催干剂技术文章
- 格式:pdf
- 大小:274.20 KB
- 文档页数:8
催干剂可行性研究报告一、前言催干剂是一种在植物生长期间广泛应用的化学品,其主要作用是促进植物快速生长和成熟。
在农业生产中,催干剂可以起到加速植物生长、增加产量和提高作物质量的作用。
然而,关于催干剂的可行性以及对植物和环境的影响,仍存在一定的争议。
因此,本报告旨在通过对催干剂的研究,深入分析其在农业生产中的可行性,并探讨其对植物和环境的影响,以期为农业生产提供科学依据。
二、催干剂的概念和作用机制催干剂是一种在植物生长期间广泛应用的化学品,其主要作用是通过促进植物的生长和发育,从而加速农作物的生长周期和提高产量。
催干剂可以通过不同的作用机制来实现其促进作用,主要包括以下几个方面:1. 促进植物营养吸收催干剂可以通过增加植物的养分吸收能力,提高作物对养分的利用效率,从而促进植物的生长和发育。
2. 促进植物的细胞分裂和伸长催干剂可以通过影响植物的细胞分裂和伸长过程,加速植物的生长速度,从而提高作物的产量。
3. 调节植物生长激素的合成和代谢催干剂可以通过调节植物生长激素的合成和代谢,促进植物的生长和发育。
三、催干剂的可行性分析1. 催干剂在农业生产中的应用情况目前,催干剂在农业生产中得到了广泛的应用。
根据统计数据显示,催干剂的使用量和覆盖面积逐年增加,并且对农作物的生长和产量表现出显著的促进作用。
特别是在一些大型农田和园艺基地,催干剂的使用效果更加显著,对提高作物产量和质量起到了积极的作用。
2. 催干剂对植物和环境的影响虽然催干剂可以对植物的生长和发育起到积极的促进作用,但是其对植物和环境的影响也需要引起关注。
研究表明,长期使用催干剂可能导致植物对养分的依赖性增强,减少养分的利用效率,从而增加农作物的生产成本。
此外,催干剂对土壤环境的影响也需要引起关注。
过量使用催干剂可能导致土壤酸化、养分流失等问题,影响土壤的肥力和生态环境。
3. 催干剂的可行性总的来说,催干剂在农业生产中的应用具有一定的可行性。
然而,为了充分发挥催干剂的促进作用,需在使用中注重科学施用和定期轮换,避免过量使用催干剂导致的问题。
丝网ED刷2019.9材料与设备水墨中LX1OO系列催干剂的贮用□刘家聚刘鑫HH下,包装印刷与水墨仍不搭界、匹配不良的现象,是因非吸收性承印物成膜干燥慢而带来的焦虑浮躁。
尽管印刷企业利用蒸汽、电、油、红外线紫外线光谱色谱、微波等加热烘干,但不是因温度高而变形,就是成本高、设备装置投资费用大而使用不起,并且加热过程会升高环境温度。
即使是印刷后处理的全回收装置,溶剂油墨在生产时,车间内外和印刷过程中,仍然会有或多或少的溶剂挥发造成污染。
水墨研发者始终游走在利润与环保之间,这是时下的无奈之举。
能否尝试-种既保持一定的印刷效率、又顾及生态环境友好,既强调环保健康、又不增长印刷成本费用的好方式呢?况且政策法规日渐严苛也要求印刷企业思忖如何面对这个两难选择。
一种新型水性催干剂的时机到来了。
世界格局之下的《巴黎协定》,为2020年后全球应对气候变化行动作出安排,中国环保部门关于包装印刷水墨国标限定也出台措施:有机溶剂不得超过5%。
这自然成为水性LX100系列催干剂受到优选的最佳机遇。
―.水整5S方计之K&笔者与大多数水墨研发者一样,经历了当代水墨配方设计和工艺生产,从“技术堆砌法”到“两维制墨法”,再到“数字排除法”的心路历程和实践摸索。
从1989年开始,为房县工艺厂研发水性编织袋墨,1992年为黄石长江化工厂研发转印水墨用35材料与设备2019.9丝网ED刷J:华新水泥袋的印刷,1998年中国包协为笔者的“废IH塑料的再生利川和绿色包装印刷油墨”出具了技术转让的受权委托书,算是小试牛刀。
其后的研发开始遭遇瓶域。
1999年为杭州迪邦精细化学制品厂研制水耀,印刷速度一直徘徊任40~52m/min,2006年在温州(龙岗)远东彩印也没突破56m/min;2014年在刷城进行五色套印时,每色采用3支红外灯(共45kW)干燥时,也仅为160m/min o道阻且氏,所以笔者为五粮液丽彩精美公司水墨立项使用时提出,“让习惯成为标准,让标准成为习惯”。
催干剂的作用和原理:深入了解引言:在农业生产中,农作物的收获及保存是一项重要的工作,而催干剂的使用可以有效提高农作物的干燥速度,降低湿度,从而确保农作物的质量和安全。
本文将深入探讨催干剂的作用和原理,帮助读者更好地了解催干剂的功能与效果。
一、催干剂的定义和分类催干剂是一种用于加速农作物干燥过程的化学物质。
根据其化学成分和作用原理的不同,催干剂可以分为吸湿剂和沸腾剂两大类。
1. 吸湿剂吸湿剂是指那些可以吸收空气中的水分的化学物质。
吸湿剂广泛应用于农业和工业领域,常见的吸湿剂有氯化钙、氯化铁等。
这类催干剂通过吸收空气中的水分分子来降低农作物周围的湿度,从而加速农作物的干燥过程。
2. 沸腾剂沸腾剂则是一类在农作物中产生沸腾的化学物质。
当沸腾剂与水混合时,会释放出大量气泡,形成沸腾的现象。
沸腾过程中产生的气泡可以将水分迅速带走,加快农作物表面和内部的干燥过程。
示例催干剂包括但不限于酒精类、醚类等。
二、催干剂的作用机理1. 降低相对湿度一种常见的催干剂作用机理是通过吸湿或沸腾作用降低农作物周围的相对湿度。
相对湿度是描述空气中水分饱和程度的量度,降低相对湿度可以促进水分从农作物中蒸发出来,加快干燥速度。
2. 提高空气流通性催干剂的使用能够增加空气的流通性,从而提高农作物的干燥效果。
催干剂通过释放挥发性化合物或产生气泡的方式,改变农作物表面的物理性质,使得空气更容易进入并流通到农作物内部,进一步促进水分的挥发。
3. 分解水分分子部分催干剂中含有化学物质,它们能够与水分分子发生反应并分解,从而加快水分的蒸发过程。
这种催干剂的作用原理是通过化学反应来降低水分分子间的相互作用力,使水分更容易从农作物中蒸发出来。
三、催干剂在农业生产中的应用催干剂在农业生产中具有广泛的应用,尤其在农作物收获、仓储和运输过程中发挥重要作用。
1. 农作物收获收获后的农作物中常含有较高的水分,如果长时间保持潮湿状态,容易导致腐烂和霉变。
在农作物收获后,使用催干剂可以加快农作物表面和内部的干燥速度,快速降低湿度,减少腐烂和霉变的风险,从而保证农作物的质量和安全。
催干剂在化妆品生产中的应用研究化妆品是现代生活中不可或缺的一部分,越来越多的人开始注重美容和个人形象。
随着人们对化妆品需求的增加,化妆品行业日益发展,不断涌现出新的产品和技术。
在化妆品的制造过程中,催干剂作为一种重要的辅助剂,在促进化妆品的干燥和固化方面起到关键作用。
本文将对催干剂在化妆品生产中的应用进行研究和探讨。
催干剂是一类能够促进涂层、油漆、胶水等材料快速干燥的辅助剂。
在化妆品生产中,催干剂主要用于促进化妆品产品的干燥和固化,提高生产效率和品质。
其作用主要包括加速溶剂挥发、促进化学反应、调整湿膜平整性等。
首先,催干剂可以加速溶剂挥发,从而使化妆品的水分或有机溶剂迅速蒸发。
在化妆品生产过程中,许多产品需要通过涂抹或喷涂的方式涂敷到人体表面,例如化妆水、乳液、防晒霜等。
这些产品通常包含大量的水分或有机溶剂,而催干剂的加入能够加速这些溶剂的挥发,使产品迅速干燥,降低生产成本和时间。
此外,通过加速溶剂挥发,催干剂还能够减少产品在使用过程中的沉积感,提高用户体验。
其次,催干剂在化妆品生产中还可以促进化学反应,提高产品的品质和性能。
在某些情况下,化妆品的制造过程需要进行一定的化学反应,以完成产品特定的功能和效果。
催干剂可以在化学反应中充当催化剂的角色,促进化学反应的进行,加快产品的固化过程。
例如,在某些防水化妆品中,催干剂能够加速聚合物的交联反应,提高产品的耐水性和持久性。
通过催干剂的作用,化妆品能够更好地适应不同的使用环境,并展现出更好的效果。
此外,催干剂还可以调整化妆品的湿膜平整性。
在制造过程中,湿膜平整性是评估化妆品质量的一个重要指标。
一个好的湿膜平整性可以确保化妆品在涂抹到皮肤上后能够均匀、平滑地覆盖在皮肤表面。
催干剂的加入能够改善化妆品的流变性质,使得湿膜更容易平整。
特别是在一些高粘度化妆品中,催干剂能够降低产品的粘度,使得产品更容易涂抹,提高用户的使用体验。
在化妆品生产中应用催干剂需要注意一些问题。
催干剂在印刷行业中的作用及其影响因素在印刷行业中,催干剂是一种常用的化学品,用于加快印刷油墨的干燥速度。
催干剂的使用可以提高印刷品的产量和质量,同时也能够降低印刷过程中的能耗和成本。
然而,催干剂的作用和效果受到多种因素的影响,包括环境条件、催干剂的配方和使用方法等。
本文将对催干剂在印刷行业中的作用及其影响因素进行详细的介绍和分析。
首先,催干剂的主要作用是加快印刷油墨的干燥速度。
在印刷过程中,油墨需要通过挥发溶剂或氧化反应等方式实现快速干燥,以确保印刷品的质量和产量。
催干剂通过改变油墨的物理和化学性质,能够有效地加速这一干燥过程。
催干剂在油墨中的添加使得油墨在印刷后能够迅速形成干燥膜,减少印刷品之间的接触和粘连,从而提高印刷品的处理速度和质量。
其次,催干剂的效果受到多种因素的影响。
首先是环境条件的影响。
印刷室的温度和湿度对催干剂的效果有着明显的影响。
一般来说,较高的温度和较低的湿度能够提高催干剂的蒸发速度,进而加快油墨的干燥。
然而,过高的温度可能导致油墨的快速挥发,降低油墨的质量,造成颜料分离和均匀性不佳。
因此,合理控制印刷室的环境条件对于催干剂的有效使用至关重要。
其次是催干剂的配方和使用方法。
催干剂的种类和浓度选择需要根据印刷材料的特性和要求进行合理搭配。
不同的油墨和印刷基材对催干剂的选择有着不同的需求。
一些油墨材料对特定的催干剂较为敏感,因此需要进行相关的测试和试验。
此外,催干剂的使用方法也会对效果产生影响。
过高的催干剂使用量可能会导致油墨膜的收缩或开裂,从而影响印刷品的质量。
因此,在使用催干剂时需要控制好使用量和添加方式,确保其能够均匀地分布在油墨中。
此外,催干剂的质量和纯度也会对效果产生重要影响。
优质的催干剂可以提供更好的干燥效果和较长的保持时间,从而提高印刷品的质量和产量。
因此,在选择催干剂供应商时,应该考虑其资质和产品品质等因素,选择可靠的供应商和品牌。
总结起来,催干剂在印刷行业中扮演着重要的角色。
湖北泰新科技开发有限公司
水性催干剂说明书
TX-001 产品说明:
本产品为适用于水性树脂体系的复合型氧化性催干剂,具有较强的吸
氧能力,加快漆膜氧化聚合干燥速度,提高硬度、附着力等综合性能。
产品特点:
●适用于可氧化聚合干燥的水性自干树脂体系;
●复合型催干剂,同时快速促进表干与底干;
●优良的储存稳定性及保质性;
技术指标:
使用方法:
高速搅拌下,缓慢加入水性树脂体系中;若树脂加水前先加入本品搅
拌均匀,然后再水性化,则效果更佳。
最佳用量及使用方法需依据用
户情况,试验确定。
包装每桶20公斤,塑料桶包装。
储存0-40℃,密封储存于阴凉处,远离高温和点火源。
自生产之日起,有效储存期为六个月。
超过保质期的产品经检验确认,若合格可继续使用。
备注:技术说明会随产品的品质改进有所调整,请同本公司联系取得最新的产品技术说明。
催干剂在电子产品制造中的应用研究引言:随着科技的不断发展,电子产品在人们的生活中扮演着越来越重要的角色。
为了满足人们对电子产品的需求,电子制造业亦在不断创新。
催干剂作为一种常用的辅助材料,在电子产品制造中发挥着重要的作用。
本文旨在探讨催干剂在电子产品制造中的应用研究。
1. 催干剂的定义和作用催干剂是一种能够加速涂层或粘合剂的干燥速度的化学物质。
它在电子产品制造中的主要作用包括:1) 提高生产效率:催干剂可以加速涂层或粘合剂的干燥速度,从而缩短生产周期,提高生产效率;2) 改善产品质量:通过使涂层或粘合剂更快地干燥,催干剂可以减少粘住、渗透或粉化等问题,从而改善产品质量;3) 降低成本:由于催干剂可以加速涂层或粘合剂的干燥速度,可以减少能源和生产材料的使用量,从而降低成本。
2. 催干剂的种类根据其化学成分和作用机制,催干剂可以分为多种类型:1) 溶剂型催干剂:溶剂型催干剂通过溶解涂层中的溶剂,加快涂层的干燥速度。
它适用于对溶剂敏感性较高的涂层,如水性涂料;2) 界面活性剂型催干剂:界面活性剂型催干剂通过降低涂层表面的表面张力,从而加快溶剂的挥发和涂层的干燥。
它适用于各种类型的涂层,如水性、溶剂性和粉末性涂层;3) 交联型催干剂:交联型催干剂通过与涂层中的树脂发生交联反应,形成更加牢固的网络结构,从而加快涂层的干燥速度。
它适用于需要较快固化和提高耐热性的涂层;4) 纳米催干剂:纳米催干剂通过增加涂层中的活性表面积,加快溶剂的挥发和涂层的干燥。
它适用于需要较快干燥速度和较高耐磨性的涂层。
3. 催干剂在电子产品制造中的应用催干剂在电子产品制造中有广泛的应用,涉及到电子组件的制造、印刷电路板(PCB)的制备以及显示屏和玻璃亚克力等材料的涂覆。
以下为催干剂在不同应用中的具体应用研究:3.1 电子组件的制造电子组件的制造过程中,常常需要进行粘合、封装和涂覆等工艺。
催干剂在这些工艺中的应用研究主要集中在提高粘合剂的干燥速度、降低烘烤温度和改善粘接性能等方面。
催干剂在食品饮料生产中的应用及干燥速度提升效果在食品饮料生产中,干燥是一个非常重要的工艺过程。
干燥的主要目的是去除食品饮料中的水分,保持产品的质量和稳定性。
然而,传统的自然干燥方法往往需要较长时间,而且效果不稳定。
为了提高干燥效率,催干剂被广泛应用于食品饮料生产中,以加快干燥速度并提升产品质量。
催干剂是一种能够吸收或促进水分蒸发的物质。
它可以通过吸湿、溶解水分或改变气体中的湿度和温度等方式来促进干燥过程。
常见的催干剂有二氧化硅、氧化钙、脱水剂等。
这些催干剂在食品饮料生产中起到了重要的作用。
首先,催干剂能够吸湿并降低食品饮料中的相对湿度。
湿度是影响食品饮料干燥速度的关键因素之一。
催干剂中的吸湿分子可以吸收周围环境中的水分,降低空气中的湿度,从而提高食品饮料表面的蒸发速率。
此外,催干剂还可以通过与食品饮料中的水分发生化学反应,将水分分解或结合成固体形式,以加速水分的蒸发。
其次,催干剂能够提供适宜的干燥条件。
干燥条件包括湿度和温度两个方面。
催干剂通过吸湿或释放湿气的方式,可以调节食品饮料周围的湿度,创造适宜的干燥环境。
同时,催干剂还可以吸热或释放热量,从而提高食品饮料的温度,促进蒸发过程的进行。
通过调节湿度和温度,催干剂可以使干燥过程更加迅速和有效。
此外,催干剂还能够改变食品饮料表面的物理性质,提高干燥速度。
例如,催干剂可以使食品饮料表面形成一层薄膜或者形成多孔结构,增加表面积,从而增加水分蒸发的速率。
催干剂还可以改变食品饮料的粘度和流动性,使水分更容易从食品饮料中蒸发出来。
通过改变物理性质,催干剂能够提高干燥速度,并且可以使产品保持良好的口感和质地。
催干剂在食品饮料生产中的应用已经得到了广泛的认可和应用。
例如,对于饼干和面包等烘焙食品,催干剂可以加快面团中水分的蒸发速度,使面包和饼干更加酥脆。
对于果脯和干果等水分含量较高的食品,催干剂可以帮助将水分蒸发掉,延长食品的保质期。
对于果汁、果酱等液体食品,催干剂可以协助去除水分,使其达到所需的浓度。
高效催干剂2-乙基己酸锆的工艺研究及其用途下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!高效催干剂2乙基己酸锆的工艺研究及其用途1. 引言催干剂在现代工业中扮演着重要角色,特别是在涂料和油墨生产中,它们能显著提高涂层的干燥速度和质量。
New tin-free catalysts as alternatives to DBTL and amine-based compounds in modern solventborne Polyurethane clearcoat systemsDietmar Oberste and Dr. Andreas SteinertBorchers GmbH, Langenfeld (Germany)Modern high-end automotive and industrial coatings systems are facing increasingly challenging requirements from the end users’ side. Not only should they create value for the goods produced, they also are expected to enhance the durability of the finished goods, allow for shorter production cycles, and cause no or minimal impact on the environment. The majority of these requirements have been met by existing high performance 1-component and 2-component polyurethane coatings systems, especially in the automotive segment. However, the increasing desire for lower energy consumption and less environmental impact poses a major challenge, even for highly sophisticated coatings systems.The objective of reducing VOC contentand the continuing development of high solids systems, call for low viscous resin binders. These types of binders are made by using low molecular weight polyol and isocyanate components. As a result, drying times for these systems often are longer. However, this problem can be avoided by choosing the proper catalysts. In the past, in addition to tertiary amines, tin-based components were used as cross-linking accelerators. Dibutyltin-dilaurate (DBTL) was the most commonly used accelerator for 1-component and 2-component polyurethane coatings systems. (Figure 1)Comsumption of organotin compounds (March 2000)IntermediatesAntifouling paintsWood preservativesFigure 1-source:…Production and use of organotin compounds in Germany”, report from Dep. of the Environment, Berlin, June 2000 This chart illustrates that the majority of organo-tin compounds are used as stabilizers and catalysts for the production of plastics and coatings. An effort is underway to replace catalysts such as DBTL in many industrial areas with less hazardous alternatives. This is due to the impurities of trioragonic compounds produced during the production process of DBTL. These compounds have shown a high toxic virility with consequences not yet fully determined.For manufacturers of additives and coatings, this created a need to develop alternative catalysts for 1-component and 2-component polyurethane systems that offer a comparable film property profile to DBTL. It has long been known that alternate metal compounds, mainly metal carboxylates, can be used as catalysts for polyurethane reactions. However, compared to DBTL these compounds provide different properties to the coatings regarding dry time, film hardness, coloring, and shelf life durability.New Catalysts for modern high-performance PUR automotive coatingsThis article offers opportunities to the reader on how to achieve a similar property profile in a large area of solvent-borne Polyurethane clearcoats. By using a newly developed product line of tin-free metal carboxylate catalysts, a comparable property profile to DBTL can be achieved. It introduces the entire product line, marketed under the trade name Borchi® Kat, and its individual products as alternatives to DBTL. The study also outlines their typical application properties compared to systems that are catalyzed with DBTL.Borchi® Kat 22 and Borchi® Kat 24 are single metal catalysts based on zinc and bismuth carboxylates. They define themselves through specific properties, different from those that DBTL offers, that allow formulators to achieve very specific characteristics in their coatings. Due to a special production process and a specific chemical modification, it was possible to optimize Borchi Kat® 24 with regard to its activity as a polyurethane catalyst. At the same time, the hazardous virility that the product poses to users was significantly lowered compared to other bismuth carboxylates.Borchi® Kat VP 0243, Borchi® Kat VP 0244 and Borchi® Kat VP 0245 are metal mixed catalysts. Various base metals were combined in a way that they offer new catalytic properties. In addition, in many systems they show a similar reactivity compared to DBTL and a similar property profile in a wide variety of applications. Borchi® Kat VP 0243 and Borchi® Kat VP 0244 were developed for usage in clearcoats, whereas Borchi® Kat VP 0245 was specially developed for use in pigmented coatings systems.Comparison of catalyst systemsTwo of the most important areas of applications for polyurethane catalysts in the coatings segments are automotive OEM and automotive refinish coatings. Products that are used in these areas have to work at the lowest possible energy consumption while offering the shortest possible throughput times. At the same time they are expected to offer optimal coating and film properties. This goal can be achieved by using modern low viscous resins and coatings systems and forced drying of the applied coating. This unfortunately requires relatively high temperatures that can easily reach 60° C to 130° C. Here the industry is looking for ways to reduce these temperatures to <100° C.The following work with a 2-component Polyurethane clearcoat, based on a modern commercially available hydroxyacrylate, shows test results that take these industry requirements into consideration. The forced drying was conducted at 80° C, a temperature that the industry is targeting. In several additional coatings systems that were tested during the developmental work and that for clarity reasons are not included in this paper, we saw comparable results.ExperimentalTo evaluate the application properties and the activity of the catalysts, a model was used to compare a control containing DBTL to the Borchi Kats and a non-catalyzed system. The formulations were tested for pot life (measured as a doubling of the initial flow time in a DIN-cup 4mm), the surface drying time and the through drying time (measured by means of sand drying per DIN 53150 and recorder drying according to ASTM 5895). The films were tested for hardness after forced drying (at 30 Min. / 80C) and room temperature according to pendulum hardness tester Koenig (DIN 53157). For both measurements the coatings were applied to glass with a defined film thickness of 100 µm. A comparison of the drying results at 80° C to room temperature allows for evaluation of the impact of temperature on the activity of the different catalysts. To determine the storage stability of the catalyzed coatings the catalysts were added to the master batch component and stored for 14 days at 50° C. The hardener was added and the coatings were tested according to original testing conditions to determine possible storage related changes in the catalysts’ activity.The clearcoat was tested with the catalysts Borchi® Kat 22, Borchi® Kat 24, Borchi® Kat VP 0243 and Borchi®Kat VP 0244 and compared to DBTL and the non-catalyzed coating. To assure accurate addition all catalysts were diluted to 10% in butylacetate. The formulation used (Table 1) was similar to a starting formulation of Bayer Polymers AG that is used in practice.Table 1: 2K-PUR clearcoat formulation (Bayer Polymers AG, slightly modified)Master batch:% by weight:Desmophen A 870, 70% BAC 51.15 Baysilone OL 17, 10% in Xylene 0.53 Baysilone 3468, 10% in MPA 0.53 Tinuvin 292, 10% in BAC 5.33 Tinuvin 1130, 10% in BAC 10.67 catalyst , 10% in BAC 0.15 MPA / Solvesso 100 (1:1) 10.02 Butylglycol acetate (BGA) 2.13 HardenerDesmodur N 3390, 90% in BAC 19.49 Total100.00Technical data: Solid content ca. 55% Viscosity ca. 25 s Drying conditions 10‘ / RT Forced drying30‘ / 80°CThe formulation for all testing systems was madefollowing the same procedure. One day before the testing was started, the catalyst solutions were added to the master batch component and thoroughly mixed. The master batch component was then split in half. One sample was put in the drying cabinet for storage stability testing and the other sample was immediately tested.Testing resultsThe pot life measurements (DIN-cup 4 mm) showed processability between 1 and 3 hours depending on the catalyst used. After storage for 14 days at 50° C, no significant change in the processability of any of the tested coatings was observed.In the systems including Borchi ® Kat 24 and Borchi ® Kat VP 0244, both showed stronger reactivity compared to DBTL. Both resulted in shorter processability, whereas Borchi ® Kat 22 allowed for a processability of the coating that was twice as long.Table 2: Pot life times of the clearcoats before and after storage (14 days at 50° C)catalyst noneBorchi ® Kat VP 0243 Borchi ® Kat VP 0244 Borchi ® Kat 22 Borchi ® Kat24 DBTL before storage > 4,0 h ca. 1,75 h ca. 1,25 h 3,0 h 1,0 h 1,5 h after storage > 4,0 hca. 1,75 hca. 1,25 h3,0 h1,0 hca. 1,25 hFigure 1: Development of the viscosity of the coatings before and after storageThe observation of the increase in viscosity of the controls provides further important information about the activity of the catalysts. The following graphs (Figure 2) compare the viscosity trends of the coatings catalyzed with DBTL, Borchi ® Kat 24, Borchi ® Kat VP 0243 and Borchi ® Kat VP 0244.Figure 2: Viscosity behavior of the clearcoats using different catalystsThe graph for the coating that is catalyzed with DBTL (Figure 2) initially shows a slow increase of viscosity up to 1.5 hours. After that, a clearly stronger build up of the curve can be observed. After storage the curve shows further significant increase in the viscosity build up, which in practice leads to a reduction in processability. The sample catalyzed with Borchi® Kat 24 shows a slow increase of viscosity up to approximately 1 hour. After reaching twice the Auslaufviskositaet a rapidly occurring crosslinking process can be observed. Yet at the same time, the behavior of Borchi® Kat VP 0243 is characterized by increased catalytic activity. A moderate increase of viscosity is observed over the pot life testing of Borchi® Kat VP 0244. It also shows an even reactivity profile, yet higher activity resulting in a steeper viscosity curve. Both catalysts show little influence on their activity during storage.Another criteria of evaluation is the development of the film hardness after forced drying (30 min. at 80° C). It is an especially important parameter to determine fast processing and the final hardness of the coating, determined after one week. In conjunction with the effort to reduce the baking temperature from 130° C currently to <100°C, the film hardness of the respective coatings system must be built up fast. In addition, the coating systems are expected to offer a film hardness similar to un-catalyzed systems. This currently is not possible under every circumstance.With respect to hardness, our investigation showed that coatings samples catalyzed with DBTL built up a significantly higher initial hardness after forced drying, but a lower final hardness than the un-catalyzed coating. Several, but not all, of the catalysts tested showed this phenomenon (Figure 3).The tests conducted with Borchi® Kat VP 0244 reached a very high initial hardness and, at the same time, reached the final hardness of the uncatalyzed coatings. In a slightly diminished form, the same observations were made for the system that was catalyzed with Borchi® Kat VP 0243.Figure 3: Development of film hardness of the clear coats after forced dryingThe most reactive catalyst, Borchi® Kat 24, shows nearly identical behavior as DBTL with respect to development of film hardness. A very high initial film hardness can be seen in the first 24 hours, but the final film hardness after one week is lower. Finally, the coating that was catalyzed with Borchi® Kat 22 shows film hardness numbers that are analog to the un-catalyzed system.The hardness testing results after storage are essentially the same as the samples tested immediately (Figure 4). Surprisingly, after storage, our tests show that the coating catalyzed with DBTL reaches a higher final filmhardness than the uncatalyzed system. The coatings formulated with Borchi ® Kat VP 0244 and Borchi ® Kat VP 0243 show consistently high film hardness and prove their excellent storage stability. This also applies to Borchi ® Kat 22 and Borchi ® Kat 24 which also has a very consistent property profile after storage.Figure 4: Development of film hardness of systems after storage for 14 days at 50° C (forced drying)The results for drying at room temperature showed a slightly different picture (Figure 5). Here, the films that were catalyzed with Borchi ® Kat 22, Borchi ® Kat 24 and DBTL achieved higher initial film hardness than the uncatalyzed coatings, whereas comparable final film hardness was observed. The other systems showed lower initial hardness values. Borchi ® Kat 22 proved to be the best catalyst to reach the highest possible film hardness at room temperature.Figure 5: Development of film hardness of the clearcoats at room temperatureAfter 14 days of storage at 50°C we did not observe any significant change in the profiles of film hardness of the coatings that were cured at room temperature. Borchi® Kat 22 in particular showed very consistent values. With the other catalysts slightly lower film hardness was found.Another important application property of the coatings systems is their behavior in surface and through drying. These were measured by means of dust-free drying/degree of drying 1 according to DIN 53150 and by using a drying recorder. While this property is less important to users who work with forced drying conditions, it is most important for users in the area of automotive refinish coatings. In this area it is not possible to achieve forced drying by using high temperatures, while still requiring fast blocking resistance, load capacity and processability of the coated parts.In our investigation, all catalyzed systems showed clearly shorter drying times compared to the uncatalyzed clearcoat, before and after storage of the coating. With DBTL and Borchi® Kat 24 the drying time of the surface could be cut in half with both systems showing very similar properties. Compared to the fast drying systems, the other test systems showed a slightly slower drying, yet no or minimal changes after storage (Figure 6).Figure 6: Surface drying deg. 1 (dust-free drying) of the clearcoats before and after storage, DIN 53150The through drying of the coatings systems was examined by using a drying-recorder (ASTM 5895). Here also a significant reduction of the needed drying time of the uncatalyzed systems could be observed. All systems showed comparable drying times of about 4 hours, which is approximately half the drying time of the control system (Figure 7). For the through drying of the samples that were stored at 50°C, values consistent to the unstored materials were measured. Only the system catalyzed with Borchi® Kat 22 showed slightly longer drying times in contrast to the other systems, again confirming its moderate catalytic activity compared to the other products.Figure 7: through drying of the clearcoat systems by means of recorder drying before and after storageSummaryWith the ongoing goal of saving time and expenses, modern 1-component and 2-component Polyurethane coatings for industrial and automotive applications are expected to meet increasingly high standards. The critical aspects among these standards include: 1) lowering the baking temperature at forced drying of coatings system to < 100° C which requires the usage of high performance catalysts and 2) replacing tin-based products as they raise toxicological concerns.Whereas this study examined alternative metal caroboxylates based on single metal carboxylates and newly developed metal combinations. They had to be suitable for usage as polyurethane catalysts for coatings applications and show comparable properties to DBTL. The most important application parameters in the study were processing time, development of viscosity, and film hardness. Surface and through drying were determined based on an automotive OEM and an automotive refinish sample coating. The coatings were cured at room temperature and at slightly increased temperature. Moderate baking conditions were chosen (30 min. at 80° C) to address the ongoing need for lowering the temperature in the curing process.Our tests proved that it is possible to reproduce the wet property profile of the formulation containing DBTL as well as reproduce the properties of the final coating by choosing the correct metal carboxylate catalyst. In addition, it is possible to achieve very specific qualities in the coating by choosing the proper product. With Borchi® Kat 24 the user has a product that, due to its strong catalytic activity, creates an advantage when fast processing of parts is required. At the same time, the result is a film hardness very similar to what DBTL creates and the drying characteristics will be almost identical. Conversely, Borchi® Kat 22 is a moderately reactive catalyst that allows for longer processing times. Its reactivity remains consistent after storage stability creating high final film hardness at room temperature and under baking conditions. It is especially suitable for automotive refinish coatings. The two combination products Borchi® Kat VP 0243 and VP 0244 show only slightly different pot-life times compared to DBTL and offer almost identical properties and processing conditions. Both products demonstrated consistent reaction behavior and excellent storage stability. In general, Borchi® Kat VP 0244 proved to be the product of higher reactivity, reflected in a shorter pot life time and a steeper buildup in viscosity. At the same time it showed similar film hardness development compared to DBTL in both curing methods. Borchi® Kat VP 0243 showed slightly lower film hardness at forced drying, however it reached the highest overall film hardness value under room temperature conditions. Therefore, the catalysts examined offer users a wide range of possibilities as they adjust their systems based on individual requirements.。