职高高一数学—幂函数
- 格式:ppt
- 大小:1.20 MB
- 文档页数:26
第28课时 幂函数教学目标:使学生认识到幂函数同样也是一种重要的函数模型,掌握从特殊到一般地去进行类比研究幂函数的性质,并注意与指数函数进行对比学习.教学重点:幂函数的定义和图象.教学难点:幂函数的图象.教学过程:Ⅰ.复习引入幂函数的定义Ⅱ.讲授新课问题1:我们知道,分数指数幂可以与根式相互转化.把下列各函数先化成根式形式,再指出它的定义域和奇偶性.利用计算机画出它们的图象,观察它们的图象,看有什么共同点?(1)y =21x ;(2)y =31x ;(3)y =32x ;(4)y =34x .思路:先将各式化为根式形式,函数的定义域就是使这些根式有意义的实数x 的集合;奇偶性直接利用定义进行判断.(1)定义域为[0,+∞),(2)(3)(4)定义域都是R ;其中(1)既不是奇函数也不是偶函数,(2)是奇函数,(3)(4)是偶函数.它们的图象都经过点(0,0)和(1,1),且在第一象限内函数单调递增.问题2:仿照问题1研究下列函数的定义域和奇偶性,观察它们的图象看有什么共同点?(1)y =x -1;(2)y =x -2;(3)y =21-x ;(4)y =31-x .思路:先将负指数幂化为正指数幂,再将分数指数幂化为根式,函数的定义域就是使这些分式和根式有意义的实数x 的集合;(1)(2)(4)的定义域都是{x |x ≠0},(3)的定义域是(0,+∞);(1)(4)是奇函数,(2)是偶函数,(3)既不是奇函数也不是偶函数.它们的图象都经过点(1,1),且在第一象限内函数单调递减,并且以两坐标轴为渐近线.总结:研究幂函数时,通常先将负指数幂化为正指数幂,再将分数指数幂化为根式(幂指数是负整数时化为分式);根据得到的分式或根式研究幂函数的性质.函数的定义域就是使这些分式和根式有意义的实数x 的集合;奇偶性和单调性直接利用定义进行判断.问题1和问题2中的这些幂函数我们要记住它们图象的变化趋势,有利于我们进行类比.[例1]讨论函数y =52x 的定义域、值域、奇偶性、单调性,并画出图象的示意图. 思路:函数y =52x 是幂函数. (1)要使y =52x =5x 2 有意义,x 可以取任意实数,故函数定义域为R .(2)∵x ∈R ,∴x 2≥0.∴ y ≥0.(3)f (-x )=5(-x )2 =5x 2 =f (x ), ∴函数y =52x 是偶函数;(4)∵n =25>0, ∴幂函数y =52x 在[0,+∞]上单调递增. 由于幂函数y =52x 是偶函数,∴幂函数y =52x 在(-∞,0)上单调递减.(5)其图象如右图所示.[例2]比较下列各组中两个数的大小:(1)1.553,1.753;(2)0.71.5,0.61.5;(3)(-1.2)32-,(-1.25)32-. 解析:(1)考查幂函数y =53x 的单调性,在第一象限内函数单调递增,∵1.5<1.7 ∴1.553<1.753(2)考查幂函数y =23x 的单调性,同理0.71.5>0.61.5.(3)先将负指数幂化为正指数幂可知它是偶函数,∵(-1.2)32-=1.232-,(-1.25)32-=1.2532-,又1.232->1.2532- ∴(-1.2)32->(-1.25)32-点评:比较幂形式的两个数的大小,一般的思路是:(1)若能化为同指数,则用幂函数的单调性;(2)若能化为同底数,则用指数函数的单调性;(3)若既不能化为同指数,也不能化为同底数,则需寻找一个恰当的数作为桥梁来比较大小.[例3]求函数y =52x +2x 51+4(x ≥-32)值域.解析:设t =x 51,∵x ≥-32,∴t ≥-2,则y =t 2+2t +4=(t +1)2+3. 当t =-1时,y min =3.∴函数y =52x +2x 51+4(x ≥-32)的值域为[3,+∞).点评:这是复合函数求值域的问题,应用换元法.Ⅲ.课堂练习课本P 73 1,2Ⅳ.课时小结[师]通过本节学习,大家能熟悉并掌握幂函数的图象,提高数学应用的能力. Ⅴ.课后作业课本P 73 习题1,2,3,4。
中职数学书高一上册知识点一、函数与导数1. 函数的概念与表示方法2. 函数的定义域和值域3. 函数的图像与性质4. 导数的概念与计算方法5. 导数的几何意义与应用二、一次函数与二次函数1. 一次函数的定义与图像特征2. 一次函数的性质与应用3. 二次函数的定义与图像特征4. 二次函数的性质与应用5. 一次函数与二次函数的比较三、幂函数与指数函数1. 幂函数的定义与图像特征3. 指数函数的定义与图像特征4. 指数函数的性质与应用5. 幂函数与指数函数的比较四、三角函数1. 正弦函数与余弦函数2. 正弦函数与余弦函数的性质3. 正弦函数与余弦函数的图像特征与应用4. 正切函数与余切函数5. 正切函数与余切函数的性质与应用五、数列与数列的极限1. 数列的概念与表示方法2. 等差数列与等比数列3. 数列的通项公式与前n项和公式4. 无穷数列与数列的极限六、概率与统计1. 随机事件与概率的概念2. 概率的计算方法与性质3. 随机变量与概率分布4. 统计图表的绘制与分析5. 样本调查与统计推断七、三角恒等变换1. 三角函数的和角公式与差角公式2. 三角函数的倍角公式与半角公式3. 三角函数的积化和与和化积4. 三角函数与三角方程的解法5. 三角恒等变换的应用与证明总结:本文整理了中职数学书高一上册的知识点,包括函数与导数、一次函数与二次函数、幂函数与指数函数、三角函数、数列与数列的极限、概率与统计以及三角恒等变换。
每个知识点都有详细的介绍和相关的性质、计算方法、图像特征以及应用等内容。
通过学习这些知识点,同学们可以更好地掌握数学的基础概念和方法,提高解题能力和应用能力。
希望本文对同学们的学习有所帮助。
《幂函数》讲义一、幂函数的定义形如y =x^α(α 为常数)的函数,叫做幂函数。
其中x 是自变量,α 是常数。
需要注意的是,幂函数的底数 x 前面的系数必须是 1,指数α 是常数。
例如,y = x^2、y = x^(-1)、y = x^(1/2) 等都是幂函数,而 y= 2x^2、y = 3^x 等则不是幂函数。
二、幂函数的图像1、当α > 0 时(1)α 为整数当α 为偶数时,幂函数的图像关于 y 轴对称,在区间0, +∞)上单调递增,在区间(∞, 0上单调递减。
当α 为奇数时,幂函数的图像关于原点对称,在区间(∞,+∞)上单调递增。
(2)α 为分数当α = 1/2 时,幂函数 y = x^(1/2) 的定义域为0, +∞),图像在第一象限,是一条上升的曲线。
当α =-1/2 时,幂函数 y = x^(-1/2) 的定义域为(0, +∞),图像在第一象限,是一条下降的曲线。
2、当α < 0 时幂函数的图像在第一象限内,当 x 趋近于 0 时,函数值趋近于正无穷;当 x 趋近于正无穷时,函数值趋近于 0。
例如,y = x^(-2) 的图像在第一象限内是一条下降的曲线。
三、幂函数的性质1、定义域幂函数的定义域与指数α的值有关。
当α 为正整数时,定义域为 R;当α 为负整数时,定义域为{x | x ≠ 0};当α 为正分数时,定义域取决于分母的奇偶性;当α 为负分数时,定义域为{x | x > 0}。
2、值域幂函数的值域也与α的值有关。
当α > 0 时,值域为0, +∞);当α < 0 时,值域为(0, +∞)。
3、奇偶性根据幂函数的指数α的奇偶性来判断奇偶性。
当α 为奇数时,幂函数为奇函数;当α 为偶数时,幂函数为偶函数。
4、单调性当α > 0 时,幂函数在0, +∞)上单调递增;当α < 0 时,幂函数在(0, +∞)上单调递减。
四、幂函数的应用1、比较大小在比较幂函数值的大小时,可以根据幂函数的单调性以及指数的大小来进行判断。
乐至县高级职业中学任务教学教学设计总结:这两个函数的定义域不同,在定义域内它们都是增函数.两个函数的图像都经过坐标原点和点(1,1).2 指出幂函数2y x -=的定义域,并作出函数图像.分析 考虑到221x x -=,因此定义域为0-∞+∞()(,)函数为偶函数.其图像关于y 轴对称,可以先作出区间后再利用对称性作出函数在区间(,0)-∞内的图像. 2y x -=的定义域为00-∞+∞(,)(,).由分析过程知道函数为偶函数.在区间(0,)+∞内,设值列表如下: 以表中的每组),(y x ,再用光滑的曲线依次联结各点,到函数在区间关于y 轴对称图形,从而得到函数2-=x y x …121 2 … y … 4 1 14…28.2.2 应用举例第1课时与视角有关的解直角三角形应用题1.能将直角三角形的知识与圆的知识结合起来解决问题.2.进一步理解仰角、俯角等概念,并会把类似于测量建筑物高度的实际问题抽象成几何图形.3.能利用解直角三角形来解其他非直角三角形的问题.阅读教材P74-75页,自学“例3”与“例4”,复习与圆的切线相关的知识,弄清仰角与俯角的概念.自学反馈独立完成后小组内展示学习成果①某人从A看B的仰角为15°,则从B看A的俯角为 .②什么叫圆的切线?它有什么性质?③弧长的计算公式是什么?④P89练习题1-2题.把求线段的长转化成解直角三角形的知识,构造直角三角形,把相应的元素放到相应的直角三角形中去.活动1 小组讨论例1 如图,厂房屋顶人字架(等腰三角形)的跨度为10 m,∠A=26°,求中柱BC(C为底边中点)和上弦AB的长.(精确到0.01 m)解:∵tanA=BC AC,∴BC=AC·tanA=5×tan26°≈2.44(m).∵cosA=AC AB,∴AB=ACcosA=526cos≈5.56(m).答:中柱BC约长2.44 m,上弦AB约长5.56 m.这类问题往往是将等腰三角形转化成解直角三角形,同一个问题可以用不同的关系式来解.活动2 跟踪训练(独立完成后展示学习成果)1.如图,某飞机于空中处探测到目标C,此时飞行高度AC=1 200 m,从飞机上看地平面指挥台B的俯角a=16°31′,求飞机A到指挥台B的距离.(精确到1 m)2.在山坡上种树,要求株距(相邻两树间的水平距离)是5.5 m,测得斜坡的倾斜角是24°,求斜坡上相邻两树间的坡面距离是多少m.(精确到0.1 m)这类求距离的问题往往转化成求直角三角形边长的问题,另外,要注意理解有关的名词术语.第2小题要抽象成几何图形再来解决实际问题.活动1 小组讨论例2 如图,两建筑物的水平距离为32.6 m,从点A测得点D的俯角α为35°12′,测得点C俯角β为43°24′,求这两个建筑物的高.(精确到0.1 m)解:过点D作DE⊥AB于点E,则∠ACB=β=43°24′,∠ADE=α=35°12′,DE=BC=32.6 m.在Rt△ABC中,∵tan∠ACB=AB BC,∴AB=BC·tan∠ACB=32.6×tan43°24′≈30.83(m).在Rt△ADE中,∵tan∠ADE=AE DE,∴AE=DE·tan∠ADE=32.6×tan35°12′≈23.00(m).∴DC=BE=AB-AE=30.83-23.00≈7.8(m).答:两个建筑物的高分别约为30.8 m,7.8 m.关键是构造直角三角形,分清楚角所在的直角三角形,然后将实际问题转化成几何问题解决.活动2 跟踪训练(小组讨论完成并展示学习成果)如图,一只运载火箭从地面L处发射,当卫星到达A点时,从位于地面R 处的雷达站测得AR的距离是6 km,仰角为43°,1s后,火箭到达B点,此时测得BR 的距离是6.13 km ,仰角为45.54°,这个火箭从A 到B 的平均速度是多少(精确到0.01 km/s)?速度=路程÷时间,本题中只需求出路程AB ,即可求出速度.无论是高度还是速度,都转化成解直角三角形. 活动3 课堂小结1.本节学习的数学知识:利用解直角三角形解决实际问题.2.本节学习的数学方法:数形结合、数学建模的思想.教学至此,敬请使用学案当堂训练部分.【预习导学】 自学反馈 ①15° ②略 ③360n ︒︒·2πr ④7.7 m 334.2 m 【合作探究1】 活动2 跟踪训练1.4 221 m2.6.0 m【合作探究2】活动2 跟踪训练0.28 km/s高一年级化学学科学案微粒之间的相互作用力第三课时【学习目标】1.认识分子间作用力的概念;2.用分子间作用力解释常见事实。
4.1.3 幂函数举例一、教材分析幂函数选自新课标职业高中数学基础模块上册第四章实数指数幂的第四课时,是基本初等函数之一,它不仅有着广泛的应用,而且起着承前启后的作用,从教材的整体安排看,学习了幂函数是为了让学生进一步获得比较系统的函数知识和函数研究方法,为今后学习指数函数,对数函数,三角函数打下良好的基础,在初中曾经研究过21,1,x y x xy x y ====三种幂函数,这节内容是对初中有关内容的进一步概括、归纳与发展,是与幂函数有关知识的高度升华,通过本节课的学习,使学生进一步确立利用函数的定义域、值域、奇偶性、单调性研究一个函数的意识,因而本节课更是一个对学生研究函数的方法和能力的综合提升。
二、学情分析在知识储备方面,学生学习幂函数之前,在初中已经掌握的一次函数,二次函数,正比例函数,反比例函数几类基本初等函数,并且在第三章接触过函数,已经确立了利用函数的定义域、值域、奇偶性、单调性研究一个函数的意识 ,已初步形成对数学问题的合作探究能力。
由于幂函数的情况比较复杂,学生在对图像共性的归纳概括方面可能遇到困难,在思维水平方面,所授班级是中职学生,学生的数学基础普遍薄弱,学生层次参次不齐,个体差异比较明显,虽然前面学生已经学会用描点列表连线画图的方法来绘制指数函数,对数函数图像,但是对于幂函数的图像画法仍然缺乏感性认识。
三、教学设计四、板书设计:五、课后反思学生是教学的主体,为了体现以学生发展为本,遵循学生的认知规律,体现循序渐进与启发式的教学原则,本节课给学生提供各种参与机会。
为了调动学生学习的积极性,使学生化被动为主动。
本节课我利用多媒体辅助教学,教学中我引导学生从实例出发,从中归纳出幂函数的模型,在教学重难点上,步步设问、启发学生的思维,通过探究活动,学生讨论,课堂练习的方式来加深理解,很好地突破难点和提高教学效率。
让学生在教师的引导下,充分地动手、动口、动脑,掌握学习的主动权。