第1章 复数与复变函数汇总
- 格式:pptx
- 大小:5.20 MB
- 文档页数:185
第一章 复数与复变函数第一节 复数1.复数域每个复数z 具有x iy +的形状,其中x 和R y ∈,1-=i 是虚数单位;x 和y 分别称为z 的实部和虚部,分别记作z x Re =,z y Im =。
复数111iy x z +=和222iy x z +=相等是指它们的实部与虚部分别相等。
如果0Im =z ,则z 可以看成一个实数;如果0Im ≠z ,那么z 称为一个虚数;如果0Im ≠z ,而0Re =z ,则称z 为一个纯虚数。
复数的四则运算定义为:)21()21()22()11(b b i a a ib a ib a ±+±=+±+)1221()2121()22)(11(b a b a i b b a a ib a ib a ++-=++ ()()11121221122222()222222a ib a a b b a b a b i a ib a b a b ++-=++++ 复数在四则运算这个代数结构下,构成一个复数域,记为C 。
2.复平面C 也可以看成平面2R ,我们称为复平面。
作映射:),(:2y x iy x z R C +=→,则在复数集与平面2R 之建立了一个1-1对应。
横坐标轴称为实轴,纵坐标轴称为虚轴;复平面一般称为z -平面,w -平面等。
3.复数的模与辐角复数z x iy =+可以等同于平面中的向量。
向量的长度称为复数的模,定(,)x y义为:||z向量与正实轴之间的夹角称为复数的辐角,定义为:Arg arctan 2y z i xπ=+(k Z ∈)。
复数的共轭定义为:z x iy =-;复数的三角表示定义为:||(cos sin )z z Argz i Argz =+;复数加法的几何表示:设1z 、2z 是两个复数,它们的加法、减法几何意义是向量相加减,几何意义如下图:关于两个复数的和与差的模,有以下不等式:(1)、||||||1212z z z z +≤+;(2)、||||||||1212z z z z +≥-; (3)、||||||1212z z z z -≤+;(4)、||||||||1212z z z z -≥-; (5)、|Re |||,|Im |||z z z z ≤≤;(6)、2||z zz =;例1.1试用复数表示圆的方程:22()0a x y bx cy d ++++= (0a ≠)其中a,b,c,d 是实常数。
(完整版)复变函数知识点总结复变函数知识点总结1. 复数与复变函数- 复数是实数和虚数的组合,可表示为a + bi的形式,其中a和b分别是实部和虚部。
- 复变函数是以复数为自变量和因变量的函数,例如f(z)。
2. 复变函数的运算规则- 复变函数的加法和减法:对应实部和虚部进行分别运算。
- 复变函数的乘法:使用分配律进行计算。
- 复变函数的除法:使用共轭形式并应用分配律和除法规则。
3. 复变函数的解析表示- 复变函数可以用级数形式表示,即幂级数或洛朗级数。
- 幂级数表示为f(z) = ∑(c_n * (z - z_0)^n),其中c_n是幂级数的系数,z_0是展开点。
- 洛朗级数表示为f(z) = ∑(c_n * (z - z_0)^n) + ∑(d_n * (z -z_0)^(-n))。
4. 复变函数的性质- 全纯性:如果一个函数在某个区域内都是解析的,则称其为全纯函数。
- 解析性:如果一个函数在某一点附近有解析表示,则称其为解析函数。
- 保角性:保持角度的变化,即函数对角度的保持。
- 映射性:函数之间的对应关系,实现从一个集合到另一个集合的映射。
5. 复变函数的应用- 物理学:用于描述电磁场、电路等问题。
- 工程学:用于信号处理、图像处理等领域。
- 统计学:用于数据分析、模型拟合等方面。
6. 复变函数的计算方法- 积分计算:使用路径积分或者柯西公式进行计算。
- 极限计算:使用洛朗级数展开或级数加和求解极限。
- 零点计算:使用代数方法或数值解法求解函数的零点。
以上是复变函数的知识点总结,希望对您有所帮助!。
第一章㊀复数与复变函数复变函数的定义域和值域均取自复数域.因此,在展开主要内容之前,有必要系统地学习复数的概念及相关性质.第一节㊀复数及其代数运算㊀㊀一㊁复数的概念定义1.1㊀形如z =x +i y 或z =x +y i 的数称为复数,其中x ,y 为两个实数,分别称为复数z 的实部和虚部,并记为x =R e (z ),y =I m (z ).i 称为虚数单位,满足i 2=-1显然,当虚部y =0时,复数z 就是实数;当实部x =0且虚部y ʂ0时,复数z =i y 称为纯虚数;两个复数z 1=x 1+i y 1与z 2=x 2+i y 2相等,当且仅当z 1,z 2实部㊁虚部分别对应相等,即x1=x 2,y 1=y 2;称复数x -i y 为复数x +i y 的共轭,记为.㊀㊀二㊁复数的四则运算记z 1=x 1+i y 1,z 2=x 2+i y 2,则两个复数的和、差与乘积的定义如下z 1ʃz 2=(x 1ʃx 2)+i (y 1ʃy 2)㊀㊀㊀(11)z 1z 2=(x 1x 2-y 1y 2)+i (x 1y 2+x 2y 1)(12)当z 2ʂ0时,可以定义除法z 1z 2=x 1+i y 1x 2+i y 2=x 1x 2+y 1y 2x 22+y 22+i x 2y 1-x 1y 2x 22+y 22(13)㊀㊀三㊁复数的运算性质由复数四则运算的定义,不难验证以下的复数的运算性质:(1)封闭性,即复数的四则运算的结果仍是一个复数;(2)加法交换律,即z 1+z 2=z 2+z 1;(3)加法结合律,即(z 1+z 2)+z 3=z 1+(z 2+z 3);(4)乘法对加法的分配律,即z 1(z 2+z 3)=z 1z 2+z 1z 3;(5)乘法交换律与结合律,即z 1z 2=z 2z 1及(z 1z 2)z 3=z 1(z 2z 3).(6)共轭运算的性质z 1ʃz 2=1ʃ2z 1z 2=12z 1z 2æèçöø÷=12()=z z +=2xz-=2yi (读者自行证明)例1 1㊀设z 1,z 2是两个复数,证明:如果z 1+z 2及z 1z 2都是实数,那么z 1,z 2或者都是实数,或者是共轭复数.证㊀设z 1=x 1+i y 1,z 2=x 2+i y 2,则z 1+z 2=(x 1+x 2)+i (y 1+y 2),㊀z 1z 2=(x 1x 2-y 1y 2)+i (x 1y 2+x 2y 1)由题设知y 1+y 2=0㊀及㊀x 1y 2+x 2y 1=0(1)当y 1=0时,y 2=0,这时z 1,z 2为实数;(2)当y 1ʂ0时,y 1=-y 2,从而由第二式得x 1=x 2,这时z 1和z 2为共轭复数.㊀证毕.注㊀当z 1=2时,z 1z 2=x 21+y 21.例1 2㊀设z =1-2i 3+4i ,求及z .解㊀z =(1-2i )(3-4i )(3+4i )(3-4i )=-5-10i 25=-15-25i所以=-15+25i ,㊀z =-15æèçöø÷2+-25æèçöø÷2=15第二节㊀复数的几何表示㊀㊀一、复平面一个复数x +i y 可完全由一对有序数组(x ,y )所确定.因此,我们在平面上可 2 复变函数与积分变换(第二版)图11建立直角坐标系,使得复数x +i y 与平面上的点(x ,y )一一对应(图11).由于实数x (y =0)对应于横坐标轴上的点,纯虚数i y (x =0,y ʂ0)对应于纵坐标轴上的点,故将平面直角坐标系中的横坐标轴改称实轴,纵坐标轴改称虚轴,并称这个平面为复平面,或z 平面.㊀㊀二㊁复数的点表示引入复平面后,复数与平面之间建立了一一对应,从而复数的许多结果得到了几何直观的解释.为方便起见,复数z 和复平面上的点z 可等同叙述,如{z |I m z >0}㊀与㊀{z |0ɤR e z ɤ1,0ɤI m z ɤ1}分别表示上半平面和以0,1,1+i ,i 为顶点的正方形.图12㊀I m z >0㊀㊀㊀㊀图13㊀0ɤR e z ɤ1,0ɤI m z ɤ1图14㊀㊀三㊁复数的向量表示如果把复数z =x +i y 的实部和虚部作为平面向量在两坐标轴上的投影,则复数z =x +i y 可用平面向量O z ң={x ,y }表示(图14).向量O z ң的模称为复数z 的模,记为|z |=r =x 2+y 2(14)它是点z 到原点的距离,即向量O z ң的长度.由模的定义易得|x |ɤ|z |,㊀|y |ɤ|z |,㊀|z |ɤ|x |+|y |,㊀z z =|z |2(15)定义1.2㊀当z ʂ0时,以实轴正向为始边,以复数z 对应的向量O z ң为终边的角称为复数z 的辐角,记为A r g z .令A r g z =θ,则由向量的性质可得x =|z |c o s θ,㊀y =|z |s i n θ,㊀t a n θ=y x (16) 3 第一章㊀复数与复变函数需要指出的是,任何一个不为0的复数均有无穷多个辐角,若θ1为z 的一个辐角,则A r g z =θ1+2k π㊀(k ɪZ )(17)都是z 的辐角.在复数z (ʂ0)的辐角中,满足-π<θ0ɤπ的辐角θ0称为复数z 的辐角主值,记为θ0=ar g z .当z =0时,O z ң表示零向量,其辐角不定.非零复数z =x +i y 的辐角主值ar g z 可以由下式确定a r g z =a r c t a n y x ,当x >0π+a r c t a n y x ,当x <0,y >0-π+a r c t a n y x ,当x <0,y <0π当x <0,y =0π2当x =0,y >0-π2当x =0,y <0ìîíïïïïïïïïïïïïïï(18)将复数视为向量时,复数的加减法遵循平行四边形法则或三角形法则(图15).㊀图15从三角形法则,可以得到以下的三角不等式|z 1+z 2|ɤ|z 1|+|z 2|㊀(19)|z 1-z 2|ȡ||z 1|-|z 2||(110)㊀㊀四、复数的乘方与开方设z 为一个复数,由(14)和(16)式可知,z 可以表示为4 复变函数与积分变换(第二版)z =r (c o s θ+i s i n θ)(111)其中r 表示复数z 的模,θ为复数z 的辐角,(111)式称为复数z 的三角表达式.利用欧拉公式e i θ=c o s θ+i s i n θ(112)我们可以把复数z 表示为z =r e iθ(113)这称为复数的指数表达式,易知此时=re -i θ.利用复数的指数表达式,我们很容易计算出复数z 的乘除法公式和乘方公式:设z 1=r 1(c o s θ1+i s i n θ1),z 2=r 2(c o s θ2+i s i n θ2),则㊀z 1z 2=r 1r 2[c o s (θ1+θ2)+i s i n (θ1+θ2)]㊀或㊀z 1z 2=r 1r 2e i (θ1+θ2)(114)z 2z 1=r 2r 1[c o s (θ2-θ1)+i s i n (θ2-θ1)]㊀或㊀z 1z 2=r 2r 1e i (θ2-θ1)(r 1ʂ0)(115)z n =z z ︸n 个=r e i θ r e i θ r e i θ n 个=r n e i nθ(116)或z n =r n (c o s n θ+i s i n n θ)(117)如果定义z -n =1z n ,那么当n 为复整数时,(116)和(117)式也是成立的.由(111)和(117)式,当r =1时可以导出著名的棣莫弗公式(c o s θ+i s i n θ)n =c o s n θ+i s i n n θ(118)将此式的左端展开,再分为实部和虚部,就可以得到n 倍角公式.例如,令n =3,由于㊀(c o s θ+i s i n θ)3=[c o s 2θ-s i n 2θ+i (c o s θs i n θ+c o s θs i n θ)](c o s θ+i s i n θ)=c o s 3θ-3c o s θs i n 2θ+i (3c o s 2θs i n θ-s i n 3θ)所以有c o s 3θ=c o s 3θ-3c o s θs i n 2θs i n 3θ=3c o s 2θs i n θ-s i n 3θ再来考虑开方运算.对于一个复数z 1,如果有另一个复数z 2及一个正整数n,使得z n 2=z 1,则z 2称为z 1的一个n 次方根.下面给出求z 1的n 次方根公式.设已知5 第一章㊀复数与复变函数z 1=r (co s θ+i s i n θ)其n 次方根z 2=ρ(c o s φ+i s i n φ),下面来计算ρ和φ.由于z n 2=z 1,所以有[ρ(c o s φ+i s i n φ)]n =r (c o s θ+i s i n θ)即得ρn (c o s n φ+i s i n n φ)=r (c o s θ+i s i n θ)所以ρ=r 1n ,㊀n φ=θ+2k π(k ɪZ )故知z 2=r 1n c o s θ+2k πn +i s i n θ+2k πn æèçöø÷(119)注意到当k 取连续的n 个整数,例如1,2, ,n 时,可以得到φ的n 个值,其中任意两个值相差不超过2π.因此,z 2至少可以取n 个值.当k 的取值超过n 个时,必有φ的两个值,其差为2π的整数倍.因此,z 2至多取n 个值.因此,当z 1ʂ0时,z2可以恰好取n 个值,且z 2=|z 1|1n c o s a r g z 1+2k πn +i s i n a r g z 1+2k πn æèçöø÷(k =0,1, ,n -1)(120)例1 3㊀设z 1=1+i ,z 2=1+3i ,求A r g z 1z 2æèçöø÷.解㊀z 1=1+i =2c o s π4+i s i n π4æèçöø÷=2e π4i z 2=1+3i =2c o s π3+i s i n π3æèçöø÷=2e π3i 所以A r g z 1z 2æèçöø÷=A r g 2e π4i 2e π3i æèçöø÷=A r g 22e -π12i æèçöø÷=-π12+2k π㊀(k ɪZ )例1 4㊀求:(1)4-1;㊀㊀㊀㊀㊀(2)51+i .解㊀(1)因为-1=c o s π+i s i n π,所以4-1=c o s π+2k π4+i s i n π+2k π4㊀(k =0,1,2,3) 6 复变函数与积分变换(第二版)即4-1有4个不同的值,分别为ω0=co s π4+i s i n π4=22(1+i )ω1=co s π+2π4+i s i n π+2π4=22(-1+i )ω2=co s π+4π4+i s i n π+4π4=22(-1-i )ω3=c o s π+6π4+i s i n π+6π4=22(1-i )(2)因为1+i =2c o s π4+i s i n π4æèçöø÷,所以51+i =102æèççc o s π4+2k π5+i s i n π4+2k π5öø÷÷㊀(k =0,1,2,3,4)即51+i 有5个不同的值,分别为ω0=102c o s π20+i s i n π20æèçöø÷ω1=102c o s 9π20+i s i n 9π20æèçöø÷ω2=102c o s 17π20+i s i n 17π20æèçöø÷ω3=102c o s 25π20+i s i n 25π20æèçöø÷ω4=102c o s 3320π+i s i n 3320πæèçöø÷它们是内接于以原点为中心㊁102为半径的圆的内接正五边形的5个顶点.注意:在复数范围内,方程z 3-1=0有3个不同的根,分别为1,㊀-12+32i ,㊀-12-32i 第三节㊀无穷远点和复球面㊀㊀一、无穷远点为了使复数运算在许多情况下是可以进行的,我们不但要讨论有限复数,还要7 第一章㊀复数与复变函数讨论一个特殊的 复数 无穷大,记为ɕ,它是由下式ɕ=10来定义的,它和有限数的四则运算定义如下:a +ɕ=ɕ+a =ɕ㊀㊀㊀㊀㊀(a ʂɕ)ɕ-a =ɕ,㊀a -ɕ=ɕ(a ʂɕ)a ɕ=ɕ a =ɕ㊀(a ʂ0)a ɕ=0,㊀ɕa =ɕ㊀(a ʂɕ)a 0=ɕ㊀(a ʂ0)为避免矛盾,对于ɕʃɕ,0 ɕ,ɕɕ,00均无规定.对于复数ɕ,其实部㊁虚部及辐角均无意义,其模规定为+ɕ.对于其他的每个复数z ,都有|z |<+ɕ.在复平面上,没有一个确定的点与ɕ相对应,但可以设想复平面上有一个理想点与它对应,此点称为无穷远点.我们规定复平面上只有一个无穷远点.复平面加上无穷远点称为扩充复平面,也称闭平面.扩充复平面上的每一条直线都通过无穷远点.为了使无穷远点的存在得到直观解释,黎曼特别创造了复数的球面表示法.图16㊀㊀二、复球面以复平面的原点为球心,作半径为1的球.从原点引垂直于复平面的直线为z 轴,交球面于N 和S ,分别称为北极和南极,如图16所示.对复平面上的任一点z ,从起点N 引过z 的射线,交球面于P ;反之,由起点N 出发,过球面上任一点P 的射线交复平面于一点,记为z .这样,我们就建立了球面上的点(除N 外)与复平面上点的一一对应,从而可以用球面上的点(除N 外)来表示复数.应当注意到,以这样的方式建立的一一对应中,复平面内并无一个点与球面上的N 点对应.由于当z 的模|z |无限变大时,P 就无限接近N ,为使复平面上的点与球面上的点都能一一对应,我们在复平面上增加 无穷远点 ,使之与球面上的N 点对应.这样,扩充复平面就与球面之间建立了一一对应,这个球面称为复球面,其上 8 复变函数与积分变换(第二版)的N 点就是 无穷远点 .第四节㊀复平面上的点集㊀㊀一㊁邻域㊁开集复平面上以z 0为圆心㊁r 为半径的圆面(不包括圆周)称为z 0的r 邻域,记为U (z 0,r ),则U (z 0,r )={z ||z -z 0|<r }称U .(z 0,r )={z |0<|z -z 0|<r }为z 0的去心r 邻域.设D 为复平面上的点集.㊀如果存在z 0的某个邻域U (z 0,r )使得U (z 0,r )⊂D ,则称z 0为D 的一个内点.D 的所有内点构成D 的内部,记为i n t D .如果z 0的任一邻域中,既有D 中点也有D 的余集中的点,则称z 0为D 的一个边界点.D 的所有边界点构成D 的边界,记为ƏD .如果D =i n t D ,则称D 为一个开集;如果ƏD ⊂D ,则称D 为一个闭集.例如:|z -i |<2为开集,|z -i |ɤ2为闭集.㊀㊀二㊁区域定义1.3㊀设D 为复平面上的点集,如果D 满足:(1)D 是一个开集;(2)D 中任何两点都可以用完全包含于D 内的一条折线连接起来(这个性质称为D 的连通性)则称D 为复平面上的一个区域.D ɣƏD 称为闭区域,记为D .如果区域D 可以包含在一个圆周之中,则称该区域为有界区域,否则称为无界区域.例1 5㊀复平面上,满足r 1<|z -z 0|<r 2(r 1<r 2)的所有点构成一个有界区域(图17),其边界为圆周|z -z 0|=r 1和|z -z 0|=r 2称这样的区域为圆环域.例1 6㊀复平面上满足R e (z )ȡ1的所有点构成一个无界的闭区域(图18).9 第一章㊀复数与复变函数图17㊀㊀㊀图18㊀㊀三、平面曲线的复值函数形式我们知道,一个参数方程x=x(t)y=y(t){㊀(tɪ[α,β])在几何上表示一条平面曲线,而复值函数z=x(t)+i y(t)㊀(tɪ[α,β])(121)在复平面上表示的也是这条平面曲线.例如z=R(c o s t+i s i n t)(R>0,0ɤtɤ2π)表示以原点为圆心㊁R为半径的圆,而z=t+i t2(-1ɤtɤ1)则表示一段抛物线.若在(117)中,x,y均为t的连续函数,则称平面曲线z=x(t)+i y(t)为连续曲线;若xᶄ(t),yᶄ(t)在tɪ[α,β]上都连续,且xᶄ2(t)+yᶄ2(t)ʂ0,tɪ[α,β],则称平面曲线为光滑的;光滑曲线上每点皆有切线,且切线是连续变化的;若曲线由若干段光滑曲线连接而成,则称曲线为分段光滑的.设C:z=z(t)(αɤtɤβ)为一条连续曲线,z(α)与z(β)分别称为C的起点和终点.对于满足α<t1<β,αɤt2ɤβ的t1,t2,当t1ʂt2且有z(t1)=z(t2)时, z(t1)称为曲线C的重点.没有重点的连续曲线C称为简单曲线或若当曲线.如果简单曲线的起点和终点重合,即z(α)=z(β),则称曲线C为简单闭曲线.由此即知,简单曲线自身不会相交.如图19所示.图1901 复变函数与积分变换(第二版)。
第一章:复数与复变函数这一章主要是解释复数和复变函数的相关概念,大部分内容与实变函数近似,不难理解。
一、复数及其表示法介绍复数和几种新的表示方法,其实就是把表示形式变来变去,方便和其他的数学知识联系起来。
二、复数的运算高中知识,加减乘除,乘方开方等。
主要是用新的表示方法来解释了运算的几何意义。
三、复数形式的代数方程和平面几何图形就是把实数替换成复数,因为复数的性质,所以平面图形的方程式二元的。
四、复数域的几何模型——复球面将复平面上的点,一一映射到球面上,意义是扩充了复数域和复平面,就是多了一个无穷远点,现在还不知道有什么意义,猜想应该是方便将微积分的思想用到复变函数上。
五、复变函数不同于实变函数是一个或一组坐标对应一个坐标,复变函数是一组或多组坐标对应一组坐标,所以看起来好像是映射在另一个坐标系里。
六、复变函数的极限和连续性与实变函数的极限、连续性相同。
第二章:解析函数这一章主要介绍解析函数这个概念,将实变函数中导数、初等函数等概念移植到复变函数体系中。
一、解析函数的概念介绍复变函数的导数,类似于实变二元函数的导数,求导法则与实变函数相同。
所谓的解析函数,就是函数处处可导换了个说法,而且只适用于复变函数。
而复变函数可以解析的条件就是:μ对x与ν对y的偏微分相等且μ对y和ν对x的偏微分互为相反数,这就是柯西黎曼方程。
二、解析函数和调和函数的关系出现了新的概念:调和函数。
就是对同一个未知数的二阶偏导数互为相反数的实变函数。
而解析函数的实部函数和虚部函数都是调和函数。
而满足柯西黎曼方程的两个调和函数可以组成一个解析函数,而这两个调和函数互为共轭调和函数。
三、初等函数和实变函数中的初等函数形式一样,但是变量成为复数,所以有一些不同的性质。
第三章:复变函数的积分这一章,主要是将实变函数的积分问题,在复变函数这个体系里进行了系统的转化,让复变函数有独立的积分体系。
但是很多知识都和实变函数的知识是类似的。
可以理解为实变函数积分问题的一个兄弟。