高中数学选修1-1知识点归纳
- 格式:docx
- 大小:373.11 KB
- 文档页数:8
数学选修1-1知识点总结导数及其应用一.导数概念的引入 1. 导数的物理意义:瞬时速率。
一般的,函数()y f x =在0x x =处的瞬时变化率是000()()lim x f x x f x x∆→+∆-∆, 我们称它为函数()y f x =在0x x =处的导数,记作0()f x '或0|x x y =',即0()f x '=000()()lim x f x x f x x∆→+∆-∆ 例1. 在高台跳水运动中,运动员相对于水面的高度h (单位:m )与起跳后的时间t(单位:s)存在函数关系2() 4.9 6.510h t t t =-++运动员在t=2s 时的瞬时速度是多少?解:根据定义0(2)(2)(2)lim 13.1x h x h v h x∆→+∆-'===-∆ 即该运动员在t=2s 是13.1m/s,符号说明方向向下2. 导数的几何意义:曲线的切线.通过图像,我们可以看出当点n P 趋近于P 时,直线PT 与曲线相切。
容易知道,割线n PP 的斜率是00()()n n n f x f x k x x -=-,当点n P 趋近于P 时,函数()y f x =在0x x =处的导数就是切线PT 的斜率k ,即0000()()lim ()n x n f x f x k f x x x ∆→-'==- 3. 导函数:当x 变化时,()f x '便是x 的一个函数,我们称它为()f x 的导函数. ()y f x =的导函数有时也记作y ',即0()()()limx f x x f x f x x∆→+∆-'=∆ 二.导数的计算基本初等函数的导数公式:1若()f x c =(c 为常数),则()0f x '=;2 若()f x x α=,则1()f x x αα-'=;3 若()sin f x x =,则()cos f x x '=4 若()cos f x x =,则()sin f x x '=-;5 若()x f x a =,则()ln xf x a a '=6 若()x f x e =,则()x f x e '=7 若()log x a f x =,则1()ln f x x a'=8 若()ln f x x =,则1()f x x '= 导数的运算法则1. [()()]()()f x g x f x g x '''±=±2. [()()]()()()()f x g x f x g x f x g x '''•=•+•3. 2()()()()()[]()[()]f x f x g x f x g x g x g x ''•-•'= 考点:导数的求导及运算★1、已知()22sin f x x x π=+-,则()'0f =★2、若()sin x f x e x =,则()'f x = ★3.)(x f =ax 3+3x 2+2 ,4)1(=-'f ,则a=( ) 319.316.313.310.D C B A ★★4.过抛物线y=x 2上的点M )41,21(的切线的倾斜角是()A.30°B.45°C.60°D.90° ★★5.如果曲线2932y x =+与32y x =-在0x x =处的切线互相垂直,则0x =三.导数在研究函数中的应用 1.函数单调性: ⑴函数单调性的判定方法:设函数)(x f y =在某个区间内可导,如果)('x f >0,则)(x f y =为增函数;如果)('x f <0,则)(x f y =为减函数.求单调性的步骤:① 确定函数)(x f y =的定义域(不可或缺,否则易致错);② 解不等式'()0'()0f x f x ><或;③ 确定并指出函数的单调区间(区间形式,不要写范围形式),区间之间用“,”★隔开,不能用“”连结。
高中数学选择性必修一
第一章空间向量与立体几何
1.2空间向量基本定理
知识点一:空间向量基本定理
如果三个向量a,b,c不共面,那么对任意一个空间向量p,存在唯一的有序实数组(x,y,z),使得p=x a+y b+z c,其中{a,b,c}叫做空间的一个基底,a,b,c都叫做基向量。
知识点二:空间向量的正交分解
如果空间的一个基底中的三个基向量两两垂直,且长度都为1,那么这个基底叫做单位正交基底,常用{i,j,k}表示。
由空间向量基本定理可知,对空间中的任意向量a,均可以分解为三个向量x i,y j,z k,使a=x i+y j+z k。
像这样,把一个空间向量分解为三个两两垂直的向量,叫做把空间向量进行正交分解。
如图,设i,j,k是空间中三个两两垂直的向量,
且表示它们的有向线段有公共起点O。
对于任意
一个空间向量p,存在唯一的有序实数组
(x,y,z),使得
p=x i+y j+z k
1。
第1讲命题及其关系、充分条件与必要条件1.了解“p,则q”形式的命题及其逆命题、否命题与逆否命题,会分析四种命题的相互关系.2.理解必要条件、充分条件与充要条件的意义.1.命题的概念在数学中用语言、符号或式子表达的,可以的陈述句叫做命题.其中的语句叫真命题,的语句叫假命题.2.四种命题及其关系(1)四种命题(2)四种命题间的关系(3)四种命题的真假关系①两个命题互为逆否命题,它们有的真假性;②两个命题互为逆命题或互为否命题,它们的真假性[思考探究]一个命题的“否命题”与“否定”是同一个命题吗?提示:不是.命题的否命题既否定命题的条件又否定命题的结论,而命题的否定仅是否定命题的结论.3.充分条件与必要条件(1)如果p⇒q,则p是q的,q是p的;(2)如果p⇒q,q⇒p,则p是q的.1.命题真假的判定对于命题真假的判定,关键是分清命题的条件与结论,只有将条件与结论分清,再结合所涉及的知识才能正确地判断命题的真假.2.四种命题的关系的应用掌握原命题和逆否命题,否命题和逆命题的等价性,当一个命题直接判断它的真假不易进行时,可以转而判断其逆否命题的真假.[特别警示]当一个命题有大前提而写出其他三种命题时,必须保留大前提,大前提不动.※ 分别写出下列命题的逆命题、否命题、逆否命题、命题的否定,并判断它们的真假: (1)若q ≤1,则方程x 2+2x +q =0有实根;(2)若x 、y 都是奇数,则x +y 是偶数;(3)若xy =0,则x =0或y =0;(4)若x 2+y 2=0,则x 、y 全为0.1.利用定义判断(1)若p ⇒q ,则p 是q 的充分条件; (2)若q ⇒p ,则p 是q 的必要条件;(3)若p ⇒q 且q ⇒p ,则p 是q 的充要条件;(4)若p ⇒q 且q p ,则p 是q 的充分不必要条件; (5)若p q 且q ⇒p ,则p 是q 的必要不充分条件;(6)若p q 且q p ,则p 是q 的既不充分也不必要条件. 2.利用集合判断记条件p 、q 对应的集合分别为A 、B ,则: 若A ⊆B ,则p 是q 的充分条件; 若A B ,则p 是q 的充分不必要条件; 若A ⊇B ,则p 是q 的必要条件; 若A B ,则p 是q 的必要不充分条件; 若A =B ,则p 是q 的充要条件;若A ⊈ B ,且A ⊉ B ,则p 是q 的既不充分也不必要条件.[特别警示] 从集合的角度理解,小范围可以推出大范围,大范围不能推出小范围. ※ 指出下列各组命题中,p 是q 的什么条件?(1) p :a +b =2,q :直线x +y =0与圆(x -a )2+(y -b )2=2相切; (2) p :|x |=x ,q :x 2+x ≥0;(3) 设l ,m 均为直线,α为平面,其中l ⊄α,m ⊂α,p :l ∥α,q :l ∥m ; (4) 设α∈)2,2(ππ-,β∈)2,2(ππ-,p :α<β,q :tan α<tan β.1.条件已知证明结论成立是充分性.结论已知推出条件成立是必要性;2.证明分为两个环节,一是充分性;二是必要性.证明时,不要认为它是推理过程的“双向书写”,而应该进行由条件到结论,由结论到条件的两次证明;3.证明时易出现必要性与充分性混淆的情形,这就要分清哪是条件,哪是结论.※求证:关于x的方程x2 +mx +1=0有两个负实根的充要条件是m≥2.若关于x的方程x2 +mx +1=0有两个正实根,求m的取值范围?第2讲简单的逻辑联结词、全称量词与存在量词1.简单的逻辑联结词:了解逻辑联结词“或”、“且”、“非”的含义.2.全称量词与存在量词(1)理解全称量词与存在量词的意义(2)能正确地对含有一个量词的命题进行否定.1.命题p∧p2.全称量词3.1.判断含有逻辑联结词的命题真假的关键是对逻辑联结词“或”、“且”、“非”含义的理解. 数学中的逻辑联结词“或”与日常生活中的“或”意义不同,日常生活中的“或”带有不能同时具备之意.数学中的逻辑联结词“且”与日常生活中的“且”意义基本一致,表示而且的意思. 数学中的逻辑联结词“非”与日常生活中的“非”意义基本一致,表示否定的意思.2.解决该类问题基本步骤为:(1)弄清构成它的命题p 、q 的真假; (2)弄清它的结构形式;(3)根据真值表判断构成新命题的真假.※ 已知命题p :∃x ∈R ,使tan x =1,命题q :x 2-3x +2<0的解集是{x |1<x <2},下列结论: ①命题“p ∧q ”是真命题; ②命题“p ∧q ”是假命题; ③命题“p ∨q ”是真命题; ④命题“p ∨q ”是假命题. 其中正确的是 ( )A. ②③B. ①②④C. ①③④D. ①②③④1.要判断一个全称命题是真命题,必须对限定的集合M 中的每一个元素x ,验证p (x )成立.2.要判断一个全称命题是假命题,只要能举出集合M 中的一个x =x 0,使p (x 0)不成立即可.3.要判断一个特称命题是真命题,只要在限定的集合M 中,至少能找到一个x =x 0,使p (x 0)成立即可,否则这一特称命题就是假命题.※ 判断下列命题是否是全称命题或特称命题,若是,用符号表示,并判断其真假. (1)有一个实数α,sin 2α+cos 2α≠1;(2)任何一条直线都存在斜率;(3)所有的实数a ,b ,方程ax +b =0有唯一解; (4)存在实数x ,使得2112=+-x x 。
人教版高中数学选修1-1知识点梳理重点题型(常考知识点)巩固练习全称量词与存在量词【学习目标】1.理解全称量词、存在量词和全称命题、特称命题的概念;2.能准确地使用全称量词和存在量词符号“∀” “∃ ”来表述相关的教学内容;3.掌握判断全称命题和特称命题的真假的基本原则和方法;4. 能正确地对含有一个量词的命题进行否定.【要点梳理】要点一、全称量词与全称命题全称量词全称量词:在指定范围内,表示整体或者全部的含义的量词称为全称量词.常见全称量词:“所有的”、“任意一个”、“每一个”、“一切”、“任给”等.通常用符号“∀”表示,读作“对任意”.全称命题全称命题:含有全称量词的命题,叫做全称命题.一般形式:“对M 中任意一个x ,有()p x 成立”,记作:x M ∀∈,()p x (其中M 为给定的集合,()p x 是关于x 的语句).要点诠释:有些全称命题在文字叙述上可能会省略了全称量词,例如:(1)“末位是0的整数,可以被5整除”;(2)“线段的垂直平分线上的点到这条线段两个端点的距离相等”;(3)“负数的平方是正数”;都是全称命题.要点二、存在量词与特称命题存在量词定义:表示个别或一部分的含义的量词称为存在量词.常见存在量词:“有一个”,“存在一个”,“至少有一个”,“有的”,“有些”等.通常用符号“∃ ”表示,读作“存在 ”.特称命题特称命题:含有存在量词的命题,叫做特称命题.一般形式:“存在M 中一个元素0x ,有0()p x 成立”,记作:0x M ∃∈,0()p x (其中M 为给定的集合,()p x 是关于x 的语句).要点诠释:(1)一个特称命题中也可以包含多个变量,例如:存在,R R αβ∈∈使sin()sin sin αβαβ+=+.(2)有些特称命题也可能省略了存在量词.(3)同一个全称命题或特称命题,可以有不同的表述要点三、 含有量词的命题的否定对含有一个量词的全称命题的否定全称命题p :x M ∀∈,()p xp 的否定p ⌝:0x M ∃∈,0()p x ⌝;从一般形式来看,全称命题“对M 中任意一个x ,有p (x )成立”,它的否定并不是简单地对结论部分p(x)进行否定,还需对全称量词进行否定,使之成为存在量词,也即“任意,()x M p x ∈”的否定为“0x M ∃∈,0()p x ⌝”.对含有一个量词的特称命题的否定特称命题p :0x M ∃∈,0()p xp 的否定p ⌝:x M ∀∈,()p x ⌝;从一般形式来看,特称命题“0x M ∃∈,0()p x ”,它的否定并不是简单地对结论部分0()p x 进行否定,还需对存在量词进行否定,使之成为全称量词,也即“0x M ∃∈,0()p x ”的否定为“x M ∀∈,()p x ⌝”.要点诠释:(1)全称命题的否定是特称命题,特称命题的否定是全称命题;(2)命题的否定与命题的否命题是不同的.(3)正面词:等于 、 大于 、小于、 是、 都是、 至少一个 、至多一个、 小于等于否定词:不等于、不大于、不小于、不是、不都是、 一个也没有、 至少两个 、 大于等于.要点四、全称命题和特称命题的真假判断①要判定全称命题“x M ∀∈,()p x ”是真命题,必须对集合M 中的每一个元素x ,证明()p x 成立;要判定全称命题“x M ∀∈,()p x ”是假命题,只需在集合M 中找到一个元素x 0,使得0()p x 不成立,即举一反例即可.②要判定特称命题“0x M ∃∈,0()p x ”是真命题,只需在集合M 中找到一个元素x 0,使得0()p x 成立即可;要判定特称命题“0x M ∃∈,0()p x ”是假命题,必须证明在集合M中,使 ()p x 成立得元素不存在.【典型例题】类型一:量词与全称命题、特称命题【全称量词与存在量词395491例1】例1. 判断下列命题是全称命题还是特称命题.(1)∀x ∈R ,x 2+1≥1;(2)所有素数都是奇数;(3)存在两个相交平面垂直于同一条直线;(4)有些整数只有两个正因数.【解析】(1)有全称量词“任意”,是全称命题;(2)有全称量词“所有”,是全称命题;(3)有存在量词“存在”,是特称命题;(4)有存在量词“有些”;是特称命题。
高中数学高考核心考点提醒选修1-1 第一章常用逻辑用语集合与常用逻辑用语集合概念一组对象的全体. ,x A x A∈∉。
元素特点:互异性、无序性、确定性。
关系子集x A x B A B∈⇒∈⇔⊆A∅⊆;,A B B C A C⊆⊆⇒⊆n个元素集合子集数2n 真子集00,,x A x B x B x A A B∈⇒∈∃∈∉⇔⊂相等,A B B A A B⊆⊆⇔=运算交集{}|,x xB x BA A∈∈=且()()()U U UC A B C A C B=()()()U U UC A B C A C B=()U UC C A A=并集{}|,x xB x BA A∈∈=或补集{}|Ux x UC A x A∈=∉且常用逻辑用语命题概念能够判断真假的语句。
四种命题原命题:若p,则q原命题与逆命题,否命题与逆否命题互逆;原命题与否命题、逆命题与逆否命题互否;原命题与逆否命题、否命题与逆命题互为逆否。
互为逆否的命题等价。
逆命题:若q,则p否命题:若p⌝,则q⌝逆否命题:若q⌝,则p⌝充要条件充分条件p q⇒,p是q的充分条件若命题p对应集合A,命题q对应集合B,则p q⇒等价于A B⊆,p q⇔等价于A B=。
必要条件p q⇒,q是p的必要条件充要条件p q⇔,,p q互为充要条件逻辑连接词或命题p q∨,,p q有一为真即为真,,p q均为假时才为假。
类比集合的并且命题p q∧,,p q均为真时才为真,,p q有一为假即为假。
类比集合的交非命题p⌝和p为一真一假两个互为对立的命题。
类比集合的补量词全称量词∀,含全称量词的命题叫全称命题,其否定为特称命题。
存在量词∃,含存在量词的命题叫特称命题,其否定为全称命题。
一、命题及其关系1.四种命题的相互关系:(既否条件又否结论)(先逆再否)(互换条件与结论)2.四种命题的真假性之间的关系:(1)两个命题互为逆否命题,它们有相同的真假性,即原命题与逆否命题等价,逆命题与否命题等价。
高中数学选修1-1知识点归纳高中数学选修1-1知识点总结第一章简单逻辑用语1.命题是指用语言、符号或式子表达的,可以判断真假的陈述句。
其中真命题是判断为真的语句,假命题是判断为假的语句。
2.“若p,则q”形式的命题中的p称为命题的条件,q称为命题的结论。
3.原命题:“若p,则q”逆命题:“若q,则p”否命题:“若非p,则非q”逆否命题:“若非q,则非p”。
4.四种命题的真假性之间的关系:(1)两个命题互为逆否命题,它们有相同的真假性;(2)两个命题为互逆命题或互否命题,它们的真假性没有关系。
5.若p推出q,则p是q的充分条件,q是p的必要条件。
若p等价于q,则p是q的充要条件。
6.逻辑联结词包括且(and)、或(or)和非(not),分别对应命题形式p∧q、p∨q和¬p。
7.全称量词用“∀”表示“所有的”、“任意一个”等,存在量词用“∃”表示“存在一个”、“至少有一个”等。
第二章圆锥曲线1.平面内与两个定点F1、F2的距离之和等于常数(大于F1F2)的点的轨迹称为椭圆。
即:|MF1|+|MF2|=2a,其中2a>F1F2.这两个定点称为椭圆的焦点,两焦点的距离称为椭圆的焦距。
2.椭圆的标准方程为x^2/a^2+y^2/b^2=1(a>b>0),或y^2/a^2+x^2/b^2=1(a>b>0)。
椭圆的范围为−a≤x≤a且−b≤y≤b,或−b≤x≤b且−a≤y≤a。
椭圆有四个顶点,分别为A1(-a,0)、A2(a,0)、B1(0,-b)和B2(0,b)。
椭圆的轴长分别为2a和2b,焦点分别为F1(-c,0)、F2(c,0)和F1(0,-c)、F2(0,c),其中c^2=a^2-b^2,焦距为2c。
椭圆具有关于x轴和y轴的对称性。
以上是本文的改写和修正,主要是对格式、标点和错别字等进行了修正,并对一些表述进行了调整,使得文章更加清晰明了。
frac{f\left(x_2\right)-f\left(x_1\right)}{x_2-x_1}$$2、函数f在点x处的导数:f'\left(x\right)=\lim_{\Delta x\to 0}\frac{f\left(x+\Deltax\right)-f\left(x\right)}{\Delta x}$$3、函数f在点x处可导的充分必要条件是:lim_{\Delta x\to 0}\frac{f\left(x+\Delta x\right)-f\left(x\right)-f'\left(x\right)\Delta x}{\Delta x}=0$$4、导数的几何意义是函数曲线在该点处的切线斜率。
高中数学选修 1-1 知识点总结第一章简单逻辑用语●命题:用语言、符号或式子表达的,可以判断真假的陈述句.真命题:判断为真的语句.假命题:判断为假的语句.●“若p ,则q ”形式的命题中的p 称为命题的条件,q 称为命题的结论.●原命题:“若p ,则q ”逆命题:“若q ,则p ”否命题:“若⌝p ,则⌝q ”逆否命题:“若⌝q ,则⌝p ”●四种命题的真假性之间的关系:(1)两个命题互为逆否命题,它们有相同的真假性;(2)两个命题为互逆命题或互否命题,它们的真假性没有关系.●若p ⇒q ,则p 是q 的充分条件,q 是p 的必要条件.若p ⇔q ,则p 是q 的充要条件(充分必要条件).利用集合间的包含关系:例如:若A ⊆B ,则 A 是 B 的充分条件或 B 是 A 的必要条件;若A=B,则 A 是 B 的充要条件;●逻辑联结词:⑴且:命题形式p ∧q ;⑵或:命题形式p ∨q ;⑶非:命题形式⌝p .●⑴全称量词——“所有的”、“任意一个”等,用“ ∀”表示.全称命题p:∀x ∈M , p(x) ;全称命题p 的否定⌝p:∃x ∈M , ⌝p(x) .⑵存在量词——“存在一个”、“至少有一个”等,用“ ∃”表示.特称命题p:∃x ∈M , p(x) ;特称命题p 的否定⌝p:∀x ∈M , ⌝p(x) .第二章圆锥曲线●平面内与两个定点F1,F2 的距离之和等于常数(大于F1F2)的点的轨迹称为椭圆.即:| MF1 | + | MF2 |= 2a,(2a >| F1 F2 |) .这两个定点称为椭圆的焦点,两焦点的距离称为椭圆的焦距.●椭圆的几何性质:x2 y2 y2 x2 ●平面内与两个定点F1,F2 的距离之差的绝对值等于常数(小于线.即:|| MF1 | - | MF2||= 2a,(2a <| F1F2|) .F1F2)的点的轨迹称为双曲这两个定点称为双曲线的焦点,两焦点的距离称为双曲线的焦距●双曲线的几何性质:x2 y2 y2 x2●实轴和虚轴等长的双曲线称为等轴双曲线.●平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹称为抛物线.定点F 称为抛物线的焦点,定直线l 称为抛物线的准线.p p●抛物线的几何性质:●过抛物线的焦点作垂直于对称轴且交抛物线于A 、B 两点的线段AB ,称为抛物线的“通径”,即AB = 2 p .● 焦半径公式: 若点P ( x , y ) 在抛物线 y 2 = 2 px ( p > 0) 上,焦点为 F ,则 P F = x + ;2若点P( x , y ) 在抛物线 x 2 = 2 py ( p > 0) 上,焦点为 F ,则 P F = y + ;2第三章 导数及其应用●函数 f( x ) 从 x 到 x的平均变化率: f ( x 2 ) - f ( x 1 ) 1 2x - x210 ( ) ( ( ))0⎣ ⎦ ●导数定义: f( x ) 在点 x 0 处的导数记作 y '= f '(x ) = lim f (x 0 + ∆x ) - f (x 0 ) .x = x 0∆x →0 ∆x ● 函数 y = f ( x ) 在点 x 处的导数的几何意义是曲线y = f x P x , f x 在点 处的切线的斜率.●常见函数的导数公式:① C ' = 0 ;② (x n )' = nx n -1 ;③ (sin x )' = cos x ;④ (cos x )' = -sin x ;⑤ (a x )' = a x ln a ;⑥ (e x )' = e x ;⑦ (log ax )'=1 x ln a;⑧ (ln x )' = 1x●导数运算法则:(1) (2)⎡⎣ f ( x ) ± g ( x )⎤⎦' = ⎡⎣ f ( x )⋅ g ( x )⎤⎦' = f '( x ) ± g '( x ) ;f '( x )g ( x ) + f ( x ) g '( x ) ;⎡ f ( x ) ⎤' =f '( x )g ( x ) - f ( x ) g '( x )(3) ⎢ g ( x ) ⎥ ⎡⎣ g ( x )⎤⎦2( g ( x ) ≠ 0) .● 在某个区间(a , b ) 内,若 f '( x ) > 0 ,则函数 y = 若 f '( x ) < 0 ,则函数 y = f ( x ) 在这个区间内单调递增;f ( x ) 在这个区间内单调递减.●求函数 y = f( x ) 的极值的方法是:解方程 f '( x ) = 0 .当 f '( x 0 ) = 0 时:(1) 如果在 x 0 附近的左侧 f '( x ) > 0 ,右侧 f '( x ) < 0 ,那么 f ( x 0 ) 是极大值; (2) 如果在 x 0 附近的左侧 f '( x ) < 0 ,右侧 f '( x ) > 0 ,那么 f ( x 0 ) 是极小值.●求函数 y = f( x ) 在[a , b ] 上的最大值与最小值的步骤是:(1) 求函数 y = (2) 将函数 y = f ( x ) 在(a , b ) 内的极值;f ( x ) 的各极值与端点处的函数值 f (a ) , f (b ) 比较,其中最大的一个是最大值,最小的一个是最小值.。
高中数学选修1-1知识点总结第一章常用逻辑用语1、命题:用语言、符号或式子表达的,可以判断真假的陈述句.真命题:判断为真的语句.假命题:判断为假的语句.2、“若p,则q”形式的命题中的p称为命题的条件,q称为命题的结论.3、原命题:“若p,则q”逆命题:“若q,则p”否命题:“若p⌝,则q⌝”逆否命题:“若q⌝,则p⌝”4、四种命题的真假性之间的关系:(1)两个命题互为逆否命题,它们有相同的真假性;(2)两个命题为互逆命题或互否命题,它们的真假性没有关系.⇒,则p是q的充分条件,q是p的必要条件.5、若p q⇔,则p是q的充要条件(充分必要条件).若p qA⊆,则A是B的充分条件或B是A 利用集合间的包含关系:例如:若B的必要条件;若A=B,则A是B的充要条件;6、逻辑联结词:⑴且(and) :命题形式p q∨;∧;⑵或(or):命题形式p q ⑶非(not):命题形式p⌝.7、⑴全称量词——“所有的”、“任意一个”等,用“∀”表示;全称命题p :)(,x p M x ∈∀; 全称命题p 的否定⌝p :)(,x p M x ⌝∈∃。
⑵存在量词——“存在一个”、“至少有一个”等,用“∃”表示; 特称命题p :)(,x p M x ∈∃; 特称命题p 的否定⌝p :)(,x p M x ⌝∈∀;第二章 圆锥曲线一、椭圆 ( )1、平面内与两个定点1F ,2F 的距离之和等于常数(大于12F F )的点的轨迹称为椭圆.即:|)|2(,2||||2121F F a a MF MF >=+。
这两个定点称为椭圆的焦点,两焦点的距离称为椭圆的焦距. 2、椭圆的几何性质: 焦点的位置焦点在x 轴上焦点在y 轴上图形标准方程 ()222210x y a b a b +=>> ()222210y x a b a b +=>> 范围a x a -≤≤且b y b -≤≤ b x b -≤≤且a y a -≤≤ 顶点()1,0a A -、()2,0a A ()10,b B -、()20,b B()10,a A -、()20,a A ()1,0b B -、()2,0b B轴长 长轴的长2a = 短轴的长2b =焦点()1,0F c -、()2,0F c()10,F c -、()20,F c焦距 ()222122F F c c a b ==-对称性 关于x 轴、y 轴、原点对称离心率 ()22101c b e e a a==-<<3、e 越大,椭圆越扁;e 越小,椭圆越圆。
二、双曲线 ( )1、平面内与两个定点1F ,2F 的距离之差的绝对值等于常数(小于12F F )的点的轨迹称为双曲线.即:|)|2(,2||||||2121F F a a MF MF <=-。
这两个定点称为双曲线的焦点,两焦点的距离称为双曲线的焦距. 4、双曲线的几何性质: 焦点的位置焦点在x 轴上焦点在y 轴上图形标准方程 ()222210,0x y a b a b-=>> ()222210,0y x a b a b-=>> 范围 x a ≤-或x a ≥,y R ∈ y a ≤-或y a ≥,x R ∈顶点 ()1,0a A -、()2,0a A()10,a A -、()20,a A轴长 实轴的长2a = 虚轴的长2b =焦点 ()1,0F c -、()2,0F c()10,F c -、()20,F c焦距 ()222122F F c c a b ==+对称性关于x 轴、y 轴对称,关于原点中心对称离心率 ()2211c b e e a a==+>渐近线方程5、实轴和虚轴等长的双曲线称为等轴双曲线(a=b).6、等轴双曲线的离心率三、抛物线1、平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹称为抛物线.定点F 称为抛物线的焦点,定直线l 称为抛物线的准线. 7、抛物线的几何性质: 标准方程22y px =()0p >22y px =-()0p >22x py =()0p >22x py =-()0p >图形顶点()0,0对称轴x 轴y 轴焦点 ,02p F ⎛⎫⎪⎝⎭,02p F ⎛⎫- ⎪⎝⎭0,2p F ⎛⎫ ⎪⎝⎭0,2p F ⎛⎫- ⎪⎝⎭准线方程 2px =-2p x =2p y =-2p y =离心率1e =范围0x ≥0x ≤0y ≥ 0y ≤8、过抛物线的焦点作垂直于对称轴且交抛物线于A 、B 两点的线段AB ,称为抛物线的“通径”,即2p AB =. 9、焦半径公式:若点()00,x y P 在抛物线()220y px p =>上,焦点为F ,则02p F x P =+; 若点()00,x y P 在抛物线()220x py p =>上,焦点为F ,则02p F y P =+;第三章 导数及其应用1、函数()f x 从1x 到2x 的平均变化率:2、导数定义:()f x 在点0x 处的导数记作xx f x x f x f y x x x ∆-∆+='='→∆=)()(lim )(00000;. 3、函数()y f x =在点0x 处的导数的几何意义是曲线()y f x =在点()()00,x f x P 处的切线的斜率. 4、常见函数的导数公式: ①'C 0=; ②1')(-=n n nx x ; ③x x cos )(sin '=; ④x x sin )(cos '-=; ⑤a a a x x ln )('=; ⑥x x e e =')(; ⑦ax x a ln 1)(log '=; ⑧xx 1)(ln '=5、导数运算法则:()1 ()()()()f x g x f x g x '''±=±⎡⎤⎣⎦;()2 ()()()()()()f x g x f x g x f x g x '''⋅=+⎡⎤⎣⎦;()3()()()()()()()()()20f x f x g x f x g x g x g x g x '⎡⎤''-=≠⎢⎥⎡⎤⎣⎦⎣⎦.6、在某个区间(),a b 内,若()0f x '>,则函数()y f x =在这个区间内单调递增;若()0f x '<,则函数()y f x =在这个区间内单调递减.7、求函数()y f x =的极值的方法是:解方程()0f x '=.当()00f x '=时:()1如果在0x 附近的左侧()0f x '>,右侧()0f x '<,那么()0f x 是极大值(左增右减);()2如果在0x 附近的左侧()0f x '<,右侧()0f x '>,那么()0f x 是极小值(左减右增).8、① 注意极大值、极小值、极大值点和极小值点的区别;(极大值是一个函数值,极大值点是一个点,包括横坐标和纵坐标)② 极值反映了函数在某一点附近的大小情况,刻画的是函数的局部性质。
③ 导数为0的点不一定是函数的极值点(例如:),也就是说:函数在某一点的导数为0是函数在这一点取极值的必要条件而不是充分条件。
④ 同一个函数的极大值不一定比极小值大。
(但是函数的最大值一定大于最小值)9、求函数()y f x =在[],a b 上的最大值与最小值的步骤是:()1求函数()y f x =在(),a b 内的极值;()2将函数()y f x =的各极值与端点处的函数值()f a ,()f b 比较,其中最大的一个是最大值,最小的一个是最小值. 9、导数在实际问题中的应用:最优化问题。
考试大纲1、常用逻辑用语(1)命题及其关系①理解命题的概念②了解“若p,则q”形式的命题及其逆命题、否命题与逆否命题,会分析四种命题的相互关系。
③理解必要条件、充分条件与充要条件的意义。
(2)简单的逻辑连接词了解逻辑连接词“或”、“且”、“非”的含义。
(3)全称量词与存在量词。
①理解全程量词与存在量词的意义。
②能正确地对含有一个量词的命题进行否定。
2、圆锥曲线与方程①了解圆锥曲线的实际背景,了解圆锥曲线在刻画现实世界和解决实际问题中的作用。
②掌握椭圆的定义、集合图形、标准方程及简单几何性质。
③了解双曲线、抛物线的定义、几何图形和标准方程,知道他们的简单几何性质。
④理解数形结合的思想。
⑤了解圆锥曲线的简单应用。
3、导数及其应用(1)导数概念及其几何意义①了解导数概念的实际背景。
②理解导数的几何意义(2)导数的运算①能根据导数的定义求函数 (C为常数),,,的导数。
②能利用基本初等函数的导数公式和导数的四则运算法则求简单函数的导数。
(3)导数在研究函数中的应用①了解函数单调性和导数的关系,能利用导数研究函数的单调性,会求导数的单调区间(其中多项式函数一般不超过三次)。
②了解函数在某点取得极值的必要条件和充分条件,会用导数求函数的极大值、极小值(其中多项式函数一般不超过三次);会求闭区间上函数的最大值、最小值(其中多项式函数一般不超过三次)。
(4)生活中的优化问题会利用导数解决某些实际问题。