开孔泡沫铝压缩力学性能的有限元分析
- 格式:pptx
- 大小:113.51 KB
- 文档页数:7
23期苏华冰,等:基于统计孔径的泡沫铝小变形压缩的有限元模拟分析图4所示。
收钽应变图4线性强化弹塑性材料应力·应变曲线建立一个对泡沫铝块进行压缩实验的二维模型。
考虑到模型的尺寸效应,避免小尺寸带来的随机性和不稳定性,要求模型面积不能太小。
但是,如果模型的面积大,则划分的单元多,运算的时间也会大大地加长。
因此,2一D模型采用20mmX30mm的面积,平面模型上每个方向的最小尺寸为最大孔径的8倍、平均孔径的20倍以上。
表2泡沫铝基体材料性能建立的模型如图5所示,由三部分组成,中间部分是泡沫铝试件,底下是同定的垫板,顶面是只能产生竖直向下位移的压板。
压板和垫板的弹性模量约为泡沫铝基体材料的100倍,而且厚度相对泡沫铝部分较小,所以施加在压板上的竖向位移荷载可以看成只作用在泡沫铝上,压缩变形几乎由泡沫铝部分承受。
模型设定的材料属性如表2所示。
图5泡沫铝压缩实验模型图6网格划分后的泡沫铝局部模型网格划分采用智能网格划分。
智能网格划分在小孔周围,曲率较大的地方将自动进行网格加密。
网格划分等级采用2级。
划分网格后的局部模型如图6所示。
3.2模型应力分析对压板施加位移荷载。
这里以相对密度为o.3的模型为例,对压板施加向下(y轴负方向)的竖向位移。
考虑到要避免模型单元的畸变过大,对模型施加3.8%的压缩应变。
其戈方向应力、Y方向的应力、第一主应力、第三主应力云图(模型局部)如图7~图10所示。
图7髫方向应力云图图8Y方向应力云图图9第一主应力云图图lO第三主应力云图图7和图8中,以孔隙为中心,上下孔壁较多地表现为拉应力(红黄色),左右孔壁则较多地表现为压应力(蓝绿色),说明上下孔壁多处于受拉状态,左右孔壁多处于受压状态。
图9为第一主应力云图,表现为拉应力,较大值(红黄色)大多出现在孔隙的上下孔壁。
这些出现科学技术与工程9卷第一主应力较大值的孔壁大致可以连成一条条的横向受拉带。
图10为第三主应力图,表现为压应力,较大值(蓝绿色)出现在孔隙的左右孔壁。
《泡沫铝合金动态力学性能及其吸能机理的研究》篇一一、引言随着现代工业的快速发展,新型材料的研究与应用逐渐成为科研领域的重要课题。
其中,泡沫铝合金作为一种轻质、高强度的材料,在汽车、航空航天、建筑等领域具有广泛的应用前景。
其独特的结构使得该材料在承受动态冲击时,表现出良好的吸能特性。
本文将就泡沫铝合金的动态力学性能及其吸能机理展开深入研究,旨在为该材料在实际应用中的优化提供理论支持。
二、泡沫铝合金的动态力学性能泡沫铝合金的动态力学性能主要表现在其抗冲击性能和能量吸收能力。
在受到动态冲击时,泡沫铝合金能够通过内部结构的变形来吸收大量的能量,从而保护结构不受损坏。
1. 实验方法为研究泡沫铝合金的动态力学性能,我们采用了落锤冲击实验和SHPB(Split Hopkinson Bar)实验等方法。
通过改变冲击速度和样品尺寸,观察并记录泡沫铝合金在受到不同强度冲击时的变形和能量吸收情况。
2. 实验结果实验结果表明,泡沫铝合金在受到动态冲击时,表现出良好的抗冲击性能和能量吸收能力。
随着冲击速度的增加,泡沫铝合金的变形程度逐渐增大,但并未出现明显的破坏现象。
同时,该材料在吸收能量的过程中,表现出较高的能量吸收效率和稳定的吸能性能。
三、泡沫铝合金的吸能机理泡沫铝合金的吸能机理主要源于其独特的内部结构和材料特性。
在受到冲击时,泡沫铝合金通过内部结构的变形和能量传递,将冲击能量转化为热能和弹性势能,从而实现能量的吸收。
1. 结构特性泡沫铝合金的内部结构由大量的封闭孔洞组成,这些孔洞在受到冲击时能够发生变形和坍塌。
在变形过程中,孔洞之间的相互作用和能量的传递使得材料能够吸收大量的能量。
此外,泡沫铝合金中的合金元素也对其吸能性能起到了重要的影响。
2. 能量传递与转化在受到冲击时,泡沫铝合金通过内部结构的变形和能量的传递,将冲击能量从表面传递至材料内部。
在这个过程中,材料的孔洞发生坍塌和重新排列,将冲击能量转化为热能和弹性势能。
《泡沫铝合金动态力学性能及其吸能机理的研究》篇一一、引言随着现代工业的快速发展,新型材料的研究与应用逐渐成为科研领域的重要课题。
其中,泡沫铝合金作为一种轻质、高强度的材料,在汽车、航空航天、建筑等领域具有广泛的应用前景。
本文旨在研究泡沫铝合金的动态力学性能及其吸能机理,为进一步优化材料性能和拓宽应用领域提供理论依据。
二、泡沫铝合金的制备与性能泡沫铝合金的制备过程主要包括熔铸、发泡、固化等步骤。
通过调整合金成分、发泡剂种类及含量、加工温度等参数,可以制备出具有不同孔隙结构、密度和力学性能的泡沫铝合金。
泡沫铝合金具有优异的力学性能,包括高比强度、高比刚度、良好的抗冲击性能等。
同时,其具有良好的吸能性能,能够在受到冲击时吸收大量能量,减少对结构的影响。
三、动态力学性能研究动态力学性能是评价材料在动态载荷下性能的重要指标。
本文采用落锤冲击试验、SHPB(分离式霍普金森压杆)试验等方法,对泡沫铝合金的动态压缩性能进行了研究。
在落锤冲击试验中,通过改变冲击速度和试样尺寸,观察泡沫铝合金在动态载荷下的应力应变响应。
结果表明,泡沫铝合金在受到冲击时,能够迅速发生变形并吸收大量能量。
在SHPB试验中,通过测量试样的应力波传播速度和应变率,进一步揭示了泡沫铝合金的动态力学行为。
四、吸能机理研究泡沫铝合金的吸能机理主要与其独特的孔隙结构和能量吸收能力有关。
在受到冲击时,泡沫铝合金的孔隙结构能够有效地分散冲击能量,使材料发生塑性变形,从而吸收大量能量。
此外,材料的能量吸收能力还与其微观结构、力学性能等因素密切相关。
通过对比不同孔隙结构、密度和成分的泡沫铝合金的吸能性能,发现孔隙结构和密度对材料的吸能性能具有显著影响。
适当的孔隙结构和密度可以使材料在保证一定强度的基础上,提高吸能性能。
此外,合金成分的优化也可以进一步提高材料的吸能性能。
五、结论本文通过对泡沫铝合金的动态力学性能及其吸能机理的研究,得出以下结论:1. 泡沫铝合金具有优异的动态力学性能和吸能性能,能够在受到冲击时迅速发生变形并吸收大量能量。
开孔泡沫铝材料静态压缩力学性能与吸能特性
黄建峰;曹晓卿
【期刊名称】《锻压装备与制造技术》
【年(卷),期】2011(046)003
【摘要】实验研究了开孔泡沫铝材料静动态压缩过程的力学性能和吸能特性.得到了材料在静态压缩下(1.0×10-3s-1)的微观变形特点.用单位体积的吸能W来表征材料的吸能特性,分析了在静态条件下孔径和材料叠加对泡沫铝材料的应力-应变关系和单位体积吸能的影响规律.
【总页数】4页(P74-77)
【作者】黄建峰;曹晓卿
【作者单位】太原理工大学材料科学与工程学院,山西太原030024;太原理工大学材料科学与工程学院,山西太原030024
【正文语种】中文
【中图分类】TG113.25
【相关文献】
1.镀铜碳纤维增强铝基泡沫材料准静态压缩力学性能及吸能特性 [J], 杜金晶;王斌;曹卓坤;姚广春;梁李斯
2.镀铜碳纤维增强铝基泡沫材料准静态压缩力学性能及吸能特性 [J], 杜金晶;王斌;曹卓坤;姚广春;梁李斯;
3.球形孔泡沫铝合金准静态压缩力学性能 [J], 王展光;徐玉红;杨维汉
4.球形孔开孔泡沫铝的力学特性及准静态压缩变形机制 [J], 王永欢;徐鹏;范志强;
王壮壮
5.泡沫钢填充管的准静态压缩变形模式、力学性能及吸能特性 [J], 张光成;郭超群;闫治坤;周芸;左孝青
因版权原因,仅展示原文概要,查看原文内容请购买。
泡沫铝材料的制备与有限元模拟泡沫铝材料是一种轻质、高强、具有良好吸声和隔热性能的新型功能材料。
由于其独特的优点,泡沫铝材料在许多领域都具有广泛的应用前景,如汽车、航空航天、建筑和国防等。
因此,研究泡沫铝材料的制备技术与有限元模拟对其性能的影响具有重要意义。
泡沫铝材料的制备方法主要有物理发泡法、化学发泡法和机械搅拌法等。
其中,物理发泡法是最常用的方法,其工艺流程如下:将混合物放入模具中,置于一定温度和压力条件下;发泡剂分解产生气体,导致混合物膨胀,形成泡沫铝材料;通过观察泡沫铝材料的泡孔结构,发现泡孔大小、分布和密度等因素对其性能有较大影响。
同时,泡沫铝材料的力学性能也表现出明显的各向异性,其中沿垂直于泡孔方向的性能较好。
有限元模拟是一种常用的数值分析方法,可以用来预测泡沫铝材料的性能。
在有限元模拟过程中,需要选择合适的材料模型、边界条件和有限元软件。
其中,材料模型需要考虑泡沫铝材料的弹性模量、泊松比和密度等参数;边界条件需要考虑材料的受力情况;有限元软件可选择ANSYS、SolidWorks等。
通过有限元模拟,可以得出泡沫铝材料的应力、应变和疲劳寿命等性能指标。
在应力分析中,发泡剂的加入使得泡沫铝材料的应力水平显著降低;在应变分析中,泡沫铝材料的应变主要发生在泡孔内,并且沿泡孔方向的应变最大;在疲劳寿命分析中,泡沫铝材料的疲劳寿命随着泡孔密度的增加而降低。
通过对泡沫铝材料的制备与有限元模拟研究,发现制备过程中的发泡工艺对泡沫铝材料的性能具有重要影响。
同时,有限元模拟结果表明,泡沫铝材料的应力、应变和疲劳寿命等性能指标受到泡孔结构、密度等因素的影响。
然而,目前的研究还存在一些不足之处,如制备过程中工艺参数的控制、有限元模拟中材料模型的精度等问题需要进一步探讨。
为了更好地应用泡沫铝材料,未来的研究方向可以从以下几个方面展开:优化制备工艺:进一步研究发泡工艺中的关键参数,如发泡剂类型、温度和压力等对泡沫铝材料性能的影响,为实现制备过程的优化提供依据。
泡沫金属材料可压缩塑性力学有限元计算公式郭瑞平;黄宏燮;范天佑【摘要】介绍了泡沫金属材料可压缩塑性力学的基本理论;并根据该理论模型推导出三维空间情形、平面应力情形、平面应变和轴对称情形的有限元计算公式.从而为用连续本构模型模拟泡沫金属材料的可压缩塑性行为提供了计算依据.%The compressible plasticity of metal foams are discussed so as to deduce the finite element formula in 3-D space state, plane stress plane, plane strain and axial-symmetry state to demonstrate the contribution of the continuum constitutive model, which is helpful to improve understanding of the plastic compressible mechanical response of metal foams.【期刊名称】《科学技术与工程》【年(卷),期】2011(011)009【总页数】5页(P1897-1901)【关键词】泡沫金属材料;可压缩塑性;连续本构模型;有限元公式【作者】郭瑞平;黄宏燮;范天佑【作者单位】装备指挥技术学院基础部,北京,101416;沈阳军区65053部队五大队,大连,116039;北京理工大学理学院,北京,100081【正文语种】中文【中图分类】O344.2泡沫金属材料具有良好的力学、热学、电学和声学等性质,可用于制造结构材料。
现已广泛应用于汽车工业、航空工业、建筑工业和生物材料等领域[1,2]。
泡沫金属材料同致密材料的根本区别在于它具有大量的亚结构——胞。
胞的存在,使其密度小。
它的密度ρ*与胞壁材料的密度ρs之比(亦称相对密度)例如,Alporas(Al-Ca)泡沫金属的相对密度为胞的效应反映在塑性变形性能上,呈现塑性可压缩性,这点与普通(或经典)塑性不同。
《泡沫铝合金动态力学性能及其吸能机理的研究》篇一一、引言随着现代工业的快速发展,泡沫铝合金作为一种新型的轻质材料,因其独特的物理和力学性能在多个领域得到广泛应用。
尤其在涉及高强度冲击、震动以及能量吸收的场景中,泡沫铝合金的性能尤为重要。
因此,研究其动态力学性能及其吸能机理具有重要的学术价值和实践意义。
本文旨在探讨泡沫铝合金在动态条件下的力学性能及吸能机理,以期为相关领域的研究和应用提供理论支持。
二、泡沫铝合金的动态力学性能泡沫铝合金的动态力学性能主要包括其承受冲击、振动等动态载荷时的力学响应和变形行为。
通过一系列的动态力学实验,可以获得泡沫铝合金在不同冲击速度、不同温度等条件下的应力-应变曲线,从而分析其动态力学性能。
在实验中,我们采用了高速冲击试验机、振动试验机等设备,对泡沫铝合金进行了不同条件下的动态力学测试。
实验结果表明,泡沫铝合金在受到冲击时具有较好的能量吸收能力,且其应力-应变曲线呈现出典型的塑性变形特征。
此外,我们还发现泡沫铝合金的动态力学性能与其组成成分、孔隙率、孔径大小等因素密切相关。
三、泡沫铝合金的吸能机理泡沫铝合金的吸能机理主要涉及材料的微观结构和能量吸收过程。
在受到冲击或振动时,泡沫铝合金内部的孔隙结构能够有效地吸收和分散能量,从而保护材料本身不受损伤。
此外,其塑性变形行为也为其提供了良好的能量吸收能力。
具体而言,当泡沫铝合金受到外力作用时,其内部的孔隙结构会发生压缩、剪切等变形行为,从而消耗大量的能量。
同时,由于泡沫铝合金的孔隙结构具有较好的韧性和延展性,使得其在变形过程中能够承受较大的能量输入。
此外,泡沫铝合金的塑性变形行为也有助于其吸能能力的提高。
四、研究方法及结果分析为了深入探究泡沫铝合金的动态力学性能及其吸能机理,我们采用了多种研究方法。
首先,通过理论分析,建立了泡沫铝合金的力学模型,为后续的实验研究提供了理论依据。
其次,我们利用扫描电子显微镜等设备对泡沫铝合金的微观结构进行了观察和分析,为其吸能机理的研究提供了有力支持。