广义线性模型(一)
- 格式:pptx
- 大小:697.74 KB
- 文档页数:30
⼴义线性模型⼴义线性模型GLM是⼀般线性模型的扩展,它处顺序和分类因变量。
所有的组件都是共有的三个组件:随机分量系统分量链接函数===============================================随机分量随机分量跟随响应Y的概率分布例1. (Y1,Y2,。
....YN)可能是正态的。
在这种情况下,我们会说随机分量是正态分布。
该成分导致了普通回归和⽅差分析。
例2. y是Bernoulli随机变量(其值为0或1),即随机分量为⼆项分布时,我们通常关注的是Logistic回归模型或Proit模型。
例2. y是计数变量1,2,3,4,5,6等,即y具有泊松分布,此时的连接函数时ln(E(y)),这个对泊松分布取对数的操作就是泊松回归模型。
============================================系统分量系统组件将解释变量x1、x2、···、xk作为线性预测器:============================================连接函数GLM的第三分量是随机和系统分量之间的链路。
它表⽰平均值µ=e(y)如何通过指定函数关系g(µ)到线性预测器中的解释性变量称G(µ)为链接函数..==============================================⼴义线性模型Y被允许从指数型分布族中得到⼀个分布。
链路函数G(µI)是任何单调函数,并且定义了µI和Xβ之间的关系。
=================================================逻辑回归因变量是⼆进制的评估多个解释变量(可以是数值型变量和/或类别型变量)对因变量的影响。
=============================================模型含义:鸟类的巢址使⽤响应变量是有巢的站点的概率,其中概率计算为p/(1-p),p是有巢的站点的⽐例。
⼴义线性模型(GeneralizedLinearModels)在线性回归问题中,我们假设,⽽在分类问题中,我们假设,它们都是⼴义线性模型的例⼦,⽽⼴义线性模型就是把⾃变量的线性预测函数当作因变量的估计值。
很多模型都是基于⼴义线性模型的,例如,传统的线性回归模型,最⼤熵模型,Logistic回归,softmax回归。
指数分布族在了解⼴义线性模型之前,先了解⼀下指数分布族(the exponential family)指数分布族原型如下如果⼀个分布可以⽤上⾯形式在表⽰,那么这个分布就属于指数分布族,⾸先来定义⼀下上⾯形式的符号:η:分布的⾃然参数(natural parameter)或者称为标准参数(canonical parameter)T (y):充分统计量,通常⽤T(y) = ya(η):对数分割函数(log partition function):本质上是⼀个归⼀化常数,确保概率和为1。
当给定T时,a、b就定义了⼀个以η为参数的⼀个指数分布。
我们变化η就得到指数分布族的不同分布。
论证伯努利分布和⾼斯分布为指数分布族,伯努利分布均值φ,记为Bernoulli(φ),y ∈ {0, 1},所以p(y = 1; φ) = φ; p(y = 0; φ) = 1 − φ对⽐指数分布族的表达式可以得到:η = log(φ/(1-φ)) 我们将φ⽤η表⽰,则:φ=1/(1+e-η),是不是发现和sigmoid函数⼀样了。
这就表明,当我们给定T,a,b,伯努利分布可以写成指数分布族的形式,也即伯努利分布式指数分布族。
同理,在⾼斯分布中,有:对⽐指数分布族,我们得到:因为⾼斯分布的⽅差与假设函数⽆关,因⽽为了计算简便,我们设⽅差=1,这样就得到:所以这也表明,⾼斯分布也是指数分布族的⼀种。
构造⼴义线性模型(Constructing GLMs)怎么通过指数分布族来构造⼴义线性模型呢?要构建⼴义线性模型,我们要基于以下三个假设:1. 给定特征属性和参数后,的条件概率服从指数分布族,即。
generalized linear model结果解释-概述说明以及解释1.引言1.1 概述概述部分的内容可以包括对广义线性模型的简要介绍以及结果解释的重要性。
以下是一种可能的编写方式:在统计学和机器学习领域,广义线性模型(Generalized Linear Model,简称GLM)是一种常用的统计模型,用于建立因变量与自变量之间的关系。
与传统的线性回归模型不同,广义线性模型允许因变量(也称为响应变量)的分布不服从正态分布,从而更适用于处理非正态分布的数据。
广义线性模型的理论基础是广义线性方程(Generalized Linear Equation),它通过引入连接函数(Link Function)和系统误差分布(Error Distribution)的概念,从而使模型能够适应不同类型的数据。
结果解释是广义线性模型分析中的一项重要任务。
通过解释模型的结果,我们可以深入理解自变量与因变量之间的关系,并从中获取有关影响因素的信息。
结果解释能够帮助我们了解自变量的重要性、方向性及其对因变量的影响程度。
通过对结果进行解释,我们可以推断出哪些因素对于观察结果至关重要,从而对问题的本质有更深入的认识。
本文将重点讨论如何解释广义线性模型的结果。
我们将介绍广义线性模型的基本概念和原理,并指出结果解释中需要注意的要点。
此外,我们将提供实际案例和实例分析,以帮助读者更好地理解结果解释的方法和过程。
通过本文的阅读,读者将能够更全面地了解广义线性模型的结果解释,并掌握解释结果的相关技巧和方法。
本文的目的是帮助读者更好地理解和运用广义线性模型,从而提高统计分析和机器学习的能力。
在接下来的章节中,我们将详细介绍广义线性模型及其结果解释的要点,希望读者能够从中受益。
1.2文章结构文章结构部分的内容应该是对整篇文章的结构进行简要介绍和概述。
这个部分通常包括以下内容:文章结构部分的内容:本文共分为引言、正文和结论三个部分。
其中,引言部分主要概述了广义线性模型的背景和重要性,并介绍了文章的目的。
广义线性模型的分析及应用一、引言广义线性模型(Generalized Linear Model, GLM)提供了一种在保持简单性的前提下,对非正态响应变量建立连续性预测模型的方法,适用于许多实际应用问题中。
本文旨在介绍广义线性模型的基本概念、模型构建方法、推断等内容,并通过实际案例的分析加深对GLM的理解与应用。
二、基本概念GLM是统计学中一种具有广泛适用性的模型框架,它的基本思想是将未知的响应变量与已知的协变量之间的关系描述为一个线性预测器和一个非线性函数的组合,即:g(E(Y)) = β_0 + β_1X_1 + ⋯+ β_pX_p其中,g(·)称为联接函数(Link Function),它定义了响应变量的均值与预测变量之间的关系,E(Y)为响应变量的期望,X_1,X_2,…,X_p为解释变量(predictor)或协变量(covariate),β_0, β_1, …, β_p是模型的系数或参数。
GLM假定响应变量Y服从指数分布族中的某一个分布,如正态分布、二项分布、泊松分布等。
三、模型构建方法1. 选择联接函数和分布族:不同的响应变量应选用不同的分布族。
例如,连续性响应变量可选用正态分布,二元响应变量可选用二项分布,而计数型响应变量可选用泊松分布等。
2. 选择解释变量:可使用变量选择算法,如前向选择法、向后选择法、逐步回归等,在给定样本内拟合出最佳模型。
3. 选择估计方法:由于某些非正态分布族无法使用最小二乘法拟合,可以使用极大似然估计法或广义估计方程法。
对于大样本,一般使用广义线性混合模型等。
4. 模型比较与选择:模型拟合后,需要进行模型检验和模型诊断,主要包括残差分析、Q-Q图检验、$R^2$值、F检验、AIC/BIC值等指标的分析。
四、模型应用GLM的应用非常广泛,特别是在医学、生态、社会科学、金融等领域。
下面以某市2019年全年医疗保险数据为例,运用GLM模型进行分析。
1. 数据描述健康保险数据包含了每个缴费人的性别、年龄、缴费金额、报销金额等信息。
广义线性模型广义线性模型*(Nelder和Wedderburn,1972)除了正态分布,也允许反应分布,以及模型结构中的一定程度的非线性。
GLM具有基本结构g(μi)=X iβ,其中μi≡E(Yi),g是光滑单调'链接函数',Xi是模型矩阵的第i行,X和β是未知参数的向量。
此外,GLM通常会做出Yi是独立的和Yi服从一些指数族分布的假设。
指数族分布包括许多对实际建模有用的分布,如泊松分布,二项分布,伽马分布和正态分布。
GLM的综合参考文献是McCullagh和Nelder(1989),而Dobson(2001)提供了一个全面的介绍。
因为广义线性模型是以“线性预测器”Xβ的形式详细说明的,所以线性模型的许多一般想法和概念通过一些修改而继续存在到广义线性模型中。
除了必须选择的链接函数和分布之外,基本模型公式与线性模型公式基本相同。
当然,如果恒等函数被选择作为链接以及正态分布,那么普通线性模型将作为特例被恢复。
然而,泛化是以某种成本为代价的:现在的模型拟合必须要迭代完成,而且用于推理的分布结果是近似的,并且由大样本限制结果证明是正确的而不是精确的。
但在深入探讨这些问题之前,请考虑几个简单的例子。
μi=cexp(bt i),例1:在疾病流行的早期阶段,新病例的发生率通常会随着时间以指数方式增加。
因此,如果μi是第ti天的新病例的预期数量,则该形式的模型为请注意,“广义”和“一般”线性模型之间存在区别-后一个术语有时用于指除简单直线以外的所有线性模型。
可能是合适的,其中c和b是未知参数。
通过使用对数链路,这样的模型可以变成GLM形式log(μi)=log(c)+bt i=β0+t iβ1(根据β0=logc和β1=b的定义)。
请注意,模型的右侧现在在参数中是线性的。
反应变量是每天新病例的数量,因为这是一个计数,所以泊松分布可能是一个合理的可以尝试的分布。
因此,针对这种情况的GLM使用泊松反应分布,对数链路和线性预测器β0+tiβ1。
DOI:10.13860/ ki.slt j.2002.05.01354数理统计与管理 21卷 5期 2002年9月 文章编号:1002-1566(2002)05—0054—08广义线性模型(一)陈希孺(中国科学院研究生院,北京 100039)摘 要:本讲座是广义线性模型这个题目的一个比较系统的介绍。
主要分3部分:建模、统计分析与模型选择和诊断。
写作时依据的主要参考资料是L.Fahrmeir等人的《M ultivariate StatisticalM odeling Based on G eneralized Linear M odels》。
关键词:广义线性模型;建模;统计分析;模型选择和诊断中图分类号:O212文献标识码:A形式上,广义线性模型是常见的正态线性模型的直接推广(见本讲座§1.1,(一))。
它可适用于连续数据和离散数据,特别是后者,如属性数据,计数数据。
这在实用上,尤其是生物,医学和经济、社会数据的统计分析上,有重要的意义。
本讲座是关于这个题目的一个比较系统的介绍。
广义线性模型的个别特例起源很早。
Fisher在1919年曾用过它。
最重要的Logistic模型,在20世纪四五十年代曾由Berkso n,Dyke和Patterson等人使用过。
1972年Nelder和Wedderburn在一篇论文中引进广义线性模型一词,自那前后以来研究工作逐渐增加。
1983年M cCullagh和Nelder出版了系统论述此专题的专著(见下)并于1989年再版,研究论文数以千计。
本讲座是应用取向,分3部分:建模、统计分析与模型选择和诊断。
写作时依据的主要参考资料是L.Fahrmeir等《Multivariate Statistical Modeling Based on Generalized Linear Models》, Springer,1994,以及McCullagh等的《Generalized Linear Models》,1989年第2版,Chapman& Hill。
广义线性模型的实现与分析广义线性模型是一种常用的数据分析工具,可用于回归分析、分类、预测等多种实际问题。
在本文中,我们将探讨广义线性模型的实现和分析方法。
一、概述广义线性模型是一种扩展的线性模型,它通过对响应变量的分布进行建模,使得该模型能够适应更多类型的数据。
广义线性模型主要由三个重要组成部分组成:随机部分、系统部分和连接函数。
1、随机部分随机部分是指与响应变量相关的随机分布。
通常情况下,响应变量的分布都会根据其自然属性而确定不同的随机分布类型,如正态分布、泊松分布、二项分布等。
2、系统部分系统部分由自变量和一组参数所组成,用于描述响应变量的均值。
形式上,系统部分一般表示为:η=g(μ)=Xβ,其中,η表示线性预测子,g表示连接函数,μ表示响应变量的均值,X表示自变量矩阵,β表示回归系数。
3、连接函数连接函数将随机部分和系统部分连接起来,将预测值转换为响应变量的实际值。
广义线性模型中常用的连接函数有:恒等函数、对数函数、逆双曲正切函数、逆高斯函数等。
二、实现方法广义线性模型的实现方法分为两种:最大似然估计和贝叶斯估计。
1、最大似然估计最大似然估计法是广义线性模型中最常用的参数估计方法。
最大似然估计的思想是在给定自变量的前提下,寻找一个最符合响应变量的参数值,使得预测值与实际值的差异最小化。
具体来说,假设我们的模型已知,我们要求出回归系数β的值,使得给定自变量矩阵X和响应变量y的情况下,模型的对数似然函数值最大。
最大化对数似然函数可以通过梯度下降、拟牛顿法等算法来实现。
2、贝叶斯估计贝叶斯估计是一种基于贝叶斯统计理论的参数估计方法。
贝叶斯估计可以在多次观测数据的基础上,对未知参数的历史数据进行推断,从而得到该参数的后验分布概率。
贝叶斯估计中一般会引入一些先验分布信息,使得最终的参数估计更准确。
贝叶斯参数估计方法可以通过马尔科夫链蒙特卡罗(MCMC)算法来实现。
三、分析方法广义线性模型分析主要包括模型拟合和模型诊断两部分。