菱形的判定练习题演示教学
- 格式:doc
- 大小:96.50 KB
- 文档页数:5
菱形的性质及判定.教师版知识点 A 要求 B 要求C要求菱形 会识别菱形掌握菱形的概念、性质和判定,会用菱形的性质及判定解决简单问题会用菱形的知识解决有关问题1.菱形的定义:有一组邻边相等的平行四边形叫做菱形.2.菱形的性质菱形是特殊的平行四边形,它具有平行四边形的所有性质,•还具有自己独特的性质:① 边的性质:对边平行且四边相等. ② 角的性质:邻角互补,对角相等.③ 对角线性质:对角线互相垂直平分且每条对角线平分一组对角. ④ 对称性:菱形是中心对称图形,也是轴对称图形.菱形的面积等于底乘以高,等于对角线乘积的一半.点评:其实只要四边形的对角线互相垂直,其面积就等于对角线乘积的一半. 3.菱形的判定判定①:一组邻边相等的平行四边形是菱形. 判定②:对角线互相垂直的平行四边形是菱形. 判定③:四边相等的四边形是菱形.4.三角形的中位线中位线:连结三角形两边的中点所得的线段叫做三角形的中位线.也可以过三角形一边的中点作平行于三角形另外一边交于第三边所得的线段也是中位线.以上是中位线的两种作法,第一种可以直接用中位线的性质,第二种需要说明理由为什么是中位线,再用中位线的性质.知识点睛中考要求菱形的性质 及判定中点中点 中点平行定理:三角形的中位线平行第三边且长度等于第三边的一半.重点是菱形的性质及判定定理。
菱形是在平行四边形的前提下定义的,首先她是平行四边形,但它是特殊的平行四边形,特殊之处就是“有一组邻边相等”,因而就增加了一些特殊的性质和不同于平行四边形的判定方法。
菱形的这些性质和判定定理即是平行四边形性质与判定的延续,又是以后要学习的正方形的基础。
难点是菱形性质的灵活应用。
由于菱形是特殊的平行四边形,所以它不但具有平行四边形的性质,同时还具有自己独特的性质。
如果得到一个平行四边形是菱形,就可以得到许多关于边、角、对角线的条件,在实际解题中,应该应用哪些条件,怎样应用这些条件,常常让许多学生手足无措,教师在教学过程 中应给予足够重视。
菱形的判定专项练习30 题(有答案)1.如图,梯形ABCD 中, AD ∥ BC,BA=AD=DC=BC ,点 E 为 BC 的中点.(1)求证:四边形 ABED 是菱形;(2)过 A 点作 AF ⊥ BC 于点 F,若 BD=4cm ,求 AF 的长.2.如图,四边形 ABCD 中,对角线 AC、BD 相交于点O,且 AC ⊥ BD .点 M ,N 分别在 BD 、AC 上,且 AO=ON=NC ,BM=MO=OD .求证: BC=2DN .3.如图,在△ ABC 中, AB=AC ,D ,E, F 分别是 BC ,AB , AC 的中点.(1)求证:四边形 AEDF 是菱形;(2)若 AB=12cm ,求菱形 AEDF 的周长.4.如图,在 ?ABCD 中, EF∥ BD ,分别交 BC , CD 于点 P, Q,交 AB ,AD 的延长线于点 E, F.已知 BE=BP .求证:( 1)∠ E= ∠F;( 2) ?ABCD 是菱形.5.如图,在△ ABC 中, D 是 BC 的中点, E 是 AD 的中点,过点 A 作 AF ∥ BC , AF 与 CE 的延长线相交于点 F,连接BF.( 1)求证: AF=DC ;( 2)若∠ BAC=90 °,求证:四边形AFBD 是菱形.6.已知平行四边形ABCD 中,对角线BD 平分∠ ABC ,求证:四边形ABCD 是菱形.7.如图,在一个含 30°的三角板 ABC 中,将三角板沿着 AB 所在直线翻转 180°得到△ ABF ,再将三角板绕点 C 顺时针方向旋转 60°得到△ DEC ,点 F 在 AC 上,连接 AE .(1)求证:四边形 ADCE 是菱形.(2)连接 BF 并延长交 AE 于 G,连接 CG.请问:四边形 ABCG 是什么特殊平行四边形?为什么?8.如图,已知四边形ABCD 是平行四边形,DE ⊥ AB , DF ⊥BC ,垂足分别是为E F,并且 DE=DF .求证:四边形 ABCD 是菱形.9.如图,在△ ABC 中, DE∥ BC,分别交 AB ,AC 于点 D , E,以 AD , AE 为边作 ?ADFE 交 BC 于点 G, H,且EH=EC .求证:( 1)∠ B= ∠ C;(2) ?ADFE 是菱形.10.如图,在△ ABC 中,∠ACB=90 °, CD 是 AB 边上的高,∠BAC 的平分线AE 交 CD 于 F, EG⊥ AB 于 G.(1)求证:△ AEG ≌ △ AEC ;(2)△ CEF 是否为等腰三角形,请证明你的结论;(3)四边形 GECF 是否为菱形,请证明你的结论.11.如图,在△ ABC 中, AB=AC ,点 D 、E、 F 分别是△ABC 三边的中点.求证:四边形ADEF 是菱形.12.如图,在四边形 ABCD 中, AB=CD , M 、 N、 E、 F 分别为 AD 、 BC 、BD 、 AC 的中点,求证:四边形 MENF 为菱形.13.已知:如图,在梯形 ABCD 中, AD ∥ BC, AB=AD ,∠BAD 的平分线 AE 交 BC 于点 E,连接 DE .求证:四边形ABED 是菱形.14.如图,在△ ABC 中, AB=AC , M 、 O、 N 分别是 AB 、 BC 、 CA 的中点.求证:四边形AMON 是菱形.15.如图:在△ ABC 中,∠BAC=90 °, AD ⊥ BC 于 D, CE 平分∠ ACB ,交 AD 于 G,交 AB 于 E, EF⊥ BC 于 F.求证:四边形AEFG 是菱形.16.如图,矩形ABCD 绕其对角线交点旋转后得矩形AECF , AB 交 EC 于点 N , CD 交 AF 于点 M .求证:四边形ANCM 是菱形.17.如图,四边形 ABCD 、 DEBF 都是矩形, AB=BF , AD 、BE 交于 M , BC 、DF 交于 N,那么四边形 BMDN 是菱形吗?如果是,请写出证明过程;如果不是,说明理由.18.已知如图所示, AD 是△ ABC 的角平分线, DE ∥ AC 交 AB 于 E, DF∥AB 交 AC 于 F,四边形 AEDF 是菱形吗?说明理由.19.已知:如图所示,BD 是△ABC 的角平分线, EF 是 BD 的垂直平分线,且交AB 于 E,交 BC 于点 F.求证:四边形 BFDE 是菱形.20.如图,在平行四边形ABCD 中, O 是对角线AC 的中点,过点O 作 AC 的垂线与边AD 、 BC 分别交于E、 F.求证:四边形AFCE 是菱形.21.如图,在矩形ABCD 中, EF 垂直平分BD .(1)判断四边形 BEDF 的形状,并说明理由.(2)已知 BD=20 , EF=15 ,求矩形 ABCD 的周长.22.如图所示,在?ABCD 中,点 E 在 BC 上, AE 平分∠BAF ,过点 E 作 EF∥ AB .求证:四边形ABEF 为菱形.23.已知,如图,矩形 ABCD 中, AB=4cm , AD=8cm ,作∠ CAE= ∠ ACE 交 BC 于 E,作∠ ACF= ∠ CAF 交 AD 于F.( 1)求证: AECF 是菱形;( 2)求四边形AECF 的面积.24.如图,平行四边形 ABCD 的对角线 AC 的垂直平分线与边 AD 、BC 分别交于 E、F.问四边形 AFCE 是菱形吗?请说明理由.25.如图:在平行四边形 ABCD 中, E、F 分别是边 AB 、CD 的延长线上一点,且 BE=DF ,连接 EF 交 AC 于 O.( 1) AC 与 EF 互相平分吗?为什么?( 2)连接 CE、AF ,再添加一个什么条件,四边形AECF 是菱形?为什么?26.已知:如图,△ABC 和△ DBC 的顶点在 BC 边的同侧, AB=DC ,AC=BD 交于 E,∠ BEC 的平分线交 BC 于 O,延长EO 到 F,使 EO=OF .求证:四边形 BFCE 是菱形.27.如图,在△ ABC 中, D 是 BC 边的中点, F, E 分别是 AD 及其延长线上的点,CF∥ BE.(1)求证:△ BDE ≌ △ CDF ;(2)请连接 BF, CE,试判断四边形 BECF 是何种特殊四边形,并说明理由;(3)在( 2)下要使 BECF 是菱形,则△ABC 应满足何条件?并说明理由.28.如图,在△ ABC 中,∠ACB=90 °, BC 的垂直平分线 DE 交 BC 于 D ,交 AB 于 E, F 在 DE 上,并且AF=CE .( 1)求证:四边形 ACEF 是平行四边形;( 2)当∠ B 的大小满足什么条件时,四边形ACEF 是菱形?请回答并证明你的结论.29.如图,在△ ABC 中, AD 是∠ BAC 的平分线, EF 垂直平分 AD 交 AB 于 E,交 AC 于 F.求证:四边形AEDF 是菱形.30.如图,△ ABC 中,点 O 是边 AC 上一个动点,过 O 作直线 MN ∥ BC,设 MN 交∠ BCA 的平分线于点 E,交∠BCA 的外角平分线于点 F.( 1)探究:线段OE 与 OF 的数量关系并加以证明;( 2)当点 O 运动到何处,且△ ABC满足什么条件时,四边形AECF 是正方形?( 3)当点 O 在边 AC 上运动时,四边形BCFE 会是菱形吗?若是,请证明,若不是,则说明理由.矩形的判定专项练习30 题参考答案:1. 1)证明:∵点 E 为 BC 的中点,∴BE=CE= BC,∵BA=AD=DC= BC ,∴AB=BE=ED=AD ,∴四边形 ABED 是菱形;( 2)解:过点 D 作 DH ⊥BC ,垂足为H ,∵CD=DE=CE ,∴ ∠ DEC=60 °,∴ ∠ DBE=30 °,在 Rt△ BDH 中, BD=4cm ,∴ DH=2cm ,∵AF=DH ,∴AF=2cm .2.∵ AO=ON ,BM=MO ,∴ 四边形 AMND 是平行四边形,∵ AC ⊥ BD ,∴ 平行四边形 AMND 是菱形,∴ MN=DN ,∵ ON=NC , BM=MO ,∴ MN= BC ,∴ BC=2DN3.( 1)∵ D, E 分别是 BC , AB 的中点,∴DE∥ AC 且 DE=AF= AC .同理 DF∥ AB 且 DF=AE=AB .又∵ AB=AC ,∴DE=DF=AF=AE ,∴四边形 AEDF 是菱形.( 2)∵ E 是 AB 中点,∴ AE= AB=6cm ,因此菱形AEDF ∴∠1=∠2,在△AEF 和△DEC 中,∴ △ AFE ≌ △ DCE( AAS ),∴AF=DC ;(2)证明:∵ D 是 BC 的中点,∴ DB=CD= BC,∵AF=CD ,∴ AF=DB ,∵AF ∥BD ,∴四边形AFBD 是平行四边形,∵∠ BAC=90 °, D 为 BC 中点,∴AD= CB=DB ,∴四边形 AFBD 是菱形.6.∵对角线 BD 平分∠ ABC ,∴∠1=∠2,∵四边形 ABCD 是平行四边形,∴AB ∥DC ,∴∠ 3=∠ 1,∴∠ 3=∠ 2,∴DC=BC ,又∵四边形 ABCD 是平行四边形,∴四边形 ABCD 是菱形.的周长为 4×6=24cm .4.( 1)∵ BE=BP ,∴∠ E=∠BPE,7.( 1)∵三角板 ABC 中,将三角板沿着AB 所在直线∵BC∥AF ,翻转 180°得到△ ABF ,∴ ∠ BPE=∠ F,∴ ∠ E=∠ F.∴ △ ABC ≌ △ABF ,且∠BAC= ∠BAF=30 °,(2)∵EF∥BD ,∴ ∠ FAC=60 °,∴ ∠ E=∠ABD ,∠ F=∠ ADB ,∴ AD=DC=AC ,∴∠ABD= ∠ADB ,又∵ △ ABC ≌△ EFC,∴ AB=AD ,∴ CA=CE ,∵四边形 ABCD 是平行四边形,又∵ ∠ ECF=60 °,∴ □ABCD 是菱形.∴ AC=EC=AE ,(2)证明:由( 1)可知:△ ACD ,△ AFC 是等边三角形,△ACB ≌△ AFB ,∴ ∠ EDC= ∠BAC=∠ FAC=30°,且△ ABC为直角三角形,∴BC= AC ,∵EC=CB ,∴EC= AC,∴E为AC 中点,∴DE⊥ AC ,∴AE=EC ,∵AG∥BC,∴ ∠ EAG= ∠ ECB ,∠AGE= ∠ EBC ,∴△AEG≌△CEB ,∴AG=BC ,( 7 分)∴四边形 ABCG 是平行四边形,∵ ∠ ABC=90 °,∴四边形 ABCG 是矩形8.在△ ADE 和△CDF 中,∵四边形 ABCD 是平行四边形,∴∠A=∠C,∵DE⊥ AB , DF⊥ BC,∴ ∠ AED= ∠ CFD=90 °.又∵ DE=DF ,∴△ADE ≌△CDF(AAS )∴DA=DC ,∴平行四边形 ABCD 是菱形9.( 1)∵在 ?ADFE 中, AD ∥EF,∴ ∠ EHC= ∠B (两直线平行,同位角相等).∵EH=EC (已知),∴ ∠ EHC= ∠C(等边对等角),∴ ∠ B=∠ C(等量代换);( 2)∵ DE ∥ BC (已知),∴∠AED= ∠C,∠ADE= ∠B.∵∠B=∠C,∴∠AED= ∠ADE ,∴AD=AE ,∴?ADFE 是菱形.10. 1)证明:∵ ∠ACB=90 °,在 Rt△AEG 与 Rt△ AEC 中,,∴Rt△AEG ≌ Rt△ AEC (HL );( 2)解:△ CEF 是等腰三角形.理由如下:∵CD 是 AB 边上的高,∴CD⊥AB .又∵ EG⊥AB ,∴EG∥ CD ,∴∠ CFE=∠ GEA .又由( 1)知, Rt△ AEG ≌ Rt△ AEC ,∴∠GEA= ∠ CEA,∴ ∠ CEA= ∠ CFE,即∠ CEF=∠ CFE,∴ CE=CF ,即△CEF 是等腰三角形;( 3)解:四边形GECF 是菱形.理由如下:∵由( 1)知,Rt△AEG ≌ Rt△ AEC ,则 GE=EC ;由( 2)知, CE=CF ,∴GE=EC=FC .又∵ EG∥CD ,即 GE∥ FC,∴四边形 GECFR 是菱形.11.∵ D、 E、F 分别是△ ABC 三边的中点,∴DE AC,EF AB ,∴四边形 ADEF 为平行四边形.又∵ AC=AB ,∴DE=EF .∴四边形 ADEF 为菱形.12.∵ M 、 E、分别为AD 、 BD 、的中点,∴ME∥AB ,ME= AB ,同理: FH∥AB , FH=AB ,∴四边形 MENF 是平行四边形,∵M.F 是 AD ,AC 中点,∴MF= DC,∵AB=CD ,∴MF=ME ,∴四边形 MENF 为菱形∴平行四边形 AEFG 是菱形.∵,证法二:∵ AD ⊥BC,∠ CAB=90 °, EF⊥ BC, CE 平分∴ △ BAE ≌△ DAE ( SAS)( 2 分)∠ACB ,∴ BE=DE ,( 3 分)∴ AD ∥EF,∠ 4=∠ 5,AE=EF ,∵AD ∥BC,∵ ∠ 1=180°﹣ 90°﹣∠ 4,∠ 2=180 °﹣ 90°﹣∠ 5,∴ ∠ DAE= ∠ AEB ,( 4 分)∴∠1=∠2,∴ ∠ BAE= ∠AEB ,∵ AD ∥EF,∴ AB=BE ,( 5 分)∴∠2=∠3,∴ AB=BE=DE=AD ,(6 分)∴∠1=∠3,∴四边形 ABED 是菱形.∴ AG=AE ,∵ AE=EF ,∴ AG=EF ,∵ AG ∥EF,∴四边形 AGFE 是平行四边形,14.∵ AB=AC ,M 、 O、 N 分别是 AB 、 BC、 CA 的中∵ AE=EF ,点,∴平行四边形 AGFE 是菱形.∴AM= AB= AC=AN ,M0 ∥ AC , NO ∥AB ,且 MO= AC=AN ,NO= AB=AM (三角形中位线定理),16.∵ CD∥ AB ,∴ AM=MO=AN=NO ,∴∠FMC= ∠FAN,∴四边形 AMON 是菱形(四条边都相等的四边形是菱∴ ∠ NAE= ∠ MCF (等角的余角相等),形)在△ CFM 和△ AEN 中,15.证法一:∵ AD ⊥BC ,∴ ∠ ADB=90 °,,∵ ∠ BAC=90 °,∴ ∠ B+∠ BAD=90 °,∠ BAD+ ∠ CAD=90 °,∴ △ CFM ≌△ AEN (ASA ),∴∠B=∠CAD ,∴ CM=AN ,∵ CE 平分∠ ACB , EF⊥ BC,∠ BAC=90 °( EA ⊥CA ),∴四边形 ANCM 为平行四边形,∴ AE=EF (角平分线上的点到角两边的距离相等),在△ADM 和△CFM 中,∵ CE=CE ,∴由勾股定理得: AC=CF ,,∵△ACG 和△FCG 中∴△ADM ≌△CFM (AAS ),,∴ AM=CF ,∴四边形 ANCM 是菱形∴△ACG≌△FCG,17.四边形 BMDN 是菱形.∴ ∠ CAD= ∠ CFG,∵AM ∥BC,∵∠B=∠CAD ,∴∠AMB= ∠MBN ,∴ ∠ B=∠ CFG,∵BM ∥FN∴GF∥AB ,∴∠MBN= ∠BNF ,∵AD ⊥BC,EF⊥ BC,∴∠AMB= ∠BNF ,∴AD ∥EF,又∵ ∠ A= ∠ F=90°, AB=BF ,∴DM=DN ,∵ED=BF=AB ,∠ E=∠ A=90 °,∠ AMB=∠EMD ,∴△ABM ≌△ EDM,∴ BM=DM ,∴ MB=MD=DN=BN ,∴四边形 BMDN 是菱形18.如图,由于 DE ∥ AC ,DF∥ AB ,所以四边形 AEDF 为平行四边形.∵DE∥ AC ,∴ ∠3=∠ 2,又∠ 1=∠ 2,∴∠ 1=∠3,∴ AE=DE ,∴平行四边形 AEDF 为菱形.19.∵ EF 是 BD 的垂直平分线,∴EB=ED ,∴∠ EBD= ∠EDB .∵BD 是△ ABC 的角平分线,∴ ∠ EBD= ∠FBD .∴ ∠ FBD=∠EDB ,∴ED∥BF.同理, DF∥ BE ,∴四边形 BFDE 是平行四边形.又∵ EB=ED ,∴四边形 BFDE 是菱形.20.方法一:∵ AE ∥ FC.∴ ∠ EAC= ∠FCA .( 2 分)又∵ ∠ AOE= ∠ COF, AO=CO ,∴△AOE≌△COF.(5 分)∴EO=FO .又 EF⊥AC ,∴AC 是 EF 的垂直平分线.( 8 分)∴AF=AE , CF=CE ,又∵ EA=EC ,∴AF=AE=CE=CF .∴四边形 AFCE 为菱形.( 10 分)方法二:同方法一,证得△ AOE ≌ △ COF.( 5 分)∴AE=CF .∴四边形 AFCE 是平行四边形.( 8 分)方法三:同方法二,证得四边形 AFCE 是平行四边形.( 8 分)又 EF⊥ AC ,(9 分)∴四边形 AFCE 为菱形21.( 1)四边形 BEDF 是菱形.在△ DOF 和△BOE 中,∠FDO= ∠ EBO ,OD=OB ,∠ DOF=∠BOE=90 °,所以△ DOF ≌ △BOE ,所以 OE=OF .又因为 EF⊥BD , OD=OB ,所以四边形 BEDF 为菱形.(5 分)(2)如图,在菱形 EBFD 中, BD=20 , EF=15,则 DO=10 , EO=7.5 .由勾股定理得 DE=EB=BF=FD=12.5 .S 菱形EBFD= EF?BD=BE ?AD ,即所以得 AD=12 .根据勾股定理可得AE=3.5 ,有 AB=AE+EB=16 .由 2(AB+AD ) =2( 16+12 )=56 ,故矩形 ABCD 的周长为 5622.∵四边形 ABCD 是平行四边形,∴AF ∥ BE,又∵EF∥AB ,∴四边形 ABEF 为平行四边形,∵AE 平分∠ BAF ,∴∠ BAE= ∠ FAE,∵∠FAE=∠BEA ,∴∠BAE= ∠ BEA ,∴BA=BE ,∴平行四边形 ABEF 为菱形23.( 1)证明:在矩形ABCD 中,∵AB ∥CD ,∴∠BAC= ∠ DCA ,又∠CAE= ∠ ACE,∠ACF= ∠CAF,∴∠EAC= ∠ FCA.∴AE ∥ CF.∴四边形 AECF 为平行四边形,又∠CAE= ∠ ACE,∴AE=EC .∴?AECF 为菱形.(2)设 BE=x ,则 EC=AE=8 ﹣ x,在 Rt△ABE 中,222菱形的判定 ---第10页共12页所以 EC=5 ,即 S 菱形AECF=EC ×AB=5 ×4=20.24.四边形 AFCE 是菱形,理由是:∵四边形 ABCD 是平行四边形,∴AD ∥BC,∴= ,∵AO=OC ,∴ OE=OF ,∴四边形 AFCE 是平行四边形,∵EF⊥AC ,∴平行四边形AFCE 是菱形25.( 1) AC 与 EF 互相平分,连接CE,AF ,∵平行四边形ABCD ,∴AB ∥ CD ,AB=CD ,又∵BE=DF ,∴AB+BE=CD+DF ,∴AE=CF ,∴AE ∥ CF, AE=CF ,∴四边形 AECF 是平行四边形,∴AC 与 EF 互相平分;( 2)条件: EF⊥ AC ,∵EF⊥AC ,又∵四边形 AECF 是平行四边形,∴平行四边形AECF 是菱形.26.∵ AB=DC AC=BD BC=CB,∴△ABC ≌△DCB ,∴∠DBC= ∠ACB ,∴BE=CE ,又∵ ∠ BEC 的平分线是EF,∴EO 是中线(三线合一),∴BO=CO ,∴四边形 BFCE 是平行四边形(对角线互相平分),又∵ BE=CE ,∴四边形 BFCE 是菱形.27.( 1)证明:∵ CF∥BE ,∴∠ EBD= ∠ FCD ,D是 BC 边的中点,则 BD=CD ,∠BDE= ∠CDF ,∴△BDE ≌△CDF .( 2)如图所示,由( 1)可得 CF=BE ,又 CF∥ BE ,所以四边形 BECF 是平行四边形;( 3)△ ABC 是等腰三角形,即 AB=AC ,理由:当AB=AC 时,则有 AD ⊥ BC,又( 2)中四边形为平行四边形,所以可判定其为菱形.28.( 1)∵ DE 为 BC 的垂直平分线,∴ ∠ EDB=90 °, BD=DC ,又∵ ∠ ACB=90 °,∴DE∥AC ,∴E 为 AB 的中点,∴在 Rt△ ABC 中, CE=AE=BE ,∴∠ AEF= ∠ AFE ,且∠ BED= ∠AEF ,∠ DEC= ∠ DFA ,∴AF ∥ CE,又∵ AF=CE ,∴四边形 ACEF 为平行四边形;( 2)要使得平行四边形ACEF 为菱形,则 AC=CE 即可,∵DE∥AC ,∴∠BED= ∠BAC ,∠DEC=∠ECA,又∵ ∠ BED= ∠ DEC,∴∠EAC= ∠ ECA,∴ AE=EC ,又 EB=EC ,∴ AE=EC=EB ,∵CE= AB ,∴AC= AB 即可,在 Rt△ABC 中,∠ ACB=90 °,∴当∠ B=30 °时, AB=2AC ,故∠ B=30 °时,四边形ACEF 为菱形.29.∵ AD 平分∠BAC∴ ∠ BAD= ∠CAD又∵EF⊥AD ,∴ ∠ AOE= ∠ AOF=90 °∵在△AEO 和△ AFO 中,∴ △ AEO ≌ △AFO ( ASA ),∴EO=FO即 EF、 AD 相互平分,∴四边形 AEDF 是平行四边形又 EF⊥AD ,∴平行四边形AEDF 为菱形30. 1)解: OE=OF .理由如下:∵ CE 是∠ACB 的角平分线,∴ ∠ ACE= ∠BCE ,又∵ MN ∥BC,∴ ∠ NEC= ∠ECB ,∴ ∠ NEC= ∠ACE ,∴OE=OC ,∵ OF 是∠ BCA 的外角平分线,∴ ∠ OCF= ∠FCD ,又∵ MN ∥BC,∴ ∠ OFC= ∠ECD ,∴ ∠ OFC= ∠COF,∴OF=OC ,∴OE=OF ;( 2)解:当∠ ACB=90 °,点 O 在 AC 的中点时,∵OE=OF ,∴四边形 AECF 是正方形;( 3)答:不可能.解:如图所示,∵CE 平分∠ ACB ,CF 平分∠ ACD ,∴ ∠ ECF=∠ ACB+∠ ACD=(∠ACB+∠ACD)=90 °,若四边形BCFE 是菱形,则BF ⊥ EC,但在△ GFC 中,不可能存在两个角为 90°,所以不存在其为菱形.。
《18.2.2 菱形》教案第一课时教学目的1.掌握菱形概念,知道菱形与平行四边形的关系.2.理解并掌握菱形的定义及性质1、2;会用这些性质进行有关的论证和计算,会计算菱形的面积.3.通过运用菱形知识解决具体问题,提高分析能力和观察能力.4.根据平行四边形与矩形、菱形的从属关系,通过画图向学生渗透集合思想.重点、难点1.教学重点:菱形的性质1、2.2.教学难点:菱形的性质及菱形知识的综合应用.例题的意图分析本节课安排了两个例题,例1是一道补充题,是为了巩固菱形的性质;例2是教材P108中的例2,这是一道用菱形知识与直角三角形知识来求菱形面积的实际应用问题.此题目,除用以巩固菱形性质外,还可以引导学生用不同的方法来计算菱形的面积,以促进学生熟练、灵活地运用知识.课堂引入1.(复习)什么叫做平行四边形?什么叫矩形?平行四边形和矩形之间的关系是什么?2.(引入)我们已经学习了一种特殊的平行四边形——矩形,其实还有另外的特殊平行四边形,请看演示:(可将事先按如图做成的一组对边可以活动的教具进行演示)如图,改变平行四边形的边,使之一组邻边相等,从而引出菱形概念.菱形定义:有一组邻边相等的平行四边形叫做菱形.【强调】菱形(1)是平行四边形;(2)一组邻边相等.让学生举一些日常生活中所见到过的菱形的例子.例习题分析例1 (补充)已知:如图,四边形ABCD是菱形,F是AB上一点,DF交AC于E.求证:∠AFD=∠CBE.证明:∵四边形ABCD是菱形,∴ CB=CD, CA平分∠BCD.∴∠BCE=∠DCE.又 CE=CE,∴△BCE≌△COB(SAS).∴∠CBE=∠CDE.∵在菱形ABCD中,AB∥CD,∴∠AFD=∠FDC∴∠AFD=∠CBE.例2 (教材P108例2)略随堂练习1.若菱形的边长等于一条对角线的长,则它的一组邻角的度数分别为.2.已知菱形的两条对角线分别是6cm和8cm ,求菱形的周长和面积.3.已知菱形ABCD的周长为20cm,且相邻两内角之比是1∶2,求菱形的对角线的长和面积.4.已知:如图,菱形ABCD中,E、F分别是CB、CD上的点,且BE=DF.求证:∠AEF=∠AFE.课后练习1.菱形ABCD中,∠D∶∠A=3∶1,菱形的周长为 8cm,求菱形的高.2.如图,四边形ABCD是边长为13cm的菱形,其中对角线BD长10cm,求(1)对角线AC的长度;(2)菱形ABCD的面积.《18.2.2 菱形》教案第二课时教学目的1.理解并掌握菱形的定义及两个判定方法;会用这些判定方法进行有关的论证和计算;2.在菱形的判定方法的探索与综合应用中,培养学生的观察能力、动手能力及逻辑思维能力.重点、难点1.教学重点:菱形的两个判定方法.2.教学难点:判定方法的证明方法及运用.例题的意图分析本节课安排了两个例题,其中例1是教材P109的例3,例2是一道补充的题目,这两个题目都是菱形判定方法的直接的运用,主要目的是能让学生掌握菱形的判定方法,并会用这些判定方法进行有关的论证和计算.这些题目的推理都比较简单,学生掌握起来不会有什么困难,可以让学生自己去完成.程度好一些的班级,可以选讲例3.课堂引入1.复习(1)菱形的定义:一组邻边相等的平行四边形;(2)菱形的性质1 菱形的四条边都相等;性质2 菱形的对角线互相平分,并且每条对角线平分一组对角;(3)运用菱形的定义进行菱形的判定,应具备几个条件?(判定:2个条件)2.【问题】要判定一个四边形是菱形,除根据定义判定外,还有其它的判定方法吗?3.【探究】(教材P109的探究)用一长一短两根木条,在它们的中点处固定一个小钉,做成一个可转动的十字,四周围上一根橡皮筋,做成一个四边形.转动木条,这个四边形什么时候变成菱形?通过演示,容易得到:菱形判定方法1 对角线互相垂直的平行四边形是菱形.注意此方法包括两个条件:(1)是一个平行四边形;(2)两条对角线互相垂直.通过教材P109下面菱形的作图,可以得到从一般四边形直接判定菱形的方法:菱形判定方法2 四边都相等的四边形是菱形.例习题分析例1 已知:如图ABCD的对角线AC的垂直平分线与边AD、BC分别交于E、F.求证:四边形AFCE是菱形.证明:∵四边形ABCD是平行四边形,∴ AE∥FC.∴∠1=∠2.又∠AOE=∠COF,AO=CO,∴△AOE≌△COF.∴ EO=FO.∴四边形AFCE是平行四边形.又 EF⊥AC,∴AFCE是菱形(对角线互相垂直的平行四边形是菱形).※例2(选讲)已知:如图,△ABC中,∠ACB=90°,BE平分∠ABC,CD⊥AB与D,EH⊥AB于H,CD交BE于F.求证:四边形CEHF为菱形.略证:易证CF∥EH,CE=EH,在Rt△BCE中,∠CBE+∠CEB=90°,在Rt△BDF 中,∠DBF+∠DFB=90°,因为∠CBE=∠DBF,∠CFE=∠DFB,所以∠CEB=∠CFE,所以CE=CF.所以,CF=CE=EH,CF∥EH,所以四边形CEHF为菱形.随堂练习1.填空:(1)对角线互相平分的四边形是;(2)对角线互相垂直平分的四边形是________;(3)对角线相等且互相平分的四边形是________;(4)两组对边分别平行,且对角线的四边形是菱形.2.画一个菱形,使它的两条对角线长分别为6cm、8cm.3.如图,O是矩形ABCD的对角线的交点,DE∥AC,CE∥BD,DE和CE相交于E,求证:四边形OCED是菱形。
菱形的判定练习题
菱形的判定课时测控
1.下列四边形中不一定为菱形的是()
A.对角线相等的平行四边形 B.每条对角线平分一组对角的四边形
C.对角线互相垂直的平行四边形 D.用两个全等的等边三角形拼成的四边形
2.四个点A,B,C,D在同一平面内,从①AB∥CD;②AB=CD;③AC⊥BD;
④AD= BC; ⑤AD∥BC.这5个条件中任选三个,能使四边形ABCD是菱形的选法有().
A.1种 B.2种 C.3种 D.4种
3.菱形的周长为32cm,一个内角的度数是60°,则两条对角线的长分别是()
A.8cm和43cm B.4cm和83cm C.8cm和83cm D.4cm 和43cm
4.如图1所示,已知□ABCD,AC,BD相交于点O,•添加一个条件使平行四边形为菱形,添加的条件为________.(只写出符合要求的一个即可)
图1 图2
D A
C
F
H
E
B
5.如图2所示,D ,E ,F 分别是△ABC 的边BC ,CA ,AB 上的点,且DE∥AB ,DF∥CA ,要使四边形AFDE 是菱形,则要增加的条件是________.(只写出符合要求的一个即可)
6.菱形ABCD 的周长为48cm ,∠BAD : ∠ABC= 1:•2,•则BD=•_____,•菱形的面积是______.
7.在菱形ABCD 中,AB=4,AB 边上的高DE 垂直平分边AB ,则BD=_____,AC=_____.
8.如图所示,在四边形ABCD 中,AB∥CD ,AB=CD=BC ,四边形ABCD 是菱形吗?•说明理由.
9.如图,矩形ABCD 的对角线相交于点O ,PD∥AC ,PC∥BD ,PD ,PC 相交于点P ,四边形PCOD 是菱形吗?试说明理由.
10.(一题多解题)如图所示,△ABC 中,∠ACB=90°,∠ABC 的平分线BD•交AC 于点D ,CH⊥AB 于H ,且交BD 于点F ,DE⊥AB 于E ,四边形CDEF 是菱形
吗?请说明理由.
K
D
A
C
F
H
G E B
D A F
H G
B
11.(科内交叉题)如图所示,已知△ABC 中,AB=AC ,D 是BC 的中点,过点
D•作DE⊥AB ,DF⊥AC ,垂足分别为E ,F ,再过E ,F 作EG⊥AC ,FH⊥AB ,垂足分别为G ,H ,且EG ,•FH 相交于点K ,试说明EF 和
DK 之间的关系.
12.菱形以其特殊的对称美而备受人们喜爱,在生产生活中有极其广泛的应用.如图所示是一块长30cm ,宽20cm 的长方形的瓷砖,E ,F ,G ,H 分别是边BC ,CD ,DA ,•AB 的中点,涂黑部分为淡蓝色花纹,中间部分为白色.现有一面长4.2m ,宽2.8m•的墙壁准备贴这种瓷砖,试问:(1)这面墙壁最少要贴这种瓷砖多少块?
(2)全部贴满瓷砖后,这面墙壁最多会出现多少个面积相等的菱形?• 其中有花纹的菱形有多少个?
13.已知:如图所示,菱形ABCD 中,E ,F 分别是CB ,CD 上的点,且BE=DF . (1)试说明:AE=AF ;
(2)若∠B=60°,点E ,F 分别为BC 和CD 的中点,试说明:△AEF 为等边三角形.。