土石坝介绍
- 格式:docx
- 大小:1.30 MB
- 文档页数:39
土石坝知识点总结土石坝是一种利用土石材料修筑而成的水利工程建筑,用于储水、防洪和发电等各种目的。
历史上,土石坝是最早出现的一种水坝形式,它将土石材料紧密地堆积在一起,以形成一个可容水的大坝。
土石坝的结构简单,施工方便,因此在古代就被广泛使用。
而如今,土石坝依然是世界各地重要的水利设施之一。
土石坝的类型土石坝有多种类型,根据其结构和材料可以分为土石坝、重力坝、砂石坝、砼面板坝等。
其中,土石坝是一种用土石料垒积而成的坝体,通常是采用采用天然土石料修筑而成的坝体。
而重力坝则是靠坝体自身的重力来抵抗水压力和地基稳定力的作用。
砂石坝由砂石混凝土组成,砂石拦河坝体可以用于固体废物填埋库的防渗线坝体、陡岸坝体等。
而砼面板坝则是由混凝土面板构成,它采用筏板基础的坝体、抛筑或摊铺混凝土表面的坝体、在碾压式混凝土底板上施工板体的坝体等。
土石坝的设计和施工土石坝的设计和施工需要经过严格的规划和实施。
首先,工程师需要根据地质条件和水文特征等因素,选择合适的坝址和种类,然后进行地质勘察和水文勘测,确定坝址和参数。
接下来,设计人员需要考虑到土石坝的主要结构和功能,包括坝顶、坝体和坝基等要素,确定坝顶宽度、坝体高度、坝基宽度等参数。
最后,设计人员需要进行坝体开挖和土石料回填等工程实施。
土石坝的特点和优势土石坝相比于其他类型的水坝有着独特的特点和优势。
首先,土石坝有着灵活的建筑方式和廉价的建筑成本,能够利用周边丰富的土石料资源,节约了大量的成本和时间。
其次,土石坝的安全性和稳定性较高,可以经受较大规模的自然灾害,如地震和山崩等。
再者,土石坝的环境适应性强,能够适应各种地质和水文条件,不受周边环境的影响。
最后,土石坝的使用寿命长,能够满足长期的水利需求和发电需求。
土石坝的养护和管理土石坝的养护和管理是保证其安全性和稳定性的关键。
首先,需要加强对土石坝坝址地质环境的监测和评估,定期对坝址地质环境、地震状况、水文特性等进行检测和分析。
概述土石坝水工建筑物种类繁多,但按其作用可以分为挡水建筑物,泄水建筑物,输水建筑物,取(进)水建筑物,整治建筑物,专门为灌溉、发电、过坝需要而兴建的建筑物等六类。
但是,应当指出的是,有些水工建筑物的功能并非单一,难以严格区分其类型。
如各种溢流坝既是挡水建筑物,又是泄水建筑物;以下就介绍一下土石坝。
1、土石坝的工作特点土石坝是土坝与堆石坝的总称。
土石坝历史悠久,在国内外广泛采用。
其优点是:①就地取材;②结构简单,便于维修和加高、扩建;③对地质条件要求较低,能适应地基变形;④施工技术较简单,工序少,便于组织机械化快速施工;⑤有较丰富的修建经验。
其主要缺点在于:①坝身不能溢流,需另设溢洪道;②施工导流不如混凝土坝方便;③粘性土料的填筑受气候条件的影响大等。
2、土石坝设计、施工土石坝坝体主要由散粒材料构成。
为使其安全有效地发挥作用,在设计、施工和运行中必须满足以下各项要求:(1)不允许水流漫顶由于规划设计时对洪水估计偏低,致使溢洪道行洪断面偏小;或因坝顶高程不足,或水库控制运用不当等原因,都可导致坝顶漫水直至溃坝的严重事故。
(2)不发生危害性渗透变形水库蓄水后不仅在坝身和坝基内产生渗流,而且库水还会绕过坝端经两岸渗向下游,形成绕坝渗流。
渗透水流不但损失水量,更重要的是在渗流逸出处可能将土料中的细颗粒带走或局部主体被冲动,导致坝身、坝基产生危害性的渗透变形,甚至引起溃坝。
(3)坝身和坝基应稳定可靠由于设计不当或施工质量不良,在外力作用下,可能造成坝坡或连同坝基的坍滑破坏。
国内外土石坝破坏事故中约有1/4是由滑坡造成的。
(4)避免产生有害的裂缝由于受坝址地形、筑坝材料性质。
坝基不均匀沉陷、施工质量以及地震荷载等因素的影响,坝身可能产生不均匀沉陷,一旦形成大的裂缝,就会危及坝身安全。
(5)能抵抗其他自然现象的破坏作用库区风浪在水位变化范围内可能淘刷上游坝被;雨水沿坡面流动可能冲毁坝坡;冰冻可能破坏坝坡;坝身粘性土料,冬季由干冻胀可能产生裂缝,夏季由于日晒又会龟裂,等等。
第一节概述土石坝是指由土料、石料或土石混合料,采用抛填、碾压等方法堆筑成的挡水坝。
堤坊是沿河岸构筑的护岸建筑物,大多数采用土石坝的结构形式,在许多方面土石坝与堤坊都存在共性。
由于结构简单、施工方便、可就地取材和投资低等特点,因而土石坝是应用最为广泛和发展最快的一种坝型,也是历史最为悠久的坝型。
一、土石坝的工作原理土石坝是土石材料的堆筑物,主要利用土石颗粒之间的摩擦、粘聚特性和密实性来维持自身的稳定、抵御水压力和防止渗透破坏。
一般来说,土石坝为维持自身稳定需要较大的断面尺寸,因而有足够的能力抵御水压力。
因此,土石坝工程主要面对两个问题:确保自身稳定和防止渗透破坏。
其中自身稳定包括滑坡、沉陷和冲刷问题。
1、滑坡由于土石材料为松散体,抗剪强度低,主要依靠土石颗粒之间的摩擦和粘聚力来维持稳定,没有支撑的边坡是填筑体稳定问题的关键。
所以,土石坝失稳的型式,主要是坝坡的滑动或坝坡连同部分坝基一起滑动,影响坝体的正常工作,甚至导致工程失事。
为确保土石填筑体的稳定,土石坝断面一般设计成梯形或复合梯形,而且边坡较缓,通常1:1.5〜1:3.5 。
此外,渗流也是影响坝体稳定的重要因素。
2、渗流水库蓄水后,土石坝迎水面与背水面之间形成一定的水位差,在坝体内形成由上游向下游的渗流。
渗流不仅使水库损失水量,还会使背水面的土体颗粒流失、变形,引起管涌和流土等渗透破坏。
在坝体与坝基、两岸以及其他非土质建筑物的结合面,还会产生集中渗流现象。
防止渗流破坏的原则是“前堵后排” ,在坝前(迎水面)采取防渗、防漏的工程措施,减少渗流量,同时要尽量排除渗入坝体的水量,降低渗流对坝体的不利影响。
3、沉陷由于土石颗粒之间存在较大的孔隙,在外荷载的作用下,易产生移动、错位,细颗粒填充部分孔隙,使坝体产生沉降,也使土体逐步密实、固结。
如果土石坝颗粒级配不合理,沉降变形、不均匀会产生裂缝,破坏坝体结构,也会降低坝顶高程,使坝的高度不足。
土石坝的沉陷与坝体、坝基的土石材料有关,因此,土石坝设计需要考虑土石材料选用、坝基处理、填筑工艺等因素,筑坝时应有适量的超填。
土石坝的特点和分类土石坝是指由当地土料、石料或混合料,经过抛填、碾压等方法堆筑成的挡水坝。
当坝体材料以土和砂砾石为主时,称土坝;以石渣、卵石、爆破石料为主时,称堆石坝;当两类材料均占相当比例时,称土石混合坝。
由于筑坝材料主要来自坝区,因而也称当地材料坝。
土石坝历史悠久,是世界坝工建设中应用最为广泛和发展最快的一种坝型。
土石坝得以广泛应用和发展的主要原因包括以下几个方面:1、可以就地取材,节约大量水泥、木材和钢材,减少工地的外线运输量。
由于土石坝设计和施工技术的发展,放宽了对筑坝材料的要求,几乎任何土石料均可筑坝2、能适应各种不同的地形、地质和气候条件。
任何不良的坝址地基,经处理后均可筑坝。
特别是在气候恶劣、工程地质条件复杂和高烈度地震区的情况下,土石坝实际上是唯一可取的坝型3、大功率、多功能、高效率施工机械的发展提高了土石坝的施工质量,加快了进度,降低了造价,促进了高土石坝建设的发展4、岩土力学理论、试验手段和计算技术的发展提高了大坝分析计算的水平,加快了设计进度,进一步保障了大坝设计的安全可靠性5、高边坡、地下工程结构、高速水流消能防冲等土石坝配套工程设计和施工技术的综合发展,对加速土石坝的建设和推广也起了重要的促进作用。
世界上已建的高土石坝如苏联的努克列水库大坝,坝高达317m。
塔吉克斯坦的罗贡水库大坝,坝高达335m。
据统计,世界上在20世纪80年代末期兴建的百米以上的高坝中,土石坝的比例已达到75%以上。
由于多方面的原因,我国高土石坝的发展比较缓慢,我国坝高超过100m的土石坝有石头河水库大坝,坝高105m;碧口水库大坝,坝高101m;鲁布革水库大坝,坝高101m;小浪底水库大坝,坝高154m等。
随着我国能源和水利建设事业的发展,大型水利水电工程将日益增多,而水力资源丰富的黄河上游、长江中上游干支流、红水河等建坝地点,大都处于交通不便、地质条件复杂的地区,自然条件相对恶劣,施工困难,修建土石坝具有更强的适用性。
土石坝介绍第一节概述土石坝是指由当地土料、石料或混合料,经过抛填、辗压方法堆筑成的挡水坝。
土坝当坝体材料以土和砂砾为主时,称土坝;堆石坝以石渣、卵石、爆破石料为主时,称堆石坝;土石混合坝当两类材料均占相当比例时,称土石混合坝。
由于筑坝材料主要来自坝区,因而也称当地材料坝。
土石坝得以广泛应用和发展的主要原因是:(1)可以就地取材,节约大量水泥、木材和钢材,几乎任何土石料均可筑坝。
(2)能适应各种不同的地形、地质和气候条件。
(3)大功率、多功能、高效率施工机械的发展,提高了土石坝的施工质量,加快了进度,降低了造价,促进了高土石坝建设的发展。
(4)岩土力学理论、试验手段和计算技术的发展,提高了大坝分析计算的水平,加快了设计进度,进一步保障了大坝设计的安全可靠性。
(5)高边坡、地下工程结构、高速水流消能防冲等设计和施工技术的综合发展,对加速土石坝的建设和推广也起了重要的促进作用。
一、土石坝的特点和设计要求(1)稳定方面。
土石坝不会产生水平整体滑动。
土石坝失稳的形式,主要是坝坡的滑动或坝坡连同部分坝基一起滑动。
(2)渗流方面。
土石坝挡水后,在坝体内形成由上游向下游的渗流。
渗流不仅使水库损失水量,还易引起管涌、流土等渗透变形。
坝体内渗流的水面线叫做浸润线。
浸润线以下的土料承受着渗透动水压力,并使土的内磨擦角和粘结力减小,对坝坡稳定不利。
(3)冲刷方面。
土石坝为散粒体结构,抗冲能力很低;工程措施:①在土石坝上下游坝坡设置护坡,坝顶及下游坝面布置排水措施,以免风浪、雨水及气温变化带来有害影响;②坝顶在最高库水位以上要留一定的超高,以防止洪水漫过坝顶造成事故;③布置泄水建筑物时,注意进出口离坝坡要有一定距离,以免泄水时对坝坡产生淘刷。
(4)沉陷方面。
由于土石料存在较大的孔隙,且易产生相对的移动,在自重及水压力作用下,会有较大的沉陷。
为防止坝顶低于设计高程和产生裂缝,施工时应严格控制碾压标准并预留沉陷量,使竣工时坝顶高程高于设计高程。
可按坝高的(1~2)%预留沉陷值。
二、土石坝的类型(一)按坝高分类土石坝按坝高可分为:高度在30m以下的为低坝,高度在30~70m之间的为中坝,高度超过70m的为高坝。
土石坝的坝高均从清基后的地面算起。
(二)按施工方法分类(1)碾压式土石坝。
(2)水力冲填坝。
(3)水坠坝。
(4)水中填土坝或水中倒土坝。
(5)土中灌水坝。
(6)定向爆破堆石坝。
(三)按坝体材料的组合和防渗体的相对位置分类1.土坝(1)均质坝:(2)粘土心墙坝和粘土斜墙坝:(3)人工材料心墙和斜墙坝:(4)多种土质坝:2.土石混合坝上述多种土质坝中,粗粒土改用砂砾石料筑成的坝,或用土石混合在一起的材料筑成的坝,称为土石混合坝。
3.堆石坝除防渗体外,坝体的绝大部分或全部由石料堆筑起来的称为堆石坝。
按防渗体的布置,同样也有斜墙坝、心墙坝两种。
钢筋混凝土刚性斜墙堆石坝也称为钢筋混凝土面板堆石坝。
有防渗体的土石坝,为避免因渗透系数和材料级配的突变而引起渗透变形,都要向上、下游方向分别设置2~3层逐层加粗的材料作为过渡层或反滤层。
第二节土石坝的基本剖面土石坝的基本剖面根据坝高和坝的等级、坝型和筑坝材料特性、坝基情况以及施工运行条件等参照现有工程的实践经验初步拟定,然后通过渗流和稳定分析检验,最终确定合理的剖面形状,所以土石坝剖面的基本尺寸主要包括:坝顶高程、坝顶宽、上下游坡度、防渗结构、排水设备的形式及基本尺寸等。
一、坝顶高程坝顶高程根据正常运用和非常运用的静水位加相应的超高Y予以确定。
选以下三项中的最大值为坝顶高程。
=∇∇+Y顶静水计算情况:设计洪水位+正常运用情况的坝顶超高;校核洪水位+非常运用情况的坝顶超高;正常高水位+非常运用情况的坝顶超高+地震安全加高坝顶设防浪墙时,超高值Y是指静水位与墙顶的高差。
计算的坝顶高程是指坝体沉降稳定后的数值。
土石坝的类型示意图Y 按下式计算。
Y=R+e+Aβcos 220mgH DKv e =βcos 220mgH DKv e = (3-2)式中R ——波浪在坝坡上的最大爬高,m;e ——最大风壅水面高度,即风壅水面超出原库水位高度的最大值,m; H m ——坝前水域平均水深,m;K ——综合摩阻系数,其值变化在(1.5~5.0)610-⨯之间,计算时一般取K=3.6610-⨯; β——风向与水域中线(或坝轴线的法线)的夹角,度;v 0、D ——计算风速和风区长度,见第二章;A ——安全加高,m;根据坝的等级和运用情况,波浪爬高:波浪沿建筑物坡面爬升的垂直高度(由风壅水面算起)称为波浪爬高,波浪爬高R 的计算,土石坝设计规范推荐采用蒲田试验站公式,其具体计算方法如下: (1)计算波浪的平均爬高mR :当坝坡系数m=1.5~5.0时,平均爬高mR 计算公式:=m R mm wL h mK K 21+∆式中 ∆K ——斜坡的糙率渗透性系数wK ——经验系数,由计算风速v0(m/s)、水域平均水深mH (m )和重力加速度g 组成的无维量mgH v 0;m —单坡的坡度系数,若单坡坡角为α,则m=ctg α;mh 、mL ——平均波高和波长,m;薄田试验站的波高和波长计算: 1)平均波高hm 用式计算:2)平均波长Lm 由平均周期Tm 和平均水深Hm 按下述理论公式计算: 平均周期Tm=4.4385.0mh当 m m LH ≥0.5时,称为深水波,其波长与周期有关:2256.12m m m T gT L ≈=π当mm L H <0.5时,称为浅水波,其波长与周期和水深有关:m mm m L H thgT L ππ222=(2)计算设计爬高值R :不同累计频率的爬高pR 与mR 的比,可根据爬高统计分布表确定。
当风向与坝轴的法线成一夹角β时,波浪爬高应乘以折减系数βK ,其值由表确定。
二、坝顶宽度坝顶宽度应根据运行、施工、构造、交通和人防等方面的要求综合研究后确定。
坝顶宽度应按照交通规定选定。
当无特殊要求时,高坝的坝顶最小宽度可选用10~15m ,中低坝可选用5~10m 。
坝顶宽度必须考虑心墙或斜墙顶部及反滤层布置的需要。
在寒冷地区,坝顶还须有足够的厚度以保护粘性土料防渗体免受冻害。
三、坝坡(1)上游坝坡常比下游坝坡为缓,但堆石坝上、下游坝坡坡率的差别要比砂土料为小。
(2)土质防渗体斜墙坝上游坝坡的稳定受斜墙土料特性的控制,斜墙的上游坝坡一较心墙坝为缓。
而心墙坝,特别是厚心墙坝的下游坝坡,因其稳定性受心墙土料特性的影响,一般较斜墙坝为缓。
(3)粘性土料的稳定坝坡为一曲面,上部坡陡,下部坡缓,所以用粘性土料做成的坝坡,常沿高度分成数段,每段10~30m ,从上而下逐渐放缓,相邻坡率差值取0 .25或0.5。
砂土和堆石的稳定坝坡为一平面,可采用均一坡率。
由于地震荷载一般沿坝高呈非均匀分布,所以,砂土和石料有时也做成变坡形式。
(4)由粉土、砂、轻壤土修建的均质坝,透水性较大,为了保持渗流稳定,一般要求适当放缓下游坝坡。
(5)当坝基或坝体土料沿坝轴线分布不一致时,应分段采用不同坡率,在各段间设过渡区,使坝坡缓慢变化。
土石坝坝坡确定的步骤是:根据经验用类比法初步拟定,再经过核算、修改以及技术经济比较后确定。
马道碾压式土石坝上下游坝坡常沿高程每隔10~30m设置一条马道,其宽度不小于1.5~2.0m,用以拦截雨水,防止冲刷坝面,同时也兼作交通、检修和观测之用,还有利于坝坡稳定。
马道一般设在坡度变化处。
总结:本节重点讲述土石坝的特点,土石坝的类型,坝顶高程、坝顶宽度、坝坡的设计。
复习题1.土石坝的特点是什么?试与重力坝作比较?2.土石坝的主要类型有哪些?各有什么优缺点?3.确定土石坝坝顶高程和重力坝坝顶高程的不同点是什么?4.土石坝的上、下游坝坡通常采用值的范围如何?为什么上游坝坡比下游坝坡平缓?授课题目:第三章土石坝第三节土石坝的渗流分析教学目的:掌握渗流分析的目的和方法,渗流分析的水力学法,渗流分析的手绘流网法,土石坝的渗透变形及其防止措施。
教学重点:渗流分析的目的和方法,土石坝的渗透变形及其防止措施。
教学难点:渗流分析的水力学法,渗流分析的手绘流网法。
教学过程:组织教学:师生问好,清查人数。
复习提问:什么是土石坝?它的工作特点与重力坝的不同有哪些?导入新课:渗流分析的目的是(1)确定坝体浸润线和下游渗流出逸点的位置。
(2)确定坝体与坝基的渗流量,以便估计水库渗漏损失和确定坝体排水设备的尺寸。
(3)确定坝坡出逸段和下游地基表面的出逸坡降, ,以判断该处的渗透稳定性。
(4)确定库水位降落时上游坝壳内自由水面的位置,估算由此产生的孔隙水压力,供上游坝坡稳定分析之用。
讲授新课:第三节土石坝的渗流分析一、渗流分析的目的和方法(一)渗流分析的目的(1)确定坝体浸润线和下游渗流出逸点的位置。
(2)确定坝体与坝基的渗流量,以便估计水库渗漏损失和确定坝体排水设备的尺寸。
(3)确定坝坡出逸段和下游地基表面的出逸坡降, ,以判断该处的渗透稳定性。
(4)确定库水位降落时上游坝壳内自由水面的位置,估算由此产生的孔隙水压力,供上游坝坡稳定分析之用。
(二)渗流分析的方法解析法分为流体力学法和水力学法。
本节主要介绍水力学法。
手绘流网法是一种简单易行的方法,能够求渗流场内任一点渗流要素,并具有一定的精度,但在渗流场内具有不同土质,且其渗透系数差别较大的情况下较难应用。
二、渗流分析的水力学法计算情况:上游正常蓄水位与下游相应的最低水位; 上游设计洪水位与下游相应的最高水位; 上游校核洪水位与下游相应的最高水位; ④库水位降落时上游坝坡稳定最不利的情况。
(一)渗流基本公式对于不透水地基上矩形土体内的渗流,如图所示。
渗流计算图q =LH H K 2)(2221-xy H K q 2)(221-=即 x KqH y 221-=由式可知,浸润线是一个二次抛物线。
式当渗流量q 已知时,即可绘制浸润线,若边界条件已知,即可计算单宽渗流量。
(二)不透水地基上均质土石坝的渗流计算 (1)土石坝下游有水而无排水设备的情况。
当下游无水时,以上各式中的H 2=O;当下游有贴坡排水时,因贴坡式排水基本上不影响坝体浸润线的位置,所以计算方法与下游不设排水时相同。
以下游有水而无排水设备的情况为例。
计算时将土坝剖面分为上游楔形体,中间段和下游楔形体三段,如图所示。
等效矩形宽度:H L ∆=∆λ,λ值由下式计算:1211+=m m λ式中 1m ——上游坝面的边坡系数,如为变坡则取平均值; 1H ——上游水深。
计算对象:坝身段(AMB”B ')及下游楔形体段(B’B”N)。
坝身段的渗流量为:L a H H Kq '+-=2)(202211 (4-15)式中a ——浸润线出逸点在下游水面以上高度;K ——坝身土壤渗透系数; H1——上游水深; H2——下游水深; L '——见图下游楔形体的渗流量:可分下游水位以上及以下两部分计算。