新人教版小学六年级下册数学《鸽巢问题一》教学设计
- 格式:doc
- 大小:36.00 KB
- 文档页数:4
六年级下册数学教案:数学广角——鸽巢问题(一)-人教新课标教学目标:知识与技能:1. 理解鸽巢原理,并能运用其解决实际问题。
2. 培养学生的逻辑思维能力和数学推理能力。
过程与方法:1. 通过实际操作和观察,让学生体验和理解鸽巢原理。
2. 通过小组合作,培养学生的团队合作能力。
情感态度价值观:1. 培养学生对数学的兴趣和好奇心。
2. 培养学生的逻辑思维能力和数学推理能力。
教学重点:1. 理解鸽巢原理。
2. 能运用鸽巢原理解决实际问题。
教学难点:1. 理解鸽巢原理的应用范围。
2. 解决实际问题时,如何运用鸽巢原理。
教学准备:1. 教师准备:多媒体课件,教具。
2. 学生准备:学习用品。
教学过程:一、导入(5分钟)教师通过一个有趣的故事引入鸽巢原理,激发学生的兴趣。
二、新课导入(10分钟)1. 教师引导学生思考:如果有更多的鸽子,但巢的数量不变,会发生什么?2. 学生回答后,教师总结并引入鸽巢原理。
三、探索发现(10分钟)1. 教师引导学生进行实际操作,让学生亲身体验鸽巢原理。
2. 学生通过观察和思考,发现鸽巢原理。
四、巩固练习(10分钟)1. 教师出示一些实际问题,让学生运用鸽巢原理解决。
2. 学生通过练习,巩固对鸽巢原理的理解和应用。
五、拓展延伸(10分钟)1. 教师出示一些更复杂的问题,让学生尝试解决。
2. 学生通过思考和讨论,解决这些问题。
六、总结反思(5分钟)1. 教师引导学生总结本节课的学习内容。
2. 学生分享自己的学习心得。
教学评价:1. 学生对鸽巢原理的理解和应用。
2. 学生在解决问题时的逻辑思维能力和数学推理能力。
教学延伸:1. 让学生尝试用鸽巢原理解决生活中的实际问题。
2. 引导学生探索鸽巢原理在其他数学问题中的应用。
通过本节课的学习,学生能理解鸽巢原理,并能运用其解决实际问题。
同时,学生的逻辑思维能力和数学推理能力也得到了培养。
在以上的教案中,需要重点关注的是“探索发现”环节。
这个环节是学生对鸽巢原理进行深入理解和应用的关键步骤,通过实际操作和观察,学生可以亲身体验鸽巢原理,从而更好地理解其内涵和应用。
人教版数学六年级下册鸽巢问题教案3篇2024〖人教版数学六年级下册鸽巢问题教案第【1】篇〗鸽巢问题教案教学目标:了解“鸽巢问题”的特点,理解“鸽巢原理”的含义;经历“鸽巢原理”的学习过程,体验观察,猜测,实验,推理等活动的学习方法,渗透数形结合的思想;通过用“鸽巢问题”解决简单的实际问题,激发学生的学习兴趣,使学生感受数学的魅力。
重点:整合教材,由浅入深,逐层深入引导学生把具体问题转化成鸽巢问题,最终达到深入浅出解决问题。
难点:找出鸽巢问题解决的窍门进行反复推理。
并对一些简单的实际问题加以“模型化”。
教学准备:课件、扑克牌。
学生准备:小棒、杯子。
教学过程:一、情境导入:由游戏“抢凳子”引入课题并板书课题“鸽巢问题”二、探究新知1.动手操作,动画演示(1)(摆一摆)4只鸽子飞进3个鸽巢,会怎么飞呢?请同学们用小棒当鸽子,杯子做鸽巢,试试看!并把各种结果用你喜欢的方法记录下来。
(2)(议一议)教师引导学生分析各种情况,得出结论,不管怎么飞,总有一个鸽巢里至少飞进了2只鸽子。
(3)(飞一飞):4只鸽子飞进3个鸽巢,要使每个鸽巢里鸽子最少,该怎么飞?你能发现什么?通过引导让学生说出平均分的'方法。
2.以此类推,发现规律(1)6只鸽子飞进了5个鸽巢,总有一个鸽巢里至少飞进了()只鸽子?你是怎么想的?(2)100只鸽子飞进了99个鸽巢,总有一个鸽巢至少飞进了()只鸽子?3.由浅入深,逐层深入(1)(飞一飞)5只鸽子飞进了3个鸽巢,总有一个鸽巢里至少飞进了()只鸽子?是怎么飞的?通过演示鸽子飞的过程,引导学生理解平均分后,剩下的鸽子数不能超过鸽巢数,把剩下的鸽子再平均分,才能保证总有一个鸽巢里至少有的鸽子数。
(2)(说一说)7本书放进3个抽屉,总有一个抽屉里至少放进了()本书?你是怎么想的?4.动画演示,掌握规律14只鸽子飞进了4个鸽巢,总有一个鸽巢至少飞进了4只鸽子。
为什么?5.学以致用,总结规律(1)10支铅笔放进3个笔筒中,总有一个笔筒里至少有4支铅笔,为什么?(2)28本书放进5个抽屉,总有一个抽屉里至少放进了几本书?为什么?(3)33只鸽子飞进了4个鸽巢,总有一个鸽巢至少飞进了9只鸽子?为什么?(4)思考:你能发现什么规律吗?引导学生总结出计算方法,列出算式,最终得出至少数=商+1。
人教版数学六年级下册鸽巢问题教案3篇〖人教版数学六年级下册鸽巢问题教案第【1】篇〗一、教材分析“鸽巢问题”是六年级下册教学内容,“鸽巢原理”又称“抽屉原理”,是组合教学中最基本最简单的原理之一,灵活多变,应用广泛。
教学“鸽巢问题”,教材安排了两个例题。
这节课教学内容是例1。
例1把4支铅笔放进3个笔筒中的操作情景,介绍“鸽巢原理”的最基本形式。
初步接触“鸽巢问题”对于学生来说,有一定的难度。
教学时,应放手让学生自主探索。
教师要引导学生对教材上提供的两种方法进行比较,思考枚举的方法有什么优越性和局限性,假设的方法有什么独特的优点,使学生逐步学会运用一般性的数学方法来思考问题。
二、教学内容教材第68页例1及“做一做”第1、2题。
三、教学目标1.让学生经历“鸽巢问题”的探究过程,通过数学活动理解“鸽巢原理”,学会简单的“鸽巢问题”分析方法,并解决一些简单问题。
2.结合具体的实际问题,通过实验、观察、分析、归纳等数学活动使学生经历“鸽巢原理”的形成过程,体会和掌握逻辑推理思想和模型思想,提高解决实际问题的能力。
3.在主动参与数学活动的过程中,让学生感受到数学的魅力,提高学习数学的兴趣。
四、教学重难点教学重点:能用“鸽巢原理”解决最基本的相关实际问题。
教学难点:初步理解“鸽巢原理”,能口头表达推理过程。
五、教学准备一副扑克牌、课件等。
六、教学过程(一)引入新知1.抢凳子游戏。
2.抽扑克牌游戏。
教师:这类问题在数学上称为鸽巢问题(板书)。
因为52张扑克牌数量较大,为了方便研究,我们先来玩数量较小的抢凳子游戏。
【设计意图】从学生喜欢的“抢凳子”“魔术”入手,设置悬念,激发学生学习的兴趣和求知欲望,从而提出需要研究的数学问题。
(二)探究新知1.教学例1。
(1)把3枝铅笔放进2个笔筒中。
想一想:可以怎样放?有几种不同的放法?(不考虑笔筒摆放顺序,学生可用笔盒当笔筒)摆一摆:先用来学具摆一摆,然后用自己喜欢的方法表示出来,如画一画,写一写。
六年级下册数学教学设计《第1课时鸽巢问题》人教版一. 教材分析人教版六年级下册数学第1课时“鸽巢问题”,主要让学生理解和掌握鸽巢问题的基本概念和解决方法。
通过本节课的学习,使学生能够运用鸽巢问题解决实际生活中的问题,培养学生的逻辑思维能力和解决问题的能力。
二. 学情分析六年级的学生已经具备了一定的数学基础,对于解决实际问题有一定的认识和理解。
但是,对于鸽巢问题的理解和运用还需要进一步的引导和培养。
因此,在教学过程中,要充分考虑学生的认知水平和学习兴趣,设计符合学生特点的教学活动。
三. 教学目标1.知识与技能目标:使学生理解和掌握鸽巢问题的基本概念和解决方法,能够运用鸽巢问题解决实际生活中的问题。
2.过程与方法目标:通过解决实际问题,培养学生的逻辑思维能力和解决问题的能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的团队合作意识和积极进取的精神。
四. 教学重难点1.教学重点:理解和掌握鸽巢问题的基本概念和解决方法。
2.教学难点:如何引导学生运用鸽巢问题解决实际生活中的问题。
五. 教学方法1.情境教学法:通过设计实际情境,引导学生理解和运用鸽巢问题。
2.问题驱动法:通过提出问题,激发学生的思考和探究欲望。
3.合作学习法:通过小组合作,培养学生的团队合作意识和沟通能力。
六. 教学准备1.教学素材:准备一些与鸽巢问题相关的实际问题,如学校运动会报名、家庭聚会安排等。
2.教学工具:准备黑板、粉笔、投影仪等教学工具。
七. 教学过程1.导入(5分钟)利用学校运动会报名的实际例子,引导学生思考如何合理安排报名情况,引出鸽巢问题的概念。
2.呈现(10分钟)呈现一些与鸽巢问题相关的实际问题,让学生尝试解决。
如家庭聚会安排、班级座位安排等。
3.操练(10分钟)让学生分组讨论,每组选择一个问题,运用鸽巢问题的解决方法进行解决,并展示解题过程和结果。
4.巩固(10分钟)对每组的解题过程和结果进行评价,引导学生总结解决鸽巢问题的方法和技巧。
《鸽巢问题一》一、教学目标(一)知识与技能通过数学活动让学生了解鸽巢原理,学会简单的鸽巢原理分析方法。
(二)过程与方法结合具体的实际问题,通过实验、观察、分析、归纳等数学活动,让学生通过独立思考与合作交流等活动提高解决实际问题的能力。
(三)情感态度和价值观在主动参与数学活动的过程中,让学生切实体会到探索的乐趣,让学生切实体会到数学与生活的紧密结合。
二、教学重难点教学重点:理解鸽巢原理,掌握先“平均分”,再调整的方法。
教学难点:理解“总有”“至少”的意义,理解“至少数=商数+1”。
三、教学准备多媒体课件。
四、教学过程(一)游戏引入出示一副扑克牌。
教师:今天老师要给大家表演一个“魔术”。
取出大王和小王,还剩下52张牌,下面请5位同学上来,每人随意抽一张,不管怎么抽,至少有2张牌是同花色的。
同学们相信吗?5位同学上台,抽牌,亮牌,统计。
教师:这类问题在数学上称为鸽巢问题(板书)。
因为52张扑克牌数量较大,为了方便研究,我们先来研究几个数量较小的同类问题。
【设计意图】从学生喜欢的“魔术”入手,设置悬念,激发学生学习的兴趣和求知欲望,从而提出需要研究的数学问题。
(二)探索新知1.教学例1。
(1)教师:把3支铅笔放到2个铅笔盒里,有哪些放法?请同桌二人为一组动手试一试。
教师:谁来说一说结果?预设:一个放3支,另一个不放;一个放2支,另一个放1支。
(教师根据学生回答在黑板上画图表示两种结果)教师:“不管怎么放,总有一个铅笔盒里至少有2支铅笔”,这句话说得对吗?教师:这句话里“总有”是什么意思?预设:一定有。
教师:这句话里“至少有2支”是什么意思?预设:最少有2支,不少于2支,包括2支及2支以上。
【设计意图】把教材中例1的“笔筒”改为“铅笔盒”,便于学生准备学具。
且用画图和数的分解来表示上述问题的结果,更直观。
通过对“总有”“至少”的意思的单独说明,让学生更深入地理解“不管怎么放,总有一个铅笔盒里至少有2支铅笔”这句话。
人教版数学六年级下册鸽巢问题教学设计(精选3篇)〖人教版数学六年级下册鸽巢问题教学设计第【1】篇〗《鸽巢问题(例1)》教学设计教学内容:教科书第68页例1。
教学目标:1.使学生理解“抽屉原理”(“鸽巢原理”)的基本形式,并能初步运用“抽屉原理”解决相关的实际问题或解释相关的现象。
2.通过操作、观察、比较、说理等数学活动,使学生经历抽屉原理的形成过程,体会和掌握逻辑推理思想和模型思想,提高学习数学的兴趣。
教学过程:(一)呈现问题,引出探究课件呈现:把4支铅笔放进3个笔筒中,不管怎么放,总有一个笔筒里至少有2支铅笔。
师:“总有”和“至少”这两个词是什么意思生:“总有”就是一定有,至少就是“最少,最起码”。
(学生都有类似的理解。
)师:你觉得这句话说得对吗请你静静思考一下。
师:大家可以用摆一摆、画一画、写一写等方法把自己的想法表示出来。
(二)自主探究,初步感知1.学生探究。
(略)2.反馈交流。
(l)枚举法。
生1:我们是用铅笔模拟摆出来的,一共有四种情况。
这四种情况中,不管哪一种,都有一个笔筒里至少有2支铅笔。
师:我们来看这些摆法,凭什么说“总有一个笔筒里至少有2支铅笔”生:第一种摆法有一个笔筒是4支,第二种摆法有一个笔筒是3支,第三种摆法有一个笔筒是2支,第四种摆法有两个笔筒都是2支,所以“总有一个笔筒里至少放进2支铅笔”。
师:比2支多也可以吗生:至少放进2支笔就是最少是2支,比2支多也是可以的,3支、4支都是符合要求的。
教师再次引导学生观察四种摆法,把符合要求的笔筒用彩色粉笔标出予以“检验”,理解总有一个笔筒里至少有2支铅笔,对学生的方法给予肯定。
生2:我们是用数表示的,比他的方法要简单。
师生一起圈出每种分法中不小于2的数,认可这种方法,对学生简洁的表示法予以表扬。
(2)假设法。
师:除了像这样把所有可能的情况都列举出来,还有没有别的方法也可以证明这句话是正确的生:我是这样想的,先假设每个笔筒中放1支,这样还有1支。
人教版数学六年级下册鸽巢问题教案模板3篇2024〖人教版数学六年级下册鸽巢问题教案模板第【1】篇〗《鸽巢问题(第1课时)》教学设计一、教学目标1.引导学生经历“鸽巢问题”的抽象过程,初步了解“鸽巢原理”并用其解决相关生活中的简单问题。
2.通过猜测、验证、观察、分析等数学活动,提高学生有根据有条理的进行思考和推理的能力。
3.经历从具体到抽象的探究过程,建立数学模型,培养“模型思想”。
4.灵活应用“鸽巢原理”,提高学生解决数学问题的能力和兴趣。
二、教学重点教学重点:理解鸽巢原理,掌握先“平均分”,再调整的方法。
教学难点:理解“总有”“至少”的意义,理解“至少数=商数+1”。
三、教学准备纸杯、吸管、多媒体课件。
四、教学过程(一)创设情境揭示课题多媒体演示“二桃杀三士”的成语故事【设计意图】通过问题引发学生思考,激发学生学习的兴趣和求知欲望,为原本枯燥的数学注入了活力,从而提出需要研究的数学问题。
(二)探索新知(1)初步感知。
把3个磁扣放到2个圆圈里,有哪些放法?(学生思考)师:“不管怎么放,总有一个圆圈里至少有2个磁扣”,这句话说得对吗?师:这句话里“总有”“至少”是什么意思?【设计意图】从学生喜欢的游戏入手,设置悬念,激发学生学习的兴趣和求知欲望,为原本枯燥的数学注入了活力,从而提出需要研究的数学问题。
教师:“总有一个圆圈里至少有2个磁扣”,这句话说得对吗?教师:这句话里“总有”“至少”是什么意思?【设计意图】此处设计注意了从最简单的数据开始摆放,有利于学生观察、理解,有利于调动所有的学生积极参与进来。
通过对“总有”“至少”的意思的单独说明,让学生更深入地理解“不管怎么放,总有一个圆圈里至少有2个磁扣”这句话。
(2)逐步深入初建模型把4根吸管放到3个纸杯里,有哪些放法? 4人为一组动手试一试。
(学生思考—组内交流—汇报)【设计意图】通过操作,将抽象的结论具体化,学生得到了四种全部情况,从而获得了支持这个结论所有的实物图像表征,为后面的“说理”提供了有力的支撑。
六年级下册数学教案《第1课时鸽巢问题》人教版一、教学目标1.知识与技能:–了解鸽巢问题的基本概念;–能够运用鸽巢原理解决问题。
2.过程与方法:–通过讨论与实例分析引导学生主动参与课堂;–培养学生的逻辑思维和问题解决能力。
3.情感态度价值观:–培养学生的合作意识,鼓励学生勇于尝试、探索未知领域;–正确认识数学知识与实际生活的联系,激发学生学习数学的兴趣。
二、教学重点与难点:•重点:掌握鸽巢问题的基本原理,并能运用到实际问题中。
•难点:发散式思维在解决鸽巢问题时的应用。
三、教学准备1.教材:人教版六年级数学下册教材。
2.教具、媒体:黑板、彩色粉笔、教学PPT。
3.课前准备:准备好教学内容,查看教材相关知识点,准备相关实例分析。
四、教学步骤第一步:导入(5分钟)•通过一个简单的生活场景引入鸽巢问题,激发学生的学习兴趣,引发思考。
第二步:讲授基本概念(10分钟)•概念解释:介绍鸽巢问题的基本概念,让学生对其有一个直观、清晰的认识。
第三步:示例分析(15分钟)•通过实例分析,让学生参与其中,讨论解决方法,引导学生理解鸽巢问题的解题思路。
第四步:概念强化(10分钟)•整理并归纳鸽巢问题解决的基本方法和技巧,强化学生对知识点的理解。
第五步:练习与讨论(15分钟)•分发练习题,让学生独立或合作完成,引导他们主动分享解题思路,进行讨论。
第六步:课堂总结(5分钟)•总结本节课的重点内容,并展示本课知识点与实际应用的联系,引导学生将所学内容与实际生活结合。
五、课后作业•完成教师留的相关练习题;•收集身边的实例来解决一个鸽巢问题。
六、教学反思在教学过程中,需要及时调整教学方法,引导学生主动参与课堂,激发他们的学习兴趣和求知欲,使学生在轻松氛围中掌握知识点。
以上就是本节课鸽巢问题的教学设计,希會一切顺利!。
《鸽巢问题(第1课时)》(教案)六年级下册数学人教版《鸽巢问题(第1课时)》教案一、教学内容1. 理解鸽巢问题的概念,掌握其基本性质。
2. 学会运用鸽巢原理解决实际问题。
3. 培养学生的逻辑思维能力和解决问题的能力。
二、教学目标1. 了解并掌握鸽巢问题的基本概念和性质。
2. 能够运用鸽巢原理解决实际问题。
3. 提高自己的逻辑思维能力和解决问题的能力。
三、教学难点与重点本节课的重点是让学生理解并掌握鸽巢问题的基本概念和性质,以及如何运用鸽巢原理解决实际问题。
难点在于如何引导学生理解并运用鸽巢原理。
四、教具与学具准备为了让大家更好地理解鸽巢问题,我准备了一些教具和学具,包括黑板、粉笔、PPT、鸽巢模型等。
五、教学过程1. 实践情景引入:请大家想象一下,如果我们有一个鸽巢,里面有若干个鸽子,我们要如何确定鸽子的数量呢?2. 讲解鸽巢问题的概念:通过引入的实践情景,我会向大家讲解鸽巢问题的基本概念和性质。
3. 例题讲解:我会给大家讲解一些典型的鸽巢问题例题,让大家通过例题理解并掌握鸽巢原理。
4. 随堂练习:在讲解完例题后,我会给大家一些随堂练习题,让大家运用所学知识解决实际问题。
5. 鸽巢原理的应用:通过一些实际问题,让大家学会运用鸽巢原理解决问题。
六、板书设计板书设计如下:鸽巢问题1. 概念与性质2. 鸽巢原理3. 应用与实例七、作业设计作业题目:1. 请用一句话概括鸽巢问题的定义。
2. 请用一句话概括鸽巢原理。
3. 请举例说明如何运用鸽巢原理解决实际问题。
答案:1. 鸽巢问题是指在一定条件下,确定鸽子数量的问题。
3. 举例:假设一个班级有30个学生,如果有31个学生,那么至少有两个学生坐在同一个座位上。
八、课后反思及拓展延伸通过本节课的学习,我希望大家能够理解并掌握鸽巢问题的基本概念和性质,以及如何运用鸽巢原理解决实际问题。
在课后,大家可以尝试解决一些更复杂的问题,也可以和同学互相交流心得和经验,共同提高。
人教版数学六年级下册鸽巢问题教案(推荐3篇)人教版数学六年级下册鸽巢问题教案【第1篇】《鸽巢问题》教学设计【教学内容】人教版课标教材小学数学六年级下册第五单元数学广角第70-71页。
【教学目标】1.通过操作、观察、比较、分析、推理、抽象概括,引导学生经历抽屉原理的探究过程,初步了解抽屉原理,会用抽屉原理解释生活中的简单问题。
2.在探究的过程中,渗透模型思想,培养学生的推理和抽象思维能力。
3.使学生感受数学的魅力,培养学习的兴趣。
【教学重点】经历抽屉原理的探究过程,初步了解抽屉原理,会用抽屉原理解释生活中的简单问题。
【教学难点】理解抽屉原理,并对一些简单的实际问题加以模型化。
【教学过程】一、开门见山,引入课题。
承接课前谈话内容,直接揭示课题。
二、经历过程,构建模型。
(一)研究“4个小球任意放进3个抽屉”存在的现象。
1.出示结论:4个小球放进3个抽屉里,不管怎么放,总有一个抽屉里面至少放2个小球。
让学生说说对这句话的理解。
2.验证结论的正确性。
让学生用长方形代替抽屉,用圆代替小球画一画,看有几种不同的放法。
3.全班交流。
学生汇报后,教师引导观察每种放法,通过横向、纵向比较,找到每种放法中放得最多的抽屉,然后从最多数里找最少数,发现不管哪种放法,都能从里面找到这样的一个抽屉,里面至少有2个小球。
从而理解并证明了“不管怎么放,总有一个抽屉里至少放2个小球”这个结论是正确的。
(二)研究“5个小球任意放进4个抽屉”存在的现象,找到求至少数的简便方法。
1.猜测:根据刚才的研究经验猜一猜:把5个小球放进4个抽屉里,不管怎么放,总有一个抽屉至少放几个小球?2.验证。
学生以小组为单位共同研究:先画出不同的放法。
然后观察分析每种放法,看看哪种猜测是正确的。
3.全班交流。
小组汇报研究结果。
教师追问:通过验证,我们发现5个小球放进4个抽屉里,不管怎么放,总有一个抽屉至少放2个小球。
那“总有一个抽屉至少放3个小球”为什么不对?学生通过观察各种放法来说明原因。
新人教版小学六年级下册数学《鸽巢问题一》教学设计
一、教学目标
(一)知识与技能
通过数学活动让学生了解鸽巢原理,学会简单的鸽巢原理分析方法。
(二)过程与方法
结合具体的实际问题,通过实验、观察、分析、归纳等数学活动,让学生通过独立思考与合作交流等活动提高解决实际问题的能力。
(三)情感态度和价值观
在主动参与数学活动的过程中,让学生切实体会到探索的乐趣,让学生切实体会到数学与生活的紧密结合。
二、教学重难点
教学重点:理解鸽巢原理,掌握先“平均分”,再调整的方法。
教学难点:理解“总有”“至少”的意义,理解“至少数=商数+1”。
三、教学准备
多媒体课件。
四、教学过程
(一)游戏引入
出示一副扑克牌。
教师:今天老师要给大家表演一个“魔术”。
取出大王和小王,还剩下52张牌,下面请5位同学上来,每人随意抽一张,不管怎么抽,至少有2张牌是同花色的。
同学们相信吗?
5位同学上台,抽牌,亮牌,统计。
教师:这类问题在数学上称为鸽巢问题(板书)。
因为52张扑克牌数量较大,为了方便研究,我们先来研究几个数量较小的同类问题。
【设计意图】从学生喜欢的“魔术”入手,设置悬念,激发学生学习的兴趣和求知欲望,从而提出需要研究的数学问题。
(二)探索新知
1.教学例1。
(1)教师:把3支铅笔放到2个铅笔盒里,有哪些放法?请同桌二人为一组动手试一试。
教师:谁来说一说结果?
预设:一个放3支,另一个不放;一个放2支,另一个放1支。
(教师根据学生回答在黑板上画图表示两种结果)
教师:“不管怎么放,总有一个铅笔盒里至少有2支铅笔”,这句话说得对吗?教师:这句话里“总有”是什么意思?
预设:一定有。
教师:这句话里“至少有2支”是什么意思?
预设:最少有2支,不少于2支,包括2支及2支以上。
【设计意图】把教材中例1的“笔筒”改为“铅笔盒”,便于学生准备学具。
且用画图和数的分解来表示上述问题的结果,更直观。
通过对“总有”“至少”的意思的单独说明,让学生更深入地理解“不管怎么放,总有一个铅笔盒里至少有2支铅笔”这句话。
(2)教师:把4支铅笔放到3个铅笔盒里,有哪些放法?请4人为一组动手试一试。
教师:谁来说一说结果?
学生:可以放(4,0,0);(3,1,0);(2,2,0);(2,1,1)。
(教师根据学生回答在黑板上画图表示四种结果)
引导学生仿照上例得出“不管怎么放,总有一个铅笔盒里至少有2支铅笔”。
假设法(反证法):
教师:前面我们是通过动手操作得出这一结论的,想一想,能不能找到一种更为直接的方法得到这个结论呢?小组讨论一下。
学生进行组内交流,再汇报,教师进行总结:
如果每个盒子里放1支铅笔,最多放3支,剩下的1支不管放进哪一个盒子里,总有一个盒子里至少有2支铅笔。
首先通过平均分,余下1支,不管放在哪个盒子里,一定会出现“总有一个盒子里至少有2支铅笔”。
这就是平均分的方法。
【设计意图】从另一方面入手,逐步引入假设法来说理,从实际操作上升为理论水平,进一步加深理解。
教师:把5支铅笔放到4个铅笔盒里呢?
引导学生分析“如果每个盒子里放1支铅笔,最多放4支,剩下的1支不管放进哪一个盒子里,总有一个盒子里至少有2支铅笔。
首先通过平均分,余下1支,不管放在哪个盒子里,一定会出现“总有一个盒子里至少有2支铅笔”。
教师:把6支铅笔放到5个铅笔盒里呢?把7支铅笔放到6个铅笔盒里呢?……你发现了什么?
引导学生得出“只要铅笔数比铅笔盒数多1,总有一个盒子里至少有2支铅笔”。
教师:上面各个问题,我们都采用了什么方法?
引导学生通过观察比较得出“平均分”的方法。
【设计意图】让学生自己通过观察比较得出“平均分”的方法,将解题经验上升为理论水平,进一步强化方法、理清思路。
(3)教师:现在我们回过头来揭示本节课开头的魔术的结果,你能来说一说这个魔术的道理吗?
引导学生分析“如果4人选中了4种不同的花色,剩下的1人不管选那种花色,总会和其他4人里的一人相同。
总有一种花色,至少有2人选”。
【设计意图】回到课开头提出的问题,揭示悬念,满足学生的好奇心,让学生认识到数学的应用价值。
(4)练习教材第68页“做一做”第1题(进一步练习“平均分”的方法)。
5只鸽子飞进了3个鸽笼,总有一个鸽笼至少飞进了2只鸽子。
为什么?
2.教学例2。
(1)课件出示例2。
把7本书放进3个抽屉,不管怎么放,总有一个抽屉里至少放进3本书。
为什么?先小组讨论,再汇报。
引导学生得出仿照例1“平均分”的方法得出“如果每个抽屉放2本,剩下1本不管放在哪个抽屉里,都会变成3本,所以总有一个抽屉里至少放进3本书。
”(2)教师:如果把8本书放进3个抽屉,会出现怎样的结论呢?10本呢?11
本呢?16本呢?
教师根据学生的回答板书:
7÷3=2……1不管怎么放,总有一个抽屉里至少放进3本;
8÷3=2……2不管怎么放,总有一个抽屉里至少放进3本;
10÷3=3……1不管怎么放,总有一个抽屉里至少放进4本;
11÷3=3……2不管怎么放,总有一个抽屉里至少放进4本;
16÷3=5……1不管怎么放,总有一个抽屉里至少放进6本。
教师:观察上述算式和结论,你发现了什么?
引导学生得出“物体数÷抽屉数=商数……余数”“至少数=商数+1”。
【设计意图】一步一步引导学生合作交流、自主探索,让学生亲身经历问题解决的全过程,增强学习的积极性和主动性。
(三)巩固练习
1.11只鸽子飞进了4个鸽笼,总有一个鸽笼至少飞进了3只鸽子。
为什么?2.5个人坐4把椅子,总有一把椅子上至少坐2人。
为什么?
(四)课堂小结
教师:通过这节课的学习,你有哪些新的收获呢?
我们学会了简单的鸽巢问题。
可以用画图的方法来帮助我们分析,也可以用除法的意义来解答。