴的齿数,计算输出轴的齿数。
同时,根据所选材料和工作条件,计算齿轮的模数、齿宽和齿数等参数。
3. 确定齿轮组合方式:根据应用场景和要求,选择并列、串列或斜齿轮组合方式。
并列方式适用于较低的减速比,串列方式适用于较大的减速比,斜齿轮组合方式适用于高精度要求的场合。
4. 结构设计:根据齿轮的尺寸和减速器的要求,设计输入轴和输出轴的结构,确定齿轮的安装方式和轴承的选型。
5. 强度计算:进行齿轮传动强度计算,判断齿轮和轴的合理设计和材料选择。
6. 热处理和表面处理:根据设计要求,进行齿轮表面的热处理和表面处理工艺,提高齿轮的硬度和耐磨性。
一级圆柱齿轮减速器设计一级圆柱齿轮减速器设计摘要:齿轮减速器在各行各业中十分广泛地使用着,是一种不可缺少的机械传动装置。
当前减速器普遍存在着体积大、重量大或者传动比大而机械效率过低的问国外的减速器以德国、丹麦和日本处于领先地位特别在材料和制造工艺方面占据优势减速器工作可靠性好使用寿命长。
关键词:圆柱齿轮;减速器;设计一、概述减速器是一种由封闭在刚性壳体内的齿轮传动、蜗杆传动或齿轮―蜗杆传动所组成的独立部件,常用在动力机与工作机之间作为减速的传动装置;在少数场合下也用作增速的传动装置,这时就称为增速器。
减速器由于结构紧凑、效率较高、传递运动准确可靠、使用维护简单,并可成批生产,故在现代机械中应用很广。
减速器类型很多,按传动级数主要分为:单级、二级、多级;按传动件类型又可分为:齿轮、蜗杆、齿轮-蜗杆、蜗杆-齿轮等。
二、一级圆柱齿轮减速器结构设计本设计主要为一级圆柱齿轮减速器的设计,轴的设计,滚动轴承的选择及验算,键的选择及强度校核,润滑油及润滑方式的选择,密封方式的选择以及联轴器型号的'选择。
箱体是减速器中较为复杂的一个零件,设计时应力求各零件之间配置恰当,并且满足强度,刚度,寿命,工艺、经济性等要求,以期得到工作性能良好,便于制造,重量轻,成本低廉的机器。
箱体(盖)的材料:由于本课题所设计的减速器为普通型,故常用HT15-33灰铸铁制造。
这是因为铸造的减速箱刚性好,易得到美观的外形,易切削,适应于成批生产箱体的设计计算。
三、减速器优化设计数学模型(一)接触承载能力如图1所示。
一对变位齿轮传动的接触承载能力可用只与啮合参数有关的接触承载能力系数φ表示,其函数形式为(图1):式中:a'―啮合中心距;u―齿数比;β―分度圆螺旋角;αt―端面压力角;α't―端面啮合角;Kv―动载系数;Kv=1+0.07vz1/100;v―齿轮圆周速度;z1―小齿轮齿数。
由上式可知,齿轮的接触承载能力系数φ仅与u、β、α't有关,当啮合中心距a'和模数m已定时,端面啮合角α't的表达式为:cosα't=z1+z2z1+z2+2yt cosα t 式中:yt―中心距分离系数,yt(a'-a)/m;a―标准中心距。
单级圆柱齿轮减速器优化设计与分析减速器是工程实践中常见的机械传动装置,用于降低传动装置的转速并增加转矩。
圆柱齿轮减速器是一种常用的传动方式,其设计优化可以提高传动效率、减小噪音和振动,本文对单级圆柱齿轮减速器的优化设计与分析进行探讨。
1. 齿轮减速器的基本原理单级圆柱齿轮减速器由两个或多个相互啮合的齿轮组成,通过不同齿轮的大小和齿数来实现转速和转矩的变换。
具体来说,主动轮驱动从动轮,从而实现输出转矩。
2. 减速器的设计要素减速器的设计要素包括齿轮的模数、齿轮的齿数、齿轮的齿形、齿轮的间隙、齿轮的啮合角等。
在优化设计时,需要综合考虑这些要素,以提高减速器的性能。
3. 优化设计方法在单级圆柱齿轮减速器的优化设计中,可以采用多种方法。
一种常见的方法是基于理论计算,根据设计要求和理论公式计算齿轮参数,以满足传动比和输出转矩的要求。
另一种方法是基于仿真模拟,利用专业软件模拟齿轮传动的工作状态,通过调整齿轮参数,不断优化减速器的性能。
4. 优化设计指标在单级圆柱齿轮减速器的优化设计中,常用的指标包括传动效率、噪音和振动。
传动效率是指减速器输入功率与输出功率之比,可以通过优化齿轮参数和润滑条件来提高。
噪音和振动是影响减速器工作环境的重要因素,可以通过调整齿轮的齿形和间隙,以及采用减振措施来降低。
5. 优化设计案例以某公司生产的圆柱齿轮减速器为例,通过优化设计,取得了显著的效果。
首先,进行了齿轮的模数优化,选择了合适的模数以提高传动效率。
其次,通过改进齿轮的齿形和间隙,大大降低了噪音和振动。
最后,加入了减振设备,进一步提升了减速器的使用效果。
6. 分析优化效果通过优化设计,单级圆柱齿轮减速器的传动效率得到了明显提高,噪音和振动也得到了有效降低。
同时,减振设备的应用进一步增强了减速器的使用稳定性和可靠性。
因此,优化设计对于提升齿轮减速器的性能具有重要意义。
7. 总结与展望单级圆柱齿轮减速器的优化设计是提高传动效率、减小噪音和振动的重要手段。
两级展开式圆柱齿轮减速器用滚动轴承和传动轴的设计好家伙,今天咱们来聊聊一个有点“硬核”的话题——两级展开式圆柱齿轮减速器里的滚动轴承和传动轴的设计。
别看名字长,其实就是我们生活中经常见到的那种机器减速器。
就拿洗衣机、车床、甚至是电动工具来说吧,里头的转动部分大多数都离不开这东西。
哎,不说可能你没注意,稍微一说你就知道了。
所以今天咱们就从最简单的地方开始,看看怎么把这些看似复杂的设计搞清楚,别担心,咱们不搞高深的理论,轻轻松松聊点有趣的。
咱们得搞明白,为什么减速器得有齿轮?这就好比你开车,发动机有劲儿,轮子没劲儿,那就啥都干不了。
所以,齿轮在这儿的作用就是把发动机那股劲儿,给“减速”下来,省得把东西搞得乱七八糟。
简单来说,齿轮就像是一位老练的“调皮捣蛋”高手,把转动的速度和力矩调整得恰到好处。
可问题来了,齿轮转得那么快,力那么大,谁来帮它稳定下?这就得靠咱们今天要说的这些“硬邦邦”的东西了——滚动轴承和传动轴。
咱先来说说这个“滚动轴承”。
哎,别看它名字有点拗口,作用其实就像是咱们脚下的轮子。
试想一下,如果你用木板直接摩擦地面走,那脚可不一定轻松,反而会摩擦得让你像是要打滑一样。
滚动轴承就像是帮齿轮和轴“擦肩而过”的润滑剂,它减少了摩擦,让设备运行得更加顺畅。
你想,少了摩擦,机器就能减少磨损,延长使用寿命,哪怕你天天拿它当马达转,轴承也能“咬”得住。
没错,轴承就好像是个能“耐住”劲儿的小伙伴,永远不怕摔。
接下来聊聊传动轴,这玩意儿说白了,就是传递动力的“桥梁”。
它可不像小齿轮那么精致,更像是粗犷的“大汉”。
传动轴的任务就是接收发动机传过来的力量,顺着齿轮和轴承一环环传递出去。
它不求精美,但求结实耐用。
想象一下,你拿个大锤子挥舞,力气大了,传动轴就得承受住这份力气,不然马上就要“散架”了。
咱们常说,工作再累,但只要轴承和传动轴配合得好,机器的寿命就能延长,啥都不怕。
设计这些东西的时候呢,得考虑到很多“软硬兼施”的地方。
机械设计基础课程设计设计人:班级:学号:指导老师:设计要求设计一用于带式运输机上的单级圆柱齿轮减速器,如图所示。
运输机连续工作,单向运转,载荷变化不大,空载起动。
减速器小批量生产。
使用期限10年,两班制工作。
运输带容许速度误差为5%。
原始数据(所给数据的第六小组)已知条件数据输送带工作拉力Fw=2800N 输送带速度Vw=1.4m/s 卷筒轴直径D=400mm目录一.确定传动方案二.选择电动机(1)选择电动机(2)计算传动装置的总传动比并分配各级传动比(3)计算传动装置的运动参数和动力参数三.传动零件的设计计算(1)普通V带传动(2)圆柱齿轮设计四.低速轴的结构设计(1)轴的结构设计(2)确定各轴段的尺寸(3)确定联轴器的型号(4)按扭转和弯曲组合进行强度校核五.高速轴的结构设计六.键的选择及强度校核七.选择轴承及计算轴承寿命八.选择轴承润滑与密封方式九.箱体及附件的设计(1)箱体的选择(2)选择轴承端盖(3)确定检查孔与孔盖(4)通气器(5)油标装置(6)骡塞(7)定位销(8)起吊装置十.设计小结十一.参考书目设计项目计算及说明主要结果一.确定传动方案二.选择电动机(1)选择电动机设计一用于带式运输机上的单级圆柱齿轮减速器,如图所示。
运输机连续工作,单向运转,载荷变化不大,空载起动。
减速器小批量生产。
使用期限10年,两班制工作。
运输带容许速度误差为5%。
图A-11)选择电动机类型和结构形式根据工作要求和条件,选用一般用途的Y系列三相异步电动机,结构形式为卧式封闭结构2)确定电动机功率工作机所要的功率Pw(kw)按下式计算Pw=wFwVwη1000式中,Fw=2800,Vw=1.4m/s,带式输送机的效率ηw=0.94,代入上式得:Pw =Kw=4.17Kw电动机所需功率Po(Kw)按下式计算Po=ηPw Pw=4.17Kw(2)计算传动装置的总传动比并分配各级传动比(3)计算传动装置的运动参数和动式中,η为电动机到滚筒工作轴的传动装置总效率,根据传动特点,由表2-4查得:V带传动η带=0.96 ,一对齿轮传动η齿轮=0.97,一对滚动轴承η轴承=0.99,弹性联轴器η联轴器=0.98,因此总效率η=η带η齿轮η2轴承η联轴器,即η=η带η齿轮η2轴承η联轴器=0.96x0.97x0.99x0.982=0.89Po=ηPw=Kw=4.69Kw确定电动机额定功率Pm(Kw),使Pm=(1~1.3)Po=5.12(1~1.3)=5.12~6.66Kw,查表2-1取Pm=5.5 Kw3)确定电动机转速工作机卷筒轴的转速nw为nw=DVwπ100060⨯==66.87r/min根据表2-3推存的各类转动比范围,取V带转动比i带=2~4,一级齿轮减速器i齿轮=3~5,传动装置的总传动比i总=6~20,故电动机的转速可取范围为nm=i总nm=(6~20)⨯84.93=509.58~1698.6r/min符合此转速要求的同步转速有750r/min,1000r/min,1500r/min三种,考虑综合因素,查表2-1,选择同步转速为1000r/min的Y系列电动机Y132M2-6,其满载转速为nm=960r/min电动机的参数见表A-1。