立体显示技术介绍
- 格式:pptx
- 大小:4.45 MB
- 文档页数:27
3dled显示屏原理3D LED显示屏原理引言:随着科技的不断发展,LED显示屏成为了现代社会中不可或缺的一部分。
3D LED显示屏作为其中的一种,具有更加出色的视觉效果和沉浸式的观看体验。
本文将介绍3D LED显示屏的原理以及其工作过程。
一、3D LED显示屏的原理1. LED技术LED(Light Emitting Diode)即发光二极管,是一种固态发光装置。
它通过电流通过半导体材料时的电子重新组合而发出光线。
LED具有体积小、功耗低、寿命长等优点,因此被广泛应用于各种显示屏中。
2. 3D显示技术3D显示技术是一种通过立体成像让观众感受到立体效果的技术。
传统的3D显示技术主要有红蓝眼镜、偏振镜、全息等方式。
而3D LED显示屏采用的是偏振镜技术。
3. 偏振镜技术偏振镜技术是通过使光线只能在一个方向上振动来实现的。
在3D LED显示屏中,屏幕内部设置了两个互相垂直的偏振镜,分别筛选出左眼和右眼的光线。
这样,当观众戴上相应的偏振眼镜时,左眼只能接收到左眼像素的光线,右眼只能接收到右眼像素的光线,从而产生了立体效果。
二、3D LED显示屏的工作过程1. 图像处理输入的2D图像需要经过图像处理器进行处理。
处理器会对图像进行分解,将图像分为左眼和右眼的像素。
2. LED模块控制处理器会将分解后的图像信息传递给LED模块控制器。
LED模块控制器根据接收到的信息,通过控制LED模块的亮灭,来显示出相应的图像内容。
3. 偏振镜效果LED模块发出的光线通过3D LED显示屏内的两个互相垂直的偏振镜。
其中一个偏振镜只允许左眼的光线通过,另一个偏振镜则只允许右眼的光线通过。
这样,每个眼睛只能接收到相应的像素信息。
4. 观众视角当观众戴上与显示屏配套的偏振眼镜后,左眼只能接收到左眼像素的光线,右眼只能接收到右眼像素的光线。
由于左右眼接收到的像素信息不同,人的大脑会将这些信息融合在一起,形成立体的视觉效果。
三、3D LED显示屏的优势1. 良好的立体效果:3D LED显示屏通过偏振镜技术实现立体效果,使观众能够更加真实地感受到画面中的立体感。
3d 显示原理
3D显示原理是通过在屏幕上创建一种立体效果,使画面看起来具有深度和逼真感。
它基于人眼的立体视觉原理,利用左右眼分别接收到的略有差异的图像来产生立体感。
首先,3D显示技术需要一个特殊的屏幕。
这种屏幕通常是采用了透镜或者劈棱镜的材料制成,能够将左眼和右眼的图像分别传递到观察者的眼睛中。
接下来,图像数据会通过电子信号传递给显示屏。
同传统2D 显示不同,3D显示需要两个图像,一个是左眼图像,一个是右眼图像。
因此,显示屏会在同一时间将两个图像显示出来,每个图像占据屏幕的一半。
当观察者戴上特殊的眼镜,比如红蓝或偏振眼镜时,左眼只能看到屏幕上的左图像,右眼只能看到右图像。
这种眼镜会过滤掉相应眼睛不应看到的图像,确保每只眼睛只能接收到特定的图像。
这时,观察者的大脑会将两只眼睛接收到的图像进行组合,并确定物体在空间中的位置。
由于左眼和右眼接收到的图像略有差异,大脑会根据这种差异来感知物体的深度和距离。
总结起来,3D显示的原理就是通过将左眼和右眼的图像分离并在观察者的眼睛分别显示,利用人眼和大脑的合作来产生立体效果。
这种技术使得观众能够感受到物体的立体感,提供更加逼真、沉浸的视觉体验。
4.1立体显示技术对于显示模式,在虚拟现实系统中立体显示必不可少,采用哪种立体显示实现模式需根据实际的应用而定。
目前的立体显示实现模式有主动立体显示技术、被动立体显示技术、光谱立体显示技术等三种。
4.1.1主动立体显示技术主动立体技术是利用高端投影机配置的特殊定制的电子处理部件和DLP 投影技术实现高的视频刷新率(一般96Hz 以上,最高120Hz ),交替镜,对应投影机显示图像通道红外发射的同步信号交替开合左右眼,从而实现立体显示。
主动立体显示克服了以前刷新率低的缺点,最高120Hz 可保证左右眼各60Hz ,保证无闪烁。
其优点是对于屏幕和观察位置没有要求,适用于多人多角度观看的工作模式,另外立体区分率高,通过Christie Mirage 投影机内置Dark Interval 功能可确保立体区分度达99.99%,实现最佳立体效果。
科视公司在主动立体技术方面又有了突破性的创新,研发了投影机立体倍频技术(Frame Doubling )。
立体倍频技术要求计算机输出较低的60Hz 刷新率, 但投影机可以输出120全刷新率的立体图像。
图2 主动立体显示原理图图3 倍频显示信号时序图倍频技术完全消除了以前立体显示刷新率无法达到120Hz(立体显示时分配到左右眼不到60Hz)引起的立体视觉疲劳问题,同时大大降低度了对信号传输环节的要求,做到无损传输,实现最佳显示立体效果。
并且由于只需可视化集群主机输出60Hz立体视频而非120Hz,从而减少了可视化主机图形内存占用,提高了图形内存在图形计算时的效率(帧缓存,一般立体显示时需前后左右四个帧缓存,可视化计算完成后的每一帧图像就会以数字图像的方式存在缓存内,由图形GPU的DG(display generator)将其转化为视频输出,输出的视频刷新率越低,则占用图形内存的时间越少,图形内存利用率越高,越有利用图形计算),减轻图形集群的计算工作量,增加了图形运算性能。
立体显示技术简介陈 曦(四川长虹电器股份有限公司多媒体产业公司四川绵阳 621000)【 摘 要 】 传统显示技术只显示二维平面的信息,而立体显示技术显示的是物体的深度信息,它利用人眼的立体视觉特性来复现立体图像。
本文将对立体显示技术的发展历程、显示原理、常见立体显示技术以及长虹立体显示产品开发历程进行初步的介绍。
【 关键词 】立体显示、光栅法、分时法、分光法一、引子随着显示技术的飞速发展,电视机产品正在进行更新换代,以LCD、PDP为代表的新一代高清数字平板显示设备迅速崛起并快速取代了传统的CRT显示设备。
这些新的显示技术的应用推广,虽然让电视画面的清晰度和主观效果得到了大幅度的提高,但显示技术仍停留在二维平面显示阶段。
随着3D标准的制定、HDMI1.4版本的发布以及蓝光碟机对3D的支持,3D产业链正在形成。
现代显示技术在继数字化、高清化之后,正开始迎来立体化的新一轮升级大发展。
美国、日本、韩国等国家或地区纷纷开播3D电视,尤其是2010CES消费电子展上各厂家纷纷推出3D显示设备,以及电影《阿凡达》的上映,在全球迅速掀起3D热潮,包括长虹在内的各大电视厂家纷纷研发出3D电视并上市销售。
本文将对立体显示技术的显示原理、常见立体显示技术以及长虹立体显示产品开发历程进行初步的介绍。
二、立体显示原理研究人员发现,无论用两只眼睛还是只用一只眼睛观察物体均可以获得立体感觉。
总的说来,立体视觉的形成因素包括双眼视觉差异、透视感觉、画面细腻程度的差异、光照造成的阴影深浅变化、物体运动导致其大小及角度的变化等。
其中双眼视觉差异是获取立体感觉的主要因素,这是由于人的两只眼睛之间存在约65毫米左右的距离,因此在观察物体时,两只眼睛所获取的图像信息会存在一定的细微差异。
正是基于双眼视觉差异产生立体感觉的原理,研究者们绞尽脑汁,设计出了多种不同的方法来重现立体图像。
三、常见立体显示技术常见的立体显示技术主要有分色法、分光法、分时法、分屏法、光栅法以及全息法等。
虚拟现实立体显示技术虚拟现实是一种新兴的、极有应用前景的计算机综合性技术。
采用以计算机技术为核心的现代高科技生成逼真的视觉、听觉、触觉一体化的特定范围的虚拟环境。
立体显示是虚拟现实的关键技术之一,它使人在虚拟世界里具有更强的沉浸感,立体显示的引入可以使各种模拟器的仿真更加逼真。
研究立体成像技术并利用现有的微机平台,结合相应的软硬件系统在平面显示器上显示立体视景。
一、立体显示原理由于人眼有4 - 6cm的距离,所以实际上我们看物体时两只眼睛中的图象是有差别的。
两幅不同的图象输送到大脑后,我们看到的是有景深的图象。
这就是计算机和投影系统的立体成像原理。
依据这个原理,结合不同的技术水平有不同的立体技术手段。
只要符合常规的观察角度,即产生合适的图象偏移,形成立体图象并不困难。
从计算机和投影系统角度看,根本问题是图象的显示刷新率问题,即立体带宽指标问题。
如果立体带宽足够,任何计算机、显示器和投影机显示立体图象都没有问题。
二、四种立体显示技术下面就介绍4种技术如何将片源输送给双眼,其中前三种,分色、分光、分时技术的流程很相似,都是需要经过两次过滤,第一次是在显示器端,第二次是在眼睛端:1)分色技术:分色技术的基本原理是让某些颜色的光只进入左眼,另一部分只进入右眼。
我们眼睛中的感光细胞共有4种,其中数量最多的是感觉亮度的细胞,另外三种用于感知颜色,分别可以感知红、绿、蓝三种波长的光,感知其它颜色是根据这三种颜色推理出来的,因此红、绿、蓝被称为光的三原色。
要注意这和美术上讲的红、黄、蓝三原色是不同的,后者是颜料的调和,而前者是光的调和。
显示器就是通过组合这三元色来显示上亿种颜色的,计算机内的图像资料也大多是用三原色的方式储存的。
分色技术在第一次过滤时要把左眼画面中的蓝色、绿色去除,右眼画面中的红色去除,再将处理过的这两套画面叠合起来,但不完全重叠,左眼画面要稍微偏左边一些,这样就完成了第一次过滤。
第二次过滤是观众带上专用的滤色眼镜,眼镜的左边镜片为红色,右边的镜片是蓝色或绿色,由于右眼画面同时保留了蓝色和绿色的信息,因此右边的镜片不管是蓝色还是绿色都是一样的。
3D显示技术及原理目前,主流的3D显示技术主要包括以下几种:活动式立体显示技术(Active Stereo Display)、自动立体显示技术(Autostereoscopic Display)、延迟立体显示技术(Lenticular Display)、亮点调制立体显示技术(Parallax Barrier Display)和体感互动立体显示技术(Interactive Stereoscopic Display)。
下面对这几种技术进行详细介绍。
活动式立体显示技术是通过佩戴一副特殊的眼镜实现的。
这种眼镜通过活动式的方式,在用户的左右眼分别显示不同的图像,从而使得用户产生立体感。
这种技术的优点是成本相对较低,缺点是需要佩戴特定的眼镜才能够获得立体效果。
自动立体显示技术是一种无需佩戴额外设备就能够获得立体效果的技术。
这种技术利用了视差(parallax)原理,通过在屏幕上显示不同深度的图像,使得观众在不同角度观看时能够看到不同的图像。
这种技术的优点是使用方便,不需要额外设备,缺点是视角受限,仅适合单个观众使用。
延迟立体显示技术是通过在屏幕前方放置特殊的透镜来实现的。
这种透镜可以将左右眼的图像进行分隔,并且能够根据观众的位置调整透镜的倾斜程度,从而使得观众在不同位置观看时能够看到不同的图像。
这种技术的优点是观看角度较大,缺点是视角范围内存在图像的失真。
亮点调制立体显示技术是通过在屏幕上放置像素级的透镜来实现的。
这种透镜能够根据左右眼的视点位置调整透镜的透光率,从而使得观众的左右眼看到不同的图像。
这种技术的优点是图像清晰度高,缺点是成本较高,且需要较高的分辨率支持。
体感互动立体显示技术是将3D显示技术与体感技术相结合的一种显示技术。
这种技术通过传感器等设备获取观众的体感数据,根据观众的动作姿态来调整显示的立体图像,从而使得观众能够实现虚拟世界中的互动体验。
这种技术的优点是增强了用户的沉浸感和参与感,缺点是设备复杂且成本较高。