铸造铝合金力学性能
- 格式:docx
- 大小:37.39 KB
- 文档页数:4
基金项目:云南省社会发展科技计划-科研院所技术开发研究专项(2011CF009)。
作者简介:闫洪(1961-),男,云南大理人,正高级工程师,主要从事金属材料研究工作。
收稿日期:2023-04-15Er 和Ce 对铸造ZL101A 铝合金组织与力学性能的作用对比研究闫洪1,2(1.昆明冶金研究院有限公司,昆明650031;2.中铝集团中央研究院昆明分院,昆明650031)摘要:在ZL101A 铝合金中分别加入稀土元素Er 和Ce ,比较加入两种稀土后合金的组织和力学性能方面的差异。
结果表明:在α-Al 和共晶Si 方面,Er 的细化作用明显优于Ce ,加入Er 可在ZL101A 铝合金中形成更加细小和弥散分布的稀土化合物相,使合金的力学性能有较大程度的提高,其ZL101A (Er )合金的抗拉强度达到188MPa ,伸长率是6.7%,高于ZL101A (Ce )合金。
关键词:ZL101A 铝合金;Er ;Ce ;组织结构;力学性能中图分类号:TG146.21,TG292文献标识码:A文章编号:1005-4898(2023)06-0017-03doi:10.3969/j.issn.1005-4898.2023.06.040前言铝合金的晶粒细化处理是工业生产中重要的工艺方法。
细小均匀的晶粒组织能提高铝合金的力学性能和增强组织致密性,在铝合金中加入稀土元素已成为晶粒细化的有效方法。
Ce 是铝合金常用的稀土元素,但Ce 化合物存在聚集和长大的问题,其细化作用有限;而稀土Er 不仅能提高铝合金的强度,而且能较大程度地改善铝合金的塑性。
目前,国内已分别研究了Ce 和Er 对铝合金的细化作用[1-2],但二者对ZL101A 铝合金的组织和性能的对比研究极为少见,尤其是Er 和Ce 在铝合金中产生稀土化合物的差别还未见报道。
由于稀土有各自的优点和不足,采用合适的稀土元素至关重要,对此,本文以ZL101A 铝合金为基体合金,研究了稀土Er 和Ce 的影响,并对二者的作用进行对比和分析探讨,为进一步优化合金性能提供参考。
铝合金铸造工艺简介一、铸造概论在铸造合金中,铸造铝合金的应用最为广泛,是其他合金所无法比拟的,铝合金铸造的种类如下:由于铝合金各组元不同,从而表现出合金的物理、化学性能均有所不同,结晶过程也不尽相同。
故必须针对铝合金特性,合理选择铸造方法,才能防止或在许可范围内减少铸造缺陷的产生,从而优化铸件。
1、铝合金铸造工艺性能铝合金铸造工艺性能,通常理解为在充满铸型、结晶和冷却过程中表现最为突出的那些性能的综合。
流动性、收缩性、气密性、铸造应力、吸气性。
铝合金这些特性取决于合金的成分,但也与铸造因素、合金加热温度、铸型的复杂程度、浇冒口系统、浇口形状等有关。
(1) 流动性流动性是指合金液体充填铸型的能力。
流动性的大小决定合金能否铸造复杂的铸件。
在铝合金中共晶合金的流动性最好。
影响流动性的因素很多,主要是成分、温度以及合金液体中存在金属氧化物、金属化合物及其他污染物的固相颗粒,但外在的根本因素为浇注温度及浇注压力(俗称浇注压头)的高低。
实际生产中,在合金已确定的情况下,除了强化熔炼工艺(精炼与除渣)外,还必须改善铸型工艺性(砂模透气性、金属型模具排气及温度),并在不影响铸件质量的前提下提高浇注温度,保证合金的流动性。
(2) 收缩性收缩性是铸造铝合金的主要特征之一。
一般讲,合金从液体浇注到凝固,直至冷到室温,共分为三个阶段,分别为液态收缩、凝固收缩和固态收缩。
合金的收缩性对铸件质量有决定性的影响,它影响着铸件的缩孔大小、应力的产生、裂纹的形成及尺寸的变化。
通常铸件收缩又分为体收缩和线收缩,在实际生产中一般应用线收缩来衡量合金的收缩性。
铝合金收缩大小,通常以百分数来表示,称为收缩率。
①体收缩体收缩包括液体收缩与凝固收缩。
铸造合金液从浇注到凝固,在最后凝固的地方会出现宏观或显微收缩,这种因收缩引起的宏观缩孔肉眼可见,并分为集中缩孔和分散性缩孔。
集中缩孔的孔径大而集中,并分布在铸件顶部或截面厚大的热节处。
分散性缩孔形貌分散而细小,大部分分布在铸件轴心和热节部位。
各种铸造铝合金牌号的主要特点及应用Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998各种铸造铝合金牌号的主要特点及用途ZL101的特点是成分简单,容易熔炼和铸造,铸造性能好,气密性好、焊接和切削加工性能也比较好,但力学性能不高。
适合铸造薄壁、大面积和形状复杂的、强度要求不高的各种零件,如泵的壳体、齿轮箱、仪表壳(框架)及家电产品上的零件等。
主要采用砂型铸造和金属型铸造。
Zl101A由于是在ZL101的基础上加了微量Ti,细化了晶粒,强化了合金的组织,其综合性能高于Zl101、ZL102,并有较好的抗蚀性能,可用作一般载荷的工程结构件和摩托车、汽车及家电、仪表产品上的各种结构件的优质铸件。
其使用量目前仅次于ZL102。
多采用砂型和金属型铸造。
(ZL101A合金是以ZL101合金为基础严格控制杂质含量,改进铸造技术可以获得更高的力学性能。
铸造性能,耐腐蚀性能和焊接性良好。
用于铸造各种壳体零件,飞机的泵体、汽车变速箱、燃油箱的弯管等)Zl102这种合金的最大特点是流动性好,其它性能与ZL101差不多,但气密性比ZL101要好,可用来铸造各种形状复杂、薄壁的压铸件和强度要求不高的薄壁、大面积、形状复杂的金属或砂型铸件。
不论是压铸件还是金属型、砂型铸件,都是民用产品上用得最多的一个铸造铝合金品种。
Zl104因其工晶体量多,又加入了Mn,抵消了材料中混入的Fe有害作用,有较好的铸造性能和优良的气密性、耐蚀性,焊接和切削加工性能也比较好,但耐热性能较差,适合制作形状复杂、尺寸较大的有较大负荷的动力结构件,如增压器壳体、气缸盖,气缸套等零件,主要用压铸,也多采用砂型和金属型铸造。
Zl105、ZL105A由于加入了Cu,降低了Si的含量,其铸造性能和焊接性能都比ZL104差,但室温和高温强度、切削加工性能都比ZL104要好,塑性稍低,抗蚀性能较差。
适合用作形状复杂、尺寸较大、有重大负荷的动力结构件。
铸造高强铝合金的焊接性能ZL~107A铸造铝合金是Al~Si~Cu系铸造高强铝合金。
经T5状态热处理后强度可达σb=420~470MPa.在制造大型、高强、复杂关键的工程结构出现缺陷时需要补焊。
其焊缝亦要求和母材等强度。
因ZL~107A系在ZL~107基础上通过添加多元微量元素合金化而成,对ZL~107A铸造合金的成分、组织、性能及焊接工艺进行了研究。
随着现代工程结构向大型、复杂、高强度发展,优质铝合金铸件应用日益增多。
对铝合金的综合性能提出了更高的要求。
它集中体现在要求具有较高力学性能的同时,又要具有优异的铸造性能。
Al-Si-Cu系铸造铝合金结合了Al-Cu 系合金力学性能好和Al-Si系铸造铝合金铸造性能好的优点,因而一直是铸造高强铝合金的研究重点。
美国的BAE354,前苏联的B124均属Al-Si-Cu系高强铸造铝合金,具有优异的力学性能和良好的铸造性能。
我国的ZL-107亦属此系合金。
ZL-107中含Cu量较高,故合金的性能还有潜力可挖。
通过添加Mg、Zn、Cu、Ti等多种微量元素对合金进行综合强化,获得了一种铸造高强铝合金ZL-107A.合金性能由原来的σb=280~320MPa,σ0.2=210~230MPa,δs=3%~4%分别提高到σb=420~470MPa,σ0.2=325~390MPa,δs=4%~6%,从而使该合金在现代大型、复杂铝合金铸件的生产上获得应用。
但是,该种合金的可焊性如何,需要通过焊接工艺进行检验。
1 合金的成分合金的成分如表1所示。
将试件预热到200~250℃,采用较小电流以待焊处表面刚出现发亮的液斑时填入焊丝熔滴,待熔滴刚润湿焊缝时即将焊缝处电弧向前移动。
这样焊的结果是熔池凝固速度快。
晶粒较细,有利于提高焊缝的机械性能。
这种焊接工艺采用的电流约为180A左右。
从母材的成分看来,该系Al-Si-Cu合金,Si和Cu对焊接性无不利影响。
而Mg含量在0.1%~0.2%之间,其含量较小,也对焊接性影响不大。
铝合金AC7A【1】根据标准JIS H 5202-1992AC7A化学成分(质量分数,%)铝(Al) 余量铜(Cu)≤0.10硅(Si)≤0.20镁(Mg)3.6~5.5锌(Zn)≤0.15铁(Fe)≤0.25锰(Mn)≤0.6镍(Ni)≤0.05钛(Ti)≤0.20铅(Pb)≤0.05锡(Sn)≤0.05铬(Cr)≤0.15【力学性能】AC7A铸造铝合金(金属型)抗拉强度/MPa不小于:210伸长率/%不小于:12以上布氏硬度HB(10/500):约60AC7A铸造铝合金(砂型)抗拉强度/MPa不小于:140以上伸长率/%不小于:6以上布氏硬度HB(10/500):约50【特性及用途】AC7A(含镁3.5%~5%)合金的耐蚀性,特别是对海水的耐蚀性好,容易进行阳极氧化而得到美观的薄膜。
在铝镁系合金中,它是伸长率最大、切削性也好的合金。
但熔化、铸造比较困难。
AC7A铝合金耐腐蚀、韧性、阳极化性能好,铸造性能差,用于架线、配件船舶零件、把手、雕刻坯料、办公器具及飞机电器安装用品等。
相当于中国的ZL302[2]ZL302的化学成分【3】:Si 0.8-1.3%,Mg 4.5-5.5%,Mn 0.1-0.4%,其余为Al,杂质:(不大于%)S 0.5,Cu 0.1,Zn 0.2,Ti 0.2砂型铸造杂质总量为0.7.【1】铝合金AC7A 百度-百科/view/3346416.html【2】铸造铝中外牌号对照/view/50b7513283c4bb4cf7ecd11e.html 【3】铸造有色合金及其熔炼p260国防科技出版社1982年。
各种牌号铸造铝合金的主要特点及用途ZL101的特点是成分简单,容易熔炼和铸造,铸造性能好,气密性好、焊接和切削加工性能也比较好,但力学性能不高。
适合铸造薄壁、大面积和形状复杂的、强度要求不高的各种零件,如泵的壳体、齿轮箱、仪表壳(框架)及家电产品上的零件等。
主要采用砂型铸造和金属型铸造。
Zl101A由于是在ZL101的基础上加了微量Ti,细化了晶粒,强化了合金的组织,其综合性能高于Zl101、ZL102,并有较好的抗蚀性能,可用作一般载荷的工程结构件和摩托车、汽车及家电、仪表产品上的各种结构件的优质铸件。
其使用量目前仅次于ZL102。
多采用砂型和金属型铸造.Zl102这种合金的最大特点是流动性好,其它性能与ZL101差不多,但气密性比ZL101要好,可用来铸造各种形状复杂、薄壁的压铸件和强度要求不高的薄壁、大面积、形状复杂的金属或砂型铸件。
不论是压铸件还是金属型、砂型铸件,都是民用产品上用得最多的一个铸造铝合金品种。
Zl104因其工晶体量多,又加入了Mn,抵消了材料中混入的Fe有害作用,有较好的铸造性能和优良的气密性、耐蚀性,焊接和切削加工性能也比较好,但耐热性能较差,适合制作形状复杂、尺寸较大的有较大负荷的动力结构件,如增压器壳体、气缸盖,气缸套等零件,主要用压铸,也多采用砂型和金属型铸造.Zl105、ZL105A由于加入了Cu,降低了Si的含量,其铸造性能和焊接性能都比ZL104差,但室温和高温强度、切削加工性能都比ZL104要好,塑性稍低,抗蚀性能较差.适合用作形状复杂、尺寸较大、有重大负荷的动力结构件。
如增压器壳体、气缸盖、气缸套等零件.Zl105A是降低了ZL105的杂质元素Fe的含量,提高了合金的强度,具有比ZL105更好的力学性能,多采用铸造优质铸件。
ZL106由于提高了Si的含量,又加入了微量的Ti、Mn,使合金的铸造性能和高温性能优于ZL105气密性、耐蚀性也较好,可用作一般负荷的结构件及要求气密性较好和在较高温度下工作的零件,主要采用砂型和金属型铸造.ZL107ZL107有优良的铸造性能和气密性能,力学性能也较好,焊接和切削加工性能一般,抗蚀性能稍差,适合制作承受一般动负荷或静负荷的结构件及有气密性要求的零件。
铸造铝合金热处理质量缺陷及其消除与预防铝合金铸件热处理后常见的质量问题有:力学性能不合格、变形、裂纹、过烧等缺陷,对其产生原因和消除与预防方法分述如下。
〔1〕力学性能不合格通常表现为退火状态伸长率〔6 5〕偏低,淬火或时效处理后强度和伸长率不合格。
其形成的原因有多种:如退火温度偏低、保温时间缺乏,或冷却速度太快;淬火温度偏低、保温时间不够,或冷却速度太慢〔淬火介质温度过高〕;不完全人工时效和完全人工时效温度偏高,或保温时间偏长;合金的化学成分出现偏差等。
消除这种缺陷,可采取以下方法:再次退火,提高加热温度或延长保温时间;提高淬火温度或延长保温时间,降低淬火介质温度;如再次淬火,则要调整其后的时效温度和时间;如成分出现偏差,则要根据具体的偏差元素、偏差量,改变或调整重复热处理的工艺参数等。
〔2〕变形与翘曲通常在热处理后或随后的机械加工过程中,反映出铸件尺寸、形状的变化。
产生这种缺陷的原因是:加热升温速度或淬火冷却速度太快〔太剧烈〕;淬火温度太高;铸件的设计构造不合理〔如两连接壁的壁厚相差太大,框形构造中加强筋太薄或太细小〕;淬火时工件下水方向不当及装料方法不当等。
消除与预防的方法是:降低升温速度,提高淬火介质温度,或换成冷却速度稍慢的淬火介质,以防止合金产生剩余应力;在厚壁或薄壁部位涂敷涂料或用石棉纤维等隔热材料包覆薄壁部位;根据铸件构造、形状选择合理的下水方向或采用专用防变形的夹具;变形量不大的部位,则可在淬火后立即予以矫正。
〔3〕裂纹表现为淬火后的铸件外表用肉眼可以看到明显的裂纹,或通过荧光检查肉眼看不见的微细裂纹。
裂纹多曲折不直并呈暗灰色。
产生裂纹的原因是:加热速度太快,淬火时冷却太快〔淬火温度过高或淬火介质温度过低,或淬火介质冷却速度太快〕;铸件构造设计不合理〔两连接壁壁厚差太大,框形件中间的加强筋太薄或太细小〕;装炉方法不当或下水方向不对;炉温不均匀,使铸件温度不均匀等。
消除与预防的方法是:减慢升温速度或采取等温淬火工艺;提高淬火介质温度或换成冷却速度慢的淬火介质;在壁厚或薄壁部位涂敷涂料或在薄壁部位包覆石棉等隔热材料;采用专用防开裂的淬火夹具,并选择正确的下水方向。
作业1:请采用分析与综合的方法,谈谈如何提高近共晶Al-Si铸造合金的力学性能?答:先从以下几个方面进行分析(1)Al的性能。
铝是一种银白色轻金属,它的密度很小,仅为2.7 g/cm3;铝比较软,但可制成各种铝合金,如硬铝、超硬铝、防锈铝、铸铝等;铝有较好的延展性,它的延展性仅次于金和银;耐低温,铝在温度低时,它的强度反而增加而无脆性;铝的弹性模量为70Gpa,泊松比为0.33。
(2)Si的性能。
硅硬而有金属光泽,它的密度为2.32-2.34 g/cm3;单晶硅(100)的弹性模量为140~150GPa;高纯的单晶硅是重要的半导体材料,在单晶硅中掺入微量的第IIIA 族元素,可形成p型硅半导体,掺入微量的第VA族元素,可形成n型半导体;硅有机化合物是一种多功能材料,被广泛运用。
(3)铸造合金的概念。
适于熔融状态下充填铸型获得一定形状和尺寸铸件毛坯的合金称为铸造合金,因此这种合金需要一定的铸造性能——较好流动性,较小收缩性、偏析和吸气性。
(4)优良铸造性能对铸造合金的力学性能的影响。
在铸造过程中,流动性好的合金有利于液态金属中的夹杂物和气体上浮排除,并且能够使铸件的凝固收缩部分及时得到液态合金的补充,从而减少产生缩孔。
收缩性小的合金能减少铸件产生缩孔、铸造内应力、变形、裂纹等缺陷。
吸气性小的合金可以减少铸件的气孔,而偏析较大的铸件化学成分不均匀,降低力学性能,易热裂和疲劳。
(5)近共晶合金的概念。
在共晶温度下,液相通过共晶凝固同时结晶出两个固相,这样的两相的混合物称为共晶组织或共晶体。
接近共晶点成分,凝固组织大部分由共晶体组成的合金就称为共晶合金。
(6)共晶合金的优良铸造性能。
共晶成分合金的结晶是在恒温下进行的,结晶过程从表面开始向中心逐层推进。
由于凝固层的内表面比较平滑,对尚未凝固的液态合金流动的阻力小,有利于合金充填型腔。
此外,在相同的浇注温度下,共晶成分合金凝固温度最低,相对来说液态合金的过热度大,推迟液态合金的凝固,因此合金的流动性最好。
铁含量对压铸铝合金力学性能的影响摘要:铝合金压铸过程中,除了铁素体会消耗一部分合金元素外,还会发生一些化学反应。
在生成第二相的同时,还会生成一些新的化合物。
这些化合物在压铸过程中不仅会对合金的强度产生一定的影响,还会对压铸件的耐蚀性产生不利的影响。
因此,在合金中添加铁元素可以有效地细化合金晶粒,提高合金的力学性能。
在铝合金中添加铁元素可以明显地提高铝合金的强度、塑性和耐蚀性,但对其力学性能和耐蚀性有较大的影响。
因此,需要在不改变铝合金基体组织和化学成分的前提下,合理选择铁元素含量来改善铝合金压铸件的力学性能和耐蚀性。
关键词:铁;压铸铝合金;机械性能;铁含量;强度前言:压铸技术具有许多独特的优点,在改善有色金属合金铸件的精度、生产效率和表面质量上具有很大的优越性。
众所周知,为了提高金属材料的力学性能,通常会在压铸铝合金中添加中铁,然而,由于铁的存在,一方面可以阻止模具粘结,另一方面又会导致材料的延展性和冲击韧度下降,所以,需要对其进行严格的控制。
1细化晶粒由于合金元素对晶粒细化有一定的影响,因此可以在不改变铝合金基体组织的前提下,适当降低合金中铁的含量来达到细化合金晶粒的目的。
当铁的含量为0.1%~0.25%时,可以显著地提高合金的力学性能。
同时,当铁的含量为0.20%~0.25%时,合金具有更好的机械性能,尤其是在硬度和耐磨性方面。
实验结果表明:当铁元素的含量为0.1%时,铝合金具有最佳性能;当铁元素含量为0.15%~0.25%时,铝合金具有最好性能;当铁元素含量为0.15%~0.25%时,合金具有最佳机械性能;当铁元素含量为0.20%~0.25%时,合金具有最好力学性能。
2细化铸造裂纹合金中添加铁元素可以提高铝液的流动性,从而使铝液更容易通过压铸件的凝固区域,同时铁元素可以与铝相结合形成FeAl3,FeAl3可以起到细化晶粒的作用。
因为颗粒状的FeAl3在合金中会阻碍铝液和型壳的接触,从而降低铝液的流动性,使得铝液更容易通过凝固区域,因此降低了铝液在凝固区域的过冷度,提高了铝液在凝固过程中的流动性,从而改善了铝合金压铸件的组织结构和力学性能。
摘要:研究了铸造A356-T6铝合金板不同位置处的拉伸性能。
采用扫描电子显微镜和光学显微镜对拉伸断口及断口纵剖面的组织形貌进行了观察分析。
试验结果表明,铸造A356一T6铝合金的拉伸屈服强度随离浇道口平面距离的增加而减小,断裂强度则是先减小然后再增大,而延伸率随高度变化不明显。
铸造A356-T6铝合金的平均屈服强度、断裂强度、延伸率和断面收缩率分别为2l6.64 MPa,224 MPa,1.086%和0.194%。
断口分析表明拉伸断口的表面分布着杂质、孔洞、铸造缩孔和氧化膜等缺陷,断口表面也存在开裂的由碳、氧、铁、镁、铝和硅元素形成的复合粒子。
铸造A356-T6铝合金在拉伸过程中,裂纹萌生于共晶硅粒子与基体结合处,并沿枝晶胞之间的共晶区域进行扩展,当前进的裂纹遇到取向不一致的共晶硅粒子时,裂纹将截断共晶硅粒子。
铸造A356-T6铝合金拉伸断裂方式为沿胞(即穿晶)断裂的准解理断。
关键词:铸造A356铝合金:A1-7%Si-0.4Mg;拉伸性能;断裂机制:断口形貌1 前言铸造铝合金由于具有优异的铸造性能,良好的耐腐蚀性,高的强重比和铸件制造成本低,能够近终成型等特点,在汽车和航空工业上得到了日益广泛的应用[1-4],其中A1.Si7.Mg(A356)铸造铝合金通常用来制备汽车气缸盖及发动机滑块构件[5]。
铸造铝合金构件的主要问题是存在孔隙、氧化物和非金属夹杂物等缺陷[4],这些缺陷强烈影响构件的服役性能。
铸造A356铝合金的力学性能取决于构件中相的特性及其分布,缺陷的性质、数量和尺寸。
尽管铸造A356铝合金的力学性能及其疲劳性能得到了广泛的研究[4-9],但仍然有一些问题有待于进一步研究予以澄清,比如,铸造铝合金在拉伸过程中裂纹的萌生及其扩展的定量分析有待进一步的建立。
在疲劳载荷加载中,短裂纹扩展行为取决于应力状态和组织结构特征,比如,硅粒子和α-Al形态、分布及其大小,缺陷的性质、分布、数量及其大小。
汽车车轮用铸造铝合金1 范围本文件规定了汽车车轮用铸造铝合金的牌号与代号、技术要求、试验方法、检测规则、标志、包装、运输和贮存。
本文件适用于金属型铸造的汽车车轮用铸造铝合金的生产与检验。
2 规范性引用文件下列文件中的内容通过文中的规范性引用而构成本文件必不可少的条款。
其中,注日期的引用文件,仅该日期对应的版本适用于本文件;不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。
GB/T 228.1 金属材料拉伸试验第1部分:室温试验方法GB/T 231.1 金属材料布氏硬度试验第1部分: 试验方法GB/T 1173 铸造铝合金GB/T 3246.2 变形铝及铝合金制品组织检验方法第2部分:低倍组织检验方法GB/T 7999 铝及铝合金光电直读发射光谱分析方法GB/T 8063 铸造有色金属及其合金牌号表示方法GB/T 8170 数值修约规则与极限数值的表示和判定GB/T 20975.3 铝及铝合金化学分析方法第3部分:铜含量的测定GB/T 20975.4 铝及铝合金化学分析方法第4部分:铁含量的测定邻二氮杂菲分光光度法GB/T 20975.7 铝及铝合金化学分析方法第7部分:锰含量的测定高碘酸钾分光光度法GB/T 20975.8 铝及铝合金化学分析方法第8部分:锌含量的测定GB/T 20975.10 铝及铝合金化学分析方法第10部分:锡含量的测定GB/T 20975.11 铝及铝合金化学分析方法第11部分:铅含量的测定火焰原子吸收光谱法GB/T 20975.14 铝及铝合金化学分析方法第13部分:镍含量的测定GB/T 20975.18 铝及铝合金化学分析方法第18部分:铬含量的测定GB/T 20975.21 铝及铝合金化学分析方法第21部分:钙含量的测定GB/T 20975.31 铝及铝合金化学分析方法第31部分:磷含量的测定钼蓝分光光度法GB/T 30512 汽车禁用物质要求JB/T 7946.3 铸造铝合金金相第3部分:铸造铝合金针孔3 术语和定义本文件没有需要界定的术语和定义。
多级时效对新型高强铸造铝合金组织和性能的影响新型高强铸造铝合金是一种具有优异的物理性能和化学性能的铝合金,受到了广泛的关注和应用。
其组织和性能会受到多个因素的影响,其中之一便是时效。
这篇文章将从多个方面探讨时效对新型高强铸造铝合金组织和性能的影响。
首先,时效对新型高强铸造铝合金的组织结构有着明显的影响。
时效过程中,铝合金的固溶体中的成分会发生改变,从而影响其晶体结构。
此外,时效过程中还会形成新的相,如富于镍和硬质铝化物等。
这些相的形成会影响铝合金的晶粒尺寸、分布以及形貌等。
其次,时效对新型高强铸造铝合金的力学性能也有着明显的影响。
经过适当的时效处理后,新型高强铸造铝合金的屈服强度、抗拉强度、伸长率等性能指标都会得到提高。
这是因为时效过程中,新相的形成和晶粒尺寸的变化都会使得铝合金的晶界更加强化,从而提高其力学性能。
另外,时效还会对新型高强铸造铝合金的抗腐蚀性能产生影响。
合适的时效处理可以促进新型高强铸造铝合金中镉、镍等元素与铝的固溶度的变化,使得材料的抗腐蚀性能得到提高。
而不当的时效处理则可能导致铝合金中杂质元素的聚集,进而影响其抗腐蚀性能。
此外,对新型高强铸造铝合金的成形性能也会产生影响。
时效的处理会影响铝合金的硬度和塑性等性能,从而影响其冲压成形等加工工艺的适应性。
因此,在铝合金的加工过程中必须充分考虑时效处理的影响,尽量选择合适的时效工艺。
综上所述,时效是影响新型高强铸造铝合金组织和性能的一个重要因素。
合适的时效处理可以使铝合金的机械性能、抗腐蚀性能和加工性能等得到提高,但不当的时效处理则可能导致组织不稳定、抗腐蚀性能下降等问题。
因此,在工程实践中必须根据具体情况选择合适的时效工艺进行处理。
针对新型高强铸造铝合金的时效影响,已有许多实验和研究进行了相关的数据统计和分析。
下面将就其组织、力学性能和抗腐蚀性能等方面的数据进行简要分析。
一、时效对新型高强铸造铝合金组织结构的影响实验发现,经过一定时效处理的新型高强铸造铝合金,其晶粒尺寸、分布和形貌都有所变化。
铸造铝合金1简介1.1材料功能铸造铝合金具有低密度、比强度较高、抗蚀性好和受零件结构设计限制小等优点,用以生产pack或模组所需要的结构件,例如压铸下箱体、压铸支架、模组端板。
1.2范围本标准规定了铸造铝合金的通用性技术要求、测试要求、使用要求及包装运输要求。
适用于丛林精密铸造铝合金零件的验证及验收。
1.3材料编号命名规则CMM.A380.X.Y┃ ┃┃┃┃┃┃┗ Y 代表表面处理方式,1-钝化,2-阳极氧化,如果无表面处理,不用注释┃┃┗ ━X代表热处理方式具体代号见表1.1┃┗━━━A380代表材料牌号┗━━━━━C代表丛林精密,M代表Material,M代表金属Metal举例:CMM. A380.F:代表丛林精密铸造铝合金,材料牌号是A380,材料状态是铸态。
铸造铝合金的热处理状态代号、类别及特性如下表1.1所示:表1.1合金热处理状态代号、类别及特性热处理状态代号 热处理状态类别 特 性——F 铸态T1 人工时效 对湿砂型、金属型、特别是压铸件由于冷却速度较快,有部分固溶效果。
扔时效可提高强度、硬度、改善切削加工性能。
T2 退火 消除铸件在铸造加工过程中产生的应力,提高尺寸稳定性及合金的塑性。
T4 固溶处理加自然时效 通过加热保温及快速冷却实现固溶强化以提高合金的力学性能,特别是提高合金的塑性及常温工作下合金的抗腐蚀性能。
T5 固溶处理加不完全人工时效 固溶处理后进行不完全人工时效,时效是在较低的温度或较短时间下进行。
目的是进一步提高合金的强度和硬度。
T6 固溶处理加完全人工时效 可获得最高的抗拉强度但塑性有所下降。
时效在较高温度或较长时间下进行。
T7 固溶处理加稳定化处理 提高铸件组织及尺寸稳定性和合金的抗腐蚀性能。
主要用于较高温度下工作的零件,稳定化处理温度可接近于铸件工作温度。
T8 固溶处理加软化处理 固溶处理后采用高于稳定化处理的温度,获得高塑性和尺寸稳定性好的铸件。
T9 冷热循环处理 充分消除铸件内应力及稳定尺寸。
各种牌号铝合金的主要特点及用途((铸铝)【ZL101】 ZL101的特点是成分简单,容易熔炼和铸造,铸造性能好,气密性好、焊接和切削加工性能也比较好,但力学性能不高。
适合铸造薄壁、大面积和形状复杂的、强度要求不高的各种零件,如泵的壳体、齿轮箱、仪表壳(框架)及家电产品上的零件等。
主要采用砂型铸造和金属型铸造。
【Zl101A】由于是在ZL101的基础上加了微量Ti,细化了晶粒,强化了合金的组织,其综合性能高于Zl101、ZL102,并有较好的抗蚀性能,可用作一般载荷的工程结构件和摩托车、汽车及家电、仪表产品上的各种结构件的优质铸件。
其使用量目前仅次于ZL102。
多采用砂型和金属型铸造。
【Zl102】这种合金的最大特点是流动性好,其它性能与ZL101差不多,但气密性比ZL101要好,可用来铸造各种形状复杂、薄壁的压铸件和强度要求不高的薄壁、大面积、形状复杂的金属或砂型铸件。
不论是压铸件还是金属型、砂型铸件,都是民用产品上用得最多的一个铸造铝合金品种。
【Zl104】因其工晶体量多,又加入了M n,抵消了材料中混入的Fe有害作用,有较好的铸造性能和优良的气密性、耐蚀性,焊接和切削加工性能也比较好,但耐热性能较差,适合制作形状复杂、尺寸较大的有较大负荷的动力结构件,如增压器壳体、气缸盖,气缸套等零件,主要用压铸,也多采用砂型和金属型铸造。
【Zl105、ZL105A】由于加入了Cu,降低了Si的含量,其铸造性能和焊接性能都比ZL104差,但室温和高温强度、切削加工性能都比ZL104要好,塑性稍低,抗蚀性能较差。
适合用作形状复杂、尺寸较大、有重大负荷的动力结构件。
如增压器壳体、气缸盖、气缸套等零件。
Zl105A是降低了ZL105的杂质元素Fe的含量,提高了合金的强度,具有比ZL105更好的力学性能,多采用铸造优质铸件。
【ZL106】由于提高了Si的含量,又加入了微量的Ti、M n,使合金的铸造性能和高温性能优于ZL105气密性、耐蚀性也较好,可用作一般负荷的结构件及要求气密性较好和在较高温度下工作的零件,主要采用砂型和金属型铸造。
就传统制造行业来说,普遍用到的铸造铝合金分为两大类。
一类是铝硅合金(如ZL101),可使用热处理强化后提高强度,延伸塑性[1]。
该合金的铸造性能优良,流动性好,较小的线收缩率,较低的热裂倾向,较高的气密性,但有产生缩孔的隐患,广泛应用于我国船舰雷达天线底座、泵外壳、齿轮箱、仪表壳等地方。
铝硅合金对海水腐蚀抗性较差,即便涂了防腐漆,也容易产生不规律的点片腐蚀。
另一类则是铝镁合金(如ZL301)对海水具有较强的抗腐蚀性能,铸造性能相对较差,且存在应力腐蚀倾向。
这两类铸造铝合金均不能满足舰船某些构件的应用需要。
因此,研制一种新型铸造铝合金,使其铸造工艺性能、力学性能及耐蚀性(包括抗应力腐蚀性能)等综合性能良好,满足舰船用铸造合金的要求,具有重大的国防意义[2]。
1 试验试验材料为A(ZL101,Al-7.1%Si-0.3%Mg)、B(ZL301,Al-10.0%Mg-0.09%Ti)及新近研制开发的低镁低硅铝合金C(Al-2.5%Si-2.1%Mg-0.8%Mn-0.2%Cr),均为砂型铸造[3],分别通过细砂铸件铸造铝合金板试验,浇注温度为750℃。
浇注前,在650℃熔融金属液脱气30min,遵循T4热处理原则对铝合金板进行热处理工艺;再将铸造铝合金板制成可供拉伸的初品,并严格按照国际标准加工成拉伸样本。
拉伸试验是在室温环境下进行,加载速率0.008s-1,使用引伸计测得屈服强度、断裂强度、延伸率。
然后,采用TESCANVEGA2扫描电镜观察拉伸试样断口的形貌,均匀地将环氧树脂涂抹于拉伸断口,起到保护作用。
利用线切割将铸造A356-T6合金板切割成1mm厚的薄片,用粗细不同的金相砂纸对薄片进行抛光,使试样两面成镜面状,待薄片厚度降低到60μm左右后,再用2.5µm的金相液进行双喷,最后用0.5%的氢氟酸溶液腐蚀制备出可以透射电子显微镜的试样[4]。
置于JEM-200CX型透射电子显微镜下分别观察3种合金的断口纵剖面的组织形貌。
铸造铝合金力学性能
铝合金的力学性能与其合金分类、铸造方法、热处理状态等因素有关。
合金代号是由“ZL”和三个数字组成,其中第一
位数字表示合金系列,第二、三位数字表示顺序号。
优质合金在代号后附加字母“A”。
铸造方法有砂型、金属型和熔模铸造。
热处理状态包括铸态、人工时效、退火、固溶处理加自然时效、固溶处理加人工时效和稳定化处理。
不同的热处理状态可提高合金的强度、硬度、塑性和抗腐蚀性能。
铝硅系铸造铝合金的力学性能如下表所示:合金牌号为ZAlSi7MgZL101、ZAlSi7MgAZL101A、ZAlSi12ZL102和
ZAlSi9MgZL104,铸造方法包括砂型、金属型和熔模铸造,
热处理状态包括铸态、人工时效、退火、固溶处理加自然时效、固溶处理加人工时效和稳定化处理。
其中,
ZAlSi7MgAZL101A在代号后附加字母“A”,表明是优质合金。
不同的铸造方法和热处理状态对合金的力学性能有影响,需要根据具体情况选择合适的工艺。
抗拉强度Rm/MPa、伸长率A/%、布氏硬度HBW是衡量
合金材料性能的重要指标。
以下是各种合金状态下的性能参数:
合金牌号合金代号铸造方法合金状态抗拉强度Rm/MPa 伸长率A/% 布氏硬度HBW
ZAlSi5Cu1Mg ZL105J SB、RB、KB F 155 2 50
ZAlSi5Cu1Mg AZL105A S、R、K T2 135 2 45
ZAlSi8Cu1Mg ZL106 JB SB、RB、KB T4 185 4 50
ZAlSi7Cu4 ZL107 SB S T4 175 4 50
ZAlSi12Cu2Mg ZL108 J ZAISi12Cu1Mg INil T5 205 2 50
ZAlSi12Cu1Mg INil ZL109 J T5 195 2 60
ZAlSi5Cu6Mg ZL110 S ZAISi5Cu6Mg T5 195 2 60
ZAlSi9Cu2Mg ZL111 SB SB、R、K T6 225 2 60
ZAlSi5Zn1Mg ZL115 J T7 195 1 65
ZAlSi5Cu1Mg ZL116 S T8 245 4 70
ZAlSi7Cu2Mg - - - 165 - -
ZAlSi8MgBe ZL116 J - - 245 2 60
ZAlSi7Cu2Mg - - - - 125 - 70
通过表格可以看出,不同合金状态下的性能参数有所差异。
因此在选择合金材料时,需要根据具体要求进行选择。
XXX according to the standard GB/T 1173-2013.The XXX.
Alloy Type | Alloy Grade | Alloy Code | Casting Method | XXX (Rm/MPa) | XXX) | Hardness (HBW)
Al-Cu | ZAlCu5Mg | ZL201 | S。
J。
R。
K | ≥295 (T4) | ≥335 (T5) | ≥315 (T7)
Al-Cu | ZAlCu5MgA |。
| S | ≥390 (T5) |。
|
Al-Cu | ZAlCu10 | ZL202 | S。
J | ≥104 (F) |。
|
Al-Cu | ZAlCu4 | ZL203 | S。
R。
K | ≥163 (T6) | ≥6 (T4) |
Al-Cu-Mn-Cd | ZAlCu5MnCdA | ZL204A | S | ≥195 (T4) | ≥6 (T4) |
Al-Cu-Mn-Cd | ZAlCu5MnCdV | ZL205A | S | ≥205 (T4) | ≥3 (T5) |
Al-Cu-Si | ZAlCu5Si |。
| S | ≥215 (T5) | ≥3 (T5) |
Al-Mg | ZAlMg10 |。
| S。
J | ≥225 (T5) | ≥4 (T5) |
Al-Mg | ZAlMg5Si |。
| S。
R。
K | ≥440 (T5) | ≥7 (T5) |
Al-Mg | ZAlMg8Zn1 |。
| S。
J | ≥440 (T5) | ≥3 (T5) |
Al-Zn | ZAlZn11Si7 |。
| S。
J。
R | ≥470 (T5) | ≥2 (T6) |
Al-Zn | ZAlZn6Mg |。
| S。
J。
R。
K | ≥460 (T5) |。
|
XXX。
XXX。
XXX method。
For example。
Al-Cu alloys such as ZAlCu5Mg have a XXX of at least 295 MPa in the T4 state。
while Al-Mg alloys such as ZAlMg5Si have a XXX of at least 440 MPa in the T5 state。
The table also shows that the hardness of the alloys varies depending on the state。
with some alloys such as ZAlCu5MgA having no specified hardness.
Overall。
XXX。
casting method。
and state。
Therefore。
it is important to choose the appropriate alloy and state for a given n to XXX.。