高数空间解析几何学向量及其运算
- 格式:ppt
- 大小:910.00 KB
- 文档页数:32
高数下册常用常见知识点高等数学下册常用知识点第八章:空间解析几何与向量代数一、向量及其线性运算1.向量的概念及基本性质:包括向量相等、单位向量、零向量、向量平行、共线、共面等基本概念。
2.向量的线性运算:包括加减法和数乘。
3.空间直角坐标系:包括坐标轴、坐标面、卦限和向量的坐标分解式等。
4.利用坐标进行向量的运算:设向量a=(ax。
ay。
az),向量b=(bx。
by。
bz),则a±b=(ax±bx。
ay±by。
az±bz),λa=(λax。
λay。
λaz)。
5.向量的模、方向角、投影:包括向量的模、两点间的距离公式、方向角、方向余弦和投影等。
二、数量积和向量积1.数量积:包括数量积的概念、性质和计算公式等。
2.向量积:包括向量积的概念、性质和计算公式等。
三、曲面及其方程1.曲面方程的概念:包括曲面方程的定义和基本性质等。
2.旋转曲面:包括旋转曲面的定义、方程和旋转后方程的计算等。
3.柱面:包括柱面的特点、方程和母线的概念等。
4.二次曲面:包括椭圆锥面的方程和图形等。
2.椭球面:$\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1$3.旋转椭球面:$\frac{x^2}{a^2}+\frac{y^2}{b^2}-\frac{z^2}{c^2}=1$4.单叶双曲面:$\frac{x^2}{a^2}+\frac{y^2}{b^2}-\frac{z^2}{c^2}=1$5.双叶双曲面:$\frac{x^2}{a^2}+\frac{y^2}{b^2}-\frac{z^2}{c^2}=-1$6.椭圆抛物面:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=z$7.双曲抛物面(马鞍面):$\frac{x^2}{a^2}-\frac{y^2}{b^2}=z$8.椭圆柱面:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$9.双曲柱面:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$10.抛物柱面:$2x=ay^2$空间曲线及其方程:1.参数方程:$\begin{cases}x=x(t)\\y=y(t)\\z=z(t)\end{cases}$,如螺旋线:$\begin{cases}x=a\cos t\\y=a\sin t\\z=bt\end{cases}$2.一般方程:$F(x,y,z)=0$,消去$z$,得到曲线在面$xoy$上的投影。
第八章空间解析几何与向量代数 公共数学教研室空间解析几何主要研究空间几何图形, 把数学研究的两个基本对象“数”和“形”统一起来, 达到用代数方法解决几何问题, 用几何方法解决代数问题.本章引进向量及其代数运算, 讨论向量的各种运算规律, 介绍空间曲面和空间曲线, 以向量为工具来研究平面和空间直线, 最后介绍二次曲面.8.1 向量及其线性运算 8.2 向量的数量积8.3 向量的向量积混合积 8.4 平面及其方程8.5 空间直线及其方程 8.6 直线平面之间的关系 8.7 曲面及其方程8.8 空间曲线和向量函数8.1 向量及其线性运算vector and linear operation8.1.1 空间直角坐标系在空间中任取一点O, 作互相垂直的数轴Ox, Oy, Oz, 分别叫做x 轴 (横轴), y 轴 (纵轴), z 轴 (竖轴), 统称坐标轴, 三个坐标轴符合右手法则. 这样的三条坐标轴组成一个空间直角坐标系, 点O 叫做坐标原点 (或原点).三条坐标轴中的任意两条确定一个平面, 分别称为xOy 面, yOz 面及zOx 面. 三个坐标面把空间分成八个部分, 每一部分叫做一个卦限.x 轴, y 轴, z 轴上点的坐标分别表示为 (0, 0, z ), (0, y , 0), (0, 0, z ); xOy 面, yOz 面, zOx 面上点的坐标分别表示为 (x , y , 0), (0, y , z ), (x , 0, z ).22212212121||()()().M M x x y y z z =-+-+- 设有序数 (x , y , z ) 与空间点 M 一一对应, 依次称 x , y 和 z 为点M 的横坐标, 纵坐标和竖坐标. 点 M 通常记为 M (x , y , z ).空间中两点M 1 (x 1, y 1, z 1), M 2 (x 2, y 2, z 2) 间的距离公式为设 M 为空间中一点, 过 M 作三个平面分别垂直于 x 轴, y 轴, z 轴, 与 x 轴, y 轴, z 轴的交点依次为 P , Q , R , 这三个点在 x 轴, y 轴, z 轴的坐标依次为 x , y , z . 于是 M 唯一地确定了一个有序数组 (x , y , z ); 反之, 一有序数组 (x , y , z ) 唯一确定空间一点 M . 这样, 就建立了空间的点 M 和有序数组 (x , y , z ) 之间的一一对应关系. x z y ⑻O⑷⑶⑵⑴⑺⑹⑸R P QO x z y8.1.2 向量的概念及其坐标表示只有大小的量称为数量 (或标量), 如时间, 温度, 长度等. 既有大小又有方向的量称为向量 (或矢量), 例如位移 , 速度 , 加速度 , 力 等.s v a F 向量包含两个要素 — 大小和方向. 有向线段也具有这两个要素, 因此可用有向线段 表示向量, 其大小是有向线段的长度, 其方向是从 A 到 B 的方向, A 是向量的起点, B 是向量的终点. 若记 则称 为的一个几何表示 . AB ,v AB AB v 向量 的大小, 叫做向量的模或长度, 记为v ||.v向量仅由其大小和方向确定, 与其位置无关, 故向量被称为自由向量. 因此, 若两个向量大小相等, 方向相同, 称这两个向量相等.将两个向量移到同一始点, 如果它们位于一条直线上, 且两个终点分布在始点的同一侧, 则称这两个向量方向相同; 如果它们位于一条直线上, 且两个终点分布在始点的两侧, 则称这两个向量方向相反. 长度是零的向量称为零向量, 记为 , 零向量的方向可以认为是任意的.如图, 向量 位置不同, 但它们的长度相同, 且它们所在的线段有相同的斜率,即它们的方向相同, 所以,,OP AB CD P (2, 1)O C (1, 3)D (3, 4)A (- 3, - 3)B (- 2, - 2)x y .OP AB CD == 向量具有平移不变性, 若将向量 平移, 使其起点与原点 O 重合, 终点位于 P , 则 故 可由 P 的座標確定.AB ,AB OP = AB 定义 8-1 一个二元有序实数组 {a , b } 称为一个二维向量, 二维向量的全体记作 V 2. 一个三元有序实数组 {a , b , c } 称为一个三维向量. 三维向量的全体记作 V 3, 其中实数 a , b , c 称为向量的分量, 也称为向量的坐标.2121{,}v x x y y =-- 定义 8-2 若 M 1 (x 1, y 1), M 2 (x 2, y 2) 为平面上两点, 则二维向量 表示由有向线段 所表示的向量. 12M M 212121{,,}v x x y y z z =--- 若 M 1 (x 1, y 1, z 1), M 2 (x 2, y 2, z 2) 为空间中两点, 则三维向量表示由有向线段 所表示的向量. 12M M 22212212121||||()()()v M M x x y y z z ==-+-+-给定向量任意取定 A (x 0, y 0, z 0), 记 B = (x + x 0, y + y 0, z + z 0), P = P (x , y , z ),则{,,},r x y z = .r AB OP == 称为点 P (x , y , z ) 的位置向量,{,,}r x y z = 222|||{,,}|r x y z x y z ==++ 222||02(1) 5.AB =++-= 例 1 已知 A (1, 0, 2), B (1, 2, 1) 是空间两点, 求向量 和它的模.AB 解{11,20,12}{0,2,1},AB =---=-对三维向量 8.1.3 向量的线性运算 定义 8-3 设 是两个二维向量, 称向量 {a x + b x , a y + b y }为向量 和的和, 记作 即{,},{,}x y x y a a a b b b == a b ,a b + {,}{,}{,}.x y x y x x y y a b a a b b a b a b +=+=++ {,,},{,,},x y z x y z a a a a b b b b == 类似有{,,}{,,}{,,}.x y z x y z x x y y z z a b a a a b b b a b a b a b +=+=+++几何上, 向量加法服从三角形法则及平行四边形法则.A yx O B a x b x a y b y a b a b + A y O a x a y b y C xB b x a b a b +定义 8-4 设向量 c 为实数, 称向量 { c a x , c a y } 为向量 与数量 c 的乘积. 记作 即其模{,},x y a a a = a ,c a {,}{,},x y x y c a c a a c a c a == ||||||.c a c a = 对于三维向量, 类似有c {a x , a y , a z } = {c a x , c a y , c a z }. c > 0 时, c 与平行, 且方向相同; c < 0 时 c 与 平行, 且方向相反.a a a a 称 为 的负向量.(1)a a -=- a 与 的和称为 与的差, 记为 b a b - a .a b -证 仅需证明必要性. 设则存在 λ, 使得 ,a b .b a λ= 若又有则 故 所以 λ = μ .,b a μ= ()0,a λμ-= |||||0|0,a λμ-== 定理 1 设 是两个向量, 且 则 的充分必要条件是存在唯一常数 λ 使得 ,a b a b .b a λ= 0≠a向量的加法运算和数乘运算统称为向量的线性运算. 向量的线性运算满足下列法则 :(1) (交换律) .a b b a +=+ (2) (结合律) ()().a b c a b c ++=++ (4) ()0.a a +-= (6) ().a a a λμλμ+=+ (7) ()().a a λμλμ= (8) 1.a a ⋅= (5) ().ab a b λλλ+=+ (3) a a =+0由于向量的加法符合交换律和结合律, 故 n 个向量相加可写成,||.||a a a e a a e a == 12.n a a a +++ n 个向量相加复合多边形法则 : 使前一向量的终点与后一向量的起点重合, 相继作向量 再以第一向量的起点为起点, 最后一向量的终点为终点作一向量, 这个向量即和向量.12,,,,n a a a 模为 1 的向量称为单位向量. 记非零向量 的单位化向量为则a ,a eV 3 中, 与 x 轴, y 轴, z 轴的正向同向的单位向量记为{1,0,0},{0,1,0},{0,0,1}.i j k === 称 为 V 3 中的一组标准基.,,i j k a 设 则 可由 线性表示, 即{,,},x y z a a a a = ,,i j k {1,0,0}{0,1,0}{0,0,1}.x y z x y z a a a a a i a j a k =++=++ {1,0},{0,1}i j == 二维的情形,是 V 2 的一组标准基.例 2 设 求{1,1,3},{2,1,2},a b =-=- (1) 32;c a b =- (2) 用标准基 表示向量,,i j k ;c (3) 求与同方向的单位向量.c 解 (1)323{1,1,3}2{2,1,2}{34,32,94}{1,1,5}.c a b =-=---=--+-=-- (2)5.c i j k =--+ 所以 222(3)||(1)(1)533,c =-+-+= {1,1,5}.||33c c e c ==--解 作 12(),OP OP OP OP λ-=- 例 3 设两点 P 1 (x 1, y 1, z 1), P 2 (x 2, y 2, z 2). 在线段 P 1 P 2 上求一点 P (x , y , z ), 使由 P 分成的两个有向线段 的的比为定数 λ ( ≠ - 1), 即 12,P P PP 12.P P PP λ= O P 1P 2P 11112222{,,},{,,},{,,},OP x y z OP x y z OP x y z === 由于 及12,P P PP λ= 1122,,P P OP OP PP OP OP =-=-121212,,.111x x y y z z x y z λλλλλλ+++===+++所以 12(1),OP OP OP λλ+=+ 这就是定比分点公式.得到 121OP OP OP λλ+=+ ,得点 P 的坐标例 4 证明平行四边形的对角线互相平分.11(),22AE AC AB BC ==+ 解 设 ABCD 为平行四边形, AC , BD 的中点分别 为 E 及 F , 则D A FE B C 由定比分点公式 (λ = 1) 得1(),2AF AB AD =+ 即 E 与 F 重合, 即 AC 与 BD 互相平分.11()().22AF AB AD AB BC AE =+=+= 所以。
第一章 高等数学 第一节 空间解析几何一、向量代数(一)向量及其线性运算既有大小又有方向的量,如位移、速度、力等这类量,称为向量,向量 a 的大小称为向量 a 的模,记作| a |。
模等于1的向量叫做单位向量,向量的加减法、向量与数的乘法统称为向量的线性运算。
向量a 与向量 b 的和 a + b 是一个向量 c ,利用平行四边形法则或三角形法则可得向量c ,如图 1-1-1 ,图 1-1-2 所示。
向量的加法符合下列运算规律: ① 交换律 a + b = b + a② 结合律(a + b)+c= a +(b+c)向量 b 与向量 a 的差 b - a 定义为向量 b 与 a 的负向量-a 的和,即b - a = b + (-a)由向量加法的三角形法则可知:() |a| = |-a|向量 a 与实数λ的积记作λa ,它是一个向量,它的模它的方向当λ> 0 时,与向量 a 相同;当λ< 0 时,与向量 a 相反。
向量与数的乘积符合下列运算规律:由向量与数的乘积的定义,可得以下定理:定理 设向量 a≠0 ,那么,向量 b 与向量 a 平行的充分必要条件是:存在惟一的实数λ,使 b =λa 。
(二)向量的坐标设有空间直角坐标系 O - xyz , i、 j、 k 分别表示沿 x 、 y 、 z 轴正向的单位向量, 12a M M是以1111(,,)M x y z 为起点,2222(,,)M x y z 为终点的向量,则向量a 可表示为其中212121x x y y z z ---、、称为向量 a 的坐标。
利用向量的坐标,可得向量的加法、减法以及向量与数的乘法运算如下:非零向量 a 与三条坐标轴正向的夹角αβγ、、称为它的方向角。
向量的模、方向角与坐标之间关系:其中cos cos cos αβγ、、称为向量 a 的方向余弦。
利用向量的坐标可得向量的模与方向余弦如下:(三)数量积 向量积设向量a 和向量 b 的夹角为θθπ≤≤(0),向量 a 和向量 b 的数量积为一个数量,记作a b ⋅ ,其大小为||||cos a b θ,即a ⊥b 的充分必要条件是 a .b =0向量 a 在轴u 上的投影(记作 Prj u a )等于向量 a 的模乘以轴与向量a 的夹角φ的余弦,即利用向量在轴上的投影,可将数量积表为向量 a 和向量 b 的向量积为一个向量 c ,记作 a × b ,即c = a × b ,c 的模c 的方向垂直于 a 与 b 所决定的平面, c 的指向按右手法则确定。
向量与空间解析几何知识点总结一、向量。
1. 向量的概念。
- 既有大小又有方向的量称为向量。
在空间直角坐标系中,向量可以用坐标表示,如→a=(a_x,a_y,a_z),其中a_x、a_y、a_z分别是向量在x、y、z轴上的投影。
- 向量的模(长度):对于向量→a=(a_x,a_y,a_z),其模|→a|=√(a_x^2)+a_y^{2+a_z^2}。
2. 向量的运算。
- 加法。
- 几何方法:平行四边形法则或三角形法则。
- 坐标运算:若→a=(a_x,a_y,a_z),→b=(b_x,b_y,b_z),则→a+→b=(a_x + b_x,a_y + b_y,a_z + b_z)。
- 减法。
- 几何方法:三角形法则。
- 坐标运算:→a-→b=(a_x - b_x,a_y - b_y,a_z - b_z)。
- 数乘向量。
- 设λ为实数,→a=(a_x,a_y,a_z),则λ→a=(λ a_x,λ a_y,λ a_z)。
- 数乘向量的模|λ→a|=|λ||→a|,方向当λ>0时与→a相同,当λ < 0时与→a 相反。
- 向量的数量积(点积)- 定义:→a·→b=|→a||→b|cosθ,其中θ为→a与→b的夹角。
- 坐标运算:若→a=(a_x,a_y,a_z),→b=(b_x,b_y,b_z),则→a·→b=a_xb_x + a_yb_y+a_zb_z。
- 向量垂直的充要条件:→a⊥→bLeftrightarrow→a·→b=0。
- 向量的向量积(叉积)- 定义:→a×→b是一个向量,其模|→a×→b|=|→a||→b|sinθ,方向遵循右手螺旋法则。
- 坐标运算:若→a=(a_x,a_y,a_z),→b=(b_x,b_y,b_z),则→a×→b=<=ftbegin{array}{ccc}→i→j→k a_xa_ya_z b_xb_yb_zend{array}right=(a_yb_z - a_zb_y)→i+(a_zb_x - a_xb_z)→j+(a_xb_y - a_yb_x)→k。