2016-2017年山东省潍坊市诸城市九年级上学期期中数学试卷及答案
- 格式:doc
- 大小:815.00 KB
- 文档页数:27
2016-2017学年新人教版九年级上册数学期中测试卷含答案2016-2017学年九年级(上)期中数学试卷一、选择题(共10小题,每小题3分,共30分)1.方程3x²-4x-1=0的二次项系数和一次项系数分别为()A。
3和4B。
3和-4C。
3和-1D。
3和12.二次函数y=x²-2x+2的顶点坐标是()A。
(1,1)B。
(2,2)C。
(1,2)D。
(1,3)3.将△ABC绕O点顺时针旋转50°得△A1B1C1(A、B分别对应A1、B1),则直线AB与直线A1B1的夹角(锐角)为()A。
130°B。
50°C。
40°D。
60°4.用配方法解方程x²+6x+4=0,下列变形正确的是()A。
(x+3)²=-4B。
(x-3)²=4C。
(x+3)²=55.下列方程中没有实数根的是()A。
x²-x-1=0B。
x²+3x+2=0C。
2015x²+11x-20=0D。
x²+x+2=06.平面直角坐标系内一点P(-2,3)关于原点对称的点的坐标是()A。
(3,-2)B。
(2,3)C。
(-2,-3)D。
(2,-3)7.如图,⊙O的直径CD=10cm,AB是⊙O的弦,AB⊥CD,垂足为M,A。
5cmB。
8cmC。
6cmD。
4cm8.已知抛物线C的解析式为y=ax²+bx+c,则下列说法中错误的是()A。
a确定抛物线的形状与开口方向B。
若将抛物线C沿y轴平移,则a,b的值不变C。
若将抛物线C沿x轴平移,则a的值不变D。
若将抛物线C沿直线l:y=x+2平移,则a、b、c的值全变9.如图,四边形ABCD的两条对角线互相垂直,AC+BD=16,则四边形ABCD的面积最大值是()A。
64B。
16C。
24D。
3210.已知二次函数的解析式为y=ax²+bx+c(a、b、c为常数,a≠),且a²+ab+ac<0,下列说法:①b²-4ac<0;②ab+ac<0;③方程ax²+bx+c=0有两个不同根x1、x2,且(x1-1)(1-x2)>0;④二次函数的图象与坐标轴有三个不同交点。
山东省潍坊市潍城区2017届九年级数学第一次模拟(期中)试题注意事项:1. 本试题分第Ⅰ卷和第Ⅱ卷两部分.第Ⅰ卷为选择题,36分;第Ⅱ卷为非选择题,84分;共120分.考试时间为120分钟.2. 答第Ⅰ卷前务必将自己的姓名、准考证号、考试科目涂写在答题卡上.考试结束,试题和答题卡一并收回.3. 第Ⅰ卷每题选出答案后,都必须用2B 铅笔把答题卡上对应题目的答案标号(ABCD)涂黑,如需改动,必须先用橡皮擦干净,再改涂其它答案.第Ⅰ卷 选择题(共36分)一、选择题(本大题共12小题,在每个小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记0分.) 1.下列各数中,与﹣2互为相反数的是( )A .22)(- B .38- C .21-D .2 2.下列各组数中,结果相等的是( )A .-12与(-1)2B .323与332)( C .-|-2|与-(-2) D .(-3)3与-333.中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划,“一带一路”地区覆盖总人口约为4400000000人,这个数用科学记数法表示为( )A .44×108B .4.4×109C .4.4×108D .4.4×10104.如图1,该几何体的左视图是( )5.下列运算中,计算正确的是( )A .2a•3a=6aB .(3a 2)3=27a 6C. a 4÷a 2=2a D.(a+b )2=a 2+ab+b 26.如图,已知AB 是⊙O 的直径,∠D=36°,则∠CAB 的度数为( )A .18°B .36°C .54°D .72°7.若一个圆锥的侧面展开图是一个半径为10cm ,圆心角为252°的扇形,则该圆锥的底面半径为( )A .6cmB .8cmC .7cmD .10cm 8.如图,在平面直角坐标系中,点P (21-,a )在直线 y=2x+2与直线y=2x+4之间,则a 的取值范围是( ) A .2<a <4 B .1<a <3C .1<a <2D .0<a <2 9.已知a ,b 是关于x 的一元二次方程的两实数根,则式子baa b +的值是( ) A .B .C .D .10.若方程组⎩⎨⎧=++=+3313y x k y x 的解x ,y 满足0<x+y <1,则k 的取值范围是( )A .﹣4<k <0B .﹣1<k <0C .0<k <8D .k >﹣4 11.如图,在矩形ABCD 中,AB=4,BC=6,点E 为BC 的中点,将△ABE 沿AE 折叠,使点B 落在矩形内点F 处,连接CF , 则CF 的长为( ) A .59 B .512 C .516 D .518 12.对于二次函数y =﹣x 2+2x .有下列四个结论:①它的对称轴是直线x =1;②设y 1=﹣x 12+2x 1,y 2=﹣x 22+2x 2,则当x 2>x 1时,有y 2>y 1;③它的图象与x 轴的两个交点是(0,0)和(2,0);④当0<x <2时,y >0.其中正确的结论的个数为( ) A .1B . 2C .3D .4第Ⅱ卷 非选择题(共84分)二、填空题(本大题共6小题,共18分.只要求填写最后结果,每小题填对得3分.)13.图中△ABC 外接圆的圆心坐标是 .14.分解因式:(a+5)(a ﹣5)+7(a+1)=___________.1522=-++xmx 有增根,则 m 的值是 ______ .1617.如图,在△ABC 中,AB =4,将△ABC 绕点B 按逆时针方向旋转30°后得到△A 1BC 1,则阴影部分的面积为 .三、解答题(本大题共7小题,共66分.解答要写出必要的文字 说明、证明过程或演算步骤.) 19.(本小题满分8分)潍坊到济南的距离约为210km ,小刘开着小轿车,小张开着大货车,都从潍坊去济南,小刘比小张晚出发1小时,最后两车同时到达济南,已知小轿车的速度是大货车速度的1.5倍.(1)求小轿车和大货车的速度各是多少?(列方程解答) (2)当小刘出发时,求小张离济南还有多远?20.(本小题满分9分)今年是第39个植树节,我们提出了“追求绿色时尚,走向绿色文明”的倡议.某校为积极响应这一倡议,立即在八、九年级开展征文活动,校团委对这两个年级各班内的投稿情况进行统计,并制成了如图所示的两幅不完整的统计图.(1)求扇形统计图中投稿3篇的班级个数所对应的扇形的圆心角的度数.(2)求该校八、九年级各班在这一周内投稿的平均篇数,并将该条形统计图补充完整. (3)在投稿篇数最多的4个班中,八、九年级各有两个班,校团委准备从这四个班中选出两个班参加全校的表彰会,请你用列表法或画树状图的方法求出所选两个班正好不在同一年级的概率.21.(本小题满分9分)如图,AB 是⊙O 的直径,弦CD ⊥AB 于点G ,点F 是CD 上一点,且满足31DF CF ,连接AF 并延长交⊙O 于点E ,连接AD 、DE ,若CF=3,AF=4.(1)求证:△ADF ∽△AED ;(2)求FG 的长; (3)求tan ∠E 的值.22.(本小题满分9分)如图所示,山坡上有一棵与水平面垂直的大树,一场台风过后,大树被刮倾斜后折断倒在山坡上,树的顶部恰好接触到坡面.已知山坡的坡角∠AEF=23°,量得树干倾斜角∠BAC=38°,大树被折断部分和坡面所成的角∠ADC=60°,AD=6m .(1)求∠CAE 的度数;(2)求这棵大树折断前的高度? (结果精确到个位,参考数据:,,).23.(本小题满分10分)如图甲,在△ABC中,AB=AC,∠BAC=90°.点D为射线BC上一动点,连接AD,以AD为一边且在AD的右侧作正方形ADEF.解答下列问题:(1)当点D在线段BC上时(与点B不重合),如图甲,线段CF、BD之间的位置关系为,数量关系为.(2)当点D在线段BC的延长线上时,如图乙,①中的结论是否仍然成立,为什么?24.(本小题满分10分)某电子厂生产一种新型电子产品,每件制造成本为20元,试销过程中发现,每月销售量y(万件)与销售单价x(元)之间的关系可以近似地看作一次函数y=-2x+100.(利润=售价﹣制造成本)(1)写出每月的利润z(万元)与销售单价x(元)之间的函数关系式;(2)当销售单价为多少元时,厂商每月获得的利润为400万元?(3)根据相关部门规定,这种电子产品的销售单价不能高于40元,如果厂商每月的制造成本不超过520万元,那么当销售单价为多少元时,厂商每月获得的利润最大?最大利润为多少万元?25.(本小题满分11分)如图,在直角坐标系中,以点A(1,0)为圆心,以2为半径的圆与x轴交于B,C两点,与y 轴交于D,E两点.(1)直接写出B,C,D点的坐标;(2)若B、C、D三点在抛物线y=ax2+bx+c上,求出这个抛物线的解析式及它的顶点坐标.(3)若圆A的切线交x轴正半轴于点M,交y轴负半轴于点N,切点为P,∠O MN=30°,试判断直线MN是否经过B、C、D三点所在抛物线的顶点?说明理由.2017年初三数学模拟参考答案及评分标准一、选择题(每小题3分,共36分)13.(5,2) 14.(a﹣2)(a+9) 15.0 16.1.5 17.4 18.y=x-2三、解答题(共66分)19. (本题满分8分)是原分式方程的解,—————————————————)3÷25%=12(个),————————————————所选两个班正好不在同一年级的概率为:8÷12=的直径,弦∴,∠CG=DG=6,在中,,∴.又∵,∴.在中,∠——————————6分在中,,————————7分CH=AH=解:(1)垂直,相等(答对一个给2分,共3分) —————————3分 (2)当点D 在BC 的延长线上时①中的结论仍成立.————————4分 理由:∵四边形ADEF 是正方形,∴∠DAF=90°,AD=AF ,————5分 ∴∠BAC=∠DAF =90°, ∴∠BAD+∠DAC=∠CAF+∠DAC ,即∠BAD=∠CAF ,———————6分 在△BAD 和△CAF 中,,∴△BAD ≌△CAF (SAS ),∴CF=BD ,——————————8分 ∴∠B=∠ACF ,∵∠B+∠BCA=90°,∴∠BCA+∠ACF=90°, 即CF ⊥BD .—————————10分 24.(本小题满分10分)解:(1)z=(x-20)y=(x-20)(-2x+100)=-2x 2+140x-2000,故z 与x 之间的函数解析式为z=﹣2x 2+140x ﹣2000; ————————3分 (2)由z=400,得400=﹣2x 2+140x ﹣2000, 解这个方程得x 1=30,x 2=40所以销售单价定为30元或40元. ————————————————5分 (3)∵厂商每月的制造成本不超过520万元,每件制造成本为20元, ∴每月的生产量大于等于20520=26万件, 由y=﹣2x+100≥26,得:x ≥37, ———————————————6分 又由限价40元,得37≤x ≤40,—————————————————7分 ∵z=﹣2x 2+140x ﹣2000=﹣2(x ﹣35)2+450,∴图象开口向下,对称轴右侧z 随x 的增大而减小, ————————8分 ∴当x=37时,z 最大为442万元.当销售单价为37元时,厂商每月获得的利润最大,最大利润为442万元.—————————————————————10分 25.(本小题满分11分)—————解得:.——————————所以抛物线的顶点坐标为(∴直线- 11 -。
九年级上学期期中数学试题第I 卷(30分)一、选择题(每小题3分,共30分)1.若3x=2y(xy ≠0),则下列比例式成立的是( )A.x 3 = y 2B.x 3 = 2yC.x y = 32D.x 2 = y 3 2.如图所示的某零件左视图是( )A. B. C. D.3.某口袋里装有红色、黑色球共80个,它们除了颜色外其他都相同,已知摸到红球的概率为0.2,则口袋中红球的个数为( )A.5B.9C.16D.204.用配方法解方程3x 2﹣6x+1=0,则方程可变形为( )A.(x ﹣3)2 = 13B.3(x ﹣1)2 = 13C.(x ﹣1)2 = 23D.(3x ﹣1)2 =15.一幢4层楼房只有一个房间亮着灯,一棵小树和一根电线杆在窗口灯光下的影子如图所示,则亮着灯的房间是( )A.1号房间B.2号房间C.3号房间D.4号房间6.方程x 2﹣ax+4=0有两个相等的实数根,则a 的值为( ) A.2 B.±2 C.±4 D.47.如图,小正方形的边长均为1,则下列图中的三角形与ABC 相似的是( )8.在温度不变的条件下,通过一次又一次地对汽缸顶部的活塞加压,测出每一次加压后缸内气体的体ABCA CB D(5题图)积和气体对汽缸壁所产生的压强,如下表:则可以反映y 与x 之间的关系的式子是( ) 体积x(mL) 100 80 60 40 20 压强y(kPa)6075100150300A.y =3000xB.y =6000xC.y = 3000xD.y = 6000x9.如图,点F 是▱ABCD 的边AD 上的三等分点,BF 交AC 于点E ,如果△AEF 的面积为2,那么四边形CDFE 的面积等于( )A.18B.22C.24D.4610.如图,四边形ABCO 是平行四边形,OA=2,AB=6,点C 在x 轴的负半轴上,将平行四边形ABCO 绕点A逆时针旋转得到平行四边形ADEF ,AD 经过点O ,点F 恰好落在x 轴的正半轴上.若点D 在反比例函数)0(<=x xky 的图像上,则k 的值为( ) A.4 3 B.12 C.8 3 D.6第II 卷(90分)二、填空题(每题3分,共15分)11.如图,这是一幅长为3m ,宽为2m 的长方形世界杯宣传画.为测量画上世界杯图案的面积,现将宣传画平铺在地上,向长方形宣传画内随机投掷骰子(假设骰子落在长方形内的每一点都是等可能的),经过大量重复投掷试验,发现骰子落在世界杯图案中的频率稳定在常数0.4附近,由此可估计宣传画上世界杯图案的面积为 m 2.12.已知点A(1,a)、点B(3,b)、点C(-2,c)都在反比例函数xm y 12+=的图象上,则a 、b 、c 之间的大小关系是 .(9题图)(10题图)13.某航空公司有若干个飞机场,每两个飞机场之间都开辟一条航线,一共开辟了10条航线,设航空公司共有x 个飞机场,列方程 . 14.位于第一象限的点E 在反比例函数xky 的图象上,点F 在x 轴的正半轴上,O 是坐标原点.若EO=EF ,△EOF 的面积等于2,则k=______.15.如图,Rt△ABC 中,∠BAC=90°,AB=AC=2,BC = 22 .点D 从B 点开始运动到C 点结束(点D 和B 、C均不重合),DE 交AC 于E,∠ADE=45°,当△ADE 是等腰三角形时,AE 的长度为 .三.解答题(共75分)16.解下列方程:(每题4分,共12分)(1)x 2+6x+5=0; (2)t(t-2) - 3t 2=0 (3)2(x ﹣1)2= 3x ﹣3;17.(本题6分)如图,在平面直角坐标系xOy 中,△ABC 的三个顶点分别为A(2,6),B(4,2),C(6,2). (1)以原点O 为位似中心,将△ABC 缩小为原来的 12 ,得到△DEF.请在第一象限内,画出△DEF.(2)在(1)的条件下,点A 的对应点D 的坐标为 ,点B 的对应点E 的坐标为 .(14题图)(15题图)18.(本题6分)2018年某市高中招生体育考试规定:九年级男生考试项目有A、B、C、D、E五类:其中A:1000米跑必考项目;B:跳绳;C:引体向上;D:立定跳远;E:50米跑,再从B、C、D、E中各选两项进行考试.(1)若男生甲第一次选一项,直接写出男生甲选中项目E的概率.(2)若甲、乙两名九年级男生在选项的过程中,第一次都是选了项目E,那么他俩第二次同时选择跳绳或立定跳远的概率是多少?请用列表法或画树状图的方法加以说明并列出所有等可能的结果.19.(本题8分)如图,平行四边形ABCD中,点E在BA的延长线上,连接CE,与AD相交于点F.(1)求证:△EBC∽△CDF;(2)若BC=8,CD=3,AE=1,求FD的长.20.(本题8分)如图,已知直线y=﹣2x ,经过点P(﹣2,a),点P 关于y 轴的对称点P′在反比例函数y = kx (k ≠0)的图象上.(1)求点P′的坐标;(2)求反比例函数的解析式,并直接写出当y >1时自变量x 的取值范围.21.(本题10分)如图,一块材料的形状是锐角三角形ABC ,边BC=12cm ,高AD=8cm ,把它加工成矩形零件,要使矩形的一边在BC 上,其余两个顶点分别在AB ,AC 上.且矩形的长与宽的比为3:2,求这个矩形零件的边长.B22.(本题10分)某特产专卖店销售某种物产,其进价为每千克40元,若按每千克50元出售,则平均每天可售出60千克,后来经过市场调查发现,单价每降低1元,平均每天的销售量增加10千克,若专卖店销售这种特产平均每天获利630元,且销量尽可能大,则每千克特产应定价为多少元?(1)解:方法1:每千克特产应降价x元,由题意,得方程为:;方法2:设每千克特产降价后定价为元,由题意,得方程为: .(2)请你选择其中一种方法完成解答.23.(本题分)综合与实践------四边形旋转中的数学“智慧”数学小组在课外数学活动中研究了一个问题,请帮他们解答.任务一:如图1,在矩形ABCD中,AB=8,AD=6.E、F分别为AB、AD边的中点,四边形AEGF为矩形,连接AC,则A、G、C三点在同一条直线上.(1)请通过计算直接写出BE与CG之间的数量关系;(2)当矩形AEGF绕点A旋转至如图2的位置时,AG与AC不在同一条直线上,证明△ABE∽△ACG,并求出BE与CG之间的数量关系;(3)当矩形AEGF 绕点A 旋转至如图3的位置时,(2)中BE 与CG 之间的数量关系是否还成立?并说明理由。
2016-2017学年山东省潍坊市诸城市初三上学期期末数学试卷一、选择题(本题共12小题,每小题3分,共36分)1.(3分)下列关于函数y=(x﹣6)2+3的图象,下列叙述错误的是()A.图象是抛物线,开口向上B.对称轴为直线x=6C.顶点是图象的最高点,坐标为(6,3)D.当x<6时,y随x的增大而减小;当x>6时,y随x的增大而增大2.(3分)下列方程中两个实数根的和等于2的方程是()A.2x2﹣4x+3=0B.2x2﹣2x﹣3=0C.2y2+4y﹣3=0D.2t2﹣4t﹣3=0 3.(3分)如图,扇形OAB的圆心角为90°,点C,D是弧AB的三等分点,半径OC,OD分别与弦AB交于点E,F,下列说法错误的是()A.AE=EF=FB B.AC=CD=DB C.EC=FD D.∠DFB=75°4.(3分)下列关于圆的叙述正确的有()①圆内接四边形的对角互补;②相等的圆周角所对的弧相等;③正多边形内切圆的半径与正多边形的半径相等;④同圆中的平行弦所夹的弧相等.A.1个B.2个C.3个D.4个5.(3分)如图,以半径为2的正六边形ABCDEF的中心O为原点建立平面直角坐标系,顶点A,D在x轴上,则点C的坐标为()A.(1,﹣2)B.(1,﹣)C.(1,﹣)D.(﹣1,﹣)6.(3分)如图,△ABC的内切圆O与各边分别相切于点D,E,F,那么下列叙述错误的是()A.点O是△ABC的三条角平分线的交点B.点O是△DEF的三条中线的交点C.点O是△DEF的三条边的垂直平分线的交点D.△DEF一定是锐角三角形7.(3分)如图所示,图中共有相似三角形()A.2对B.3对C.4对D.5对8.(3分)如图,已知∠AOB=60°,点P在边OA上,OP=24,点M,N在边OB 上,PM=PN,若NM=6,则OM等于()A.6B.7C.8D.99.(3分)已知开口向下的抛物线y=ax2﹣3x+a2﹣2a﹣3经过坐标原点,那么a 等于()A.﹣1B.3C.﹣3D.3或﹣1 10.(3分)已知A(m,y1)和B(﹣2,y2)是函数y=﹣上的点,且y1>y2,则m的取值范围是()A.﹣2<m<0B.m>﹣2C.m<﹣2D.m<﹣2或m>011.(3分)在平面直角坐标系中,平移二次函数y=x2+4x+3的图象能够与二次函数y=x2的图象重合,则平移方式为()A.向左平移2个单位,向下平移1个单位B.向左平移2个单位,向上平移1个单位C.向右平移2个单位,向下平移1个单位D.向右平移2个单位,向上平移1个单位12.(3分)如图,正方形ABCD边长为2,AB∥x轴,AD∥y轴,顶点A恰好落在双曲线y=上,边CD,BC分别交双曲线于E,F两点,若线段AE过原点,则EF的长为()A.1B.C.D.二、填空题(本题共6小题,每小题3分,共18分)13.(3分)某航空公司托运行李的费用y元与托运行李的质量x(kg)之间的函数关系如图所示,根据图中的信息可知:免费托运行李质量应不超过kg.14.(3分)如图,在△ABC中,D为AC边上一点,且∠DBA=∠C,若AD=2cm,AB=4cm,那么CD的长等于cm.15.(3分)如图,在Rt△ABC中,∠C=90°,∠B=58°,内切圆O与边AB,BC,CA分别相切于点D,E,F,则∠DEF的度数为.16.(3分)一架直升飞机执行海上搜救任务,在空中A处发现海面上有一目标B,仪器显示这时飞机距目标5km,俯角为30°,求这时飞机的飞行高度为km.17.(3分)如图,扇形纸扇完全打开后,阴影部分为贴纸,外侧两竹条AB,AC 的夹角为120°,弧BC的长为30πcm,AD的长为15cm,则贴纸的面积等于cm2.18.(3分)已知函数y1=x2与函数y2=﹣x+3的图象交于点A(﹣2,4)和点B (,),若y1<y2,则x的取值范围是.三、解答题(本题共6小题,共66分)19.(10分)解方程、求值.(1)解方程:x2﹣4x﹣5=0(2)求值:sin30°+tan60°﹣cos45°+tan30°.20.(10分)如图,在△ABC中,BD⊥AC,垂足为D,AB=AC=9,BC=6,求BD 的长.21.(10分)在矩形ABCD中,AB=6,AD=8,P是BC边上一个动点(不与点B 重合).设PA=x,点D到PA的距离为y,求y与x之间的函数表达式,并求出自变量x的取值范围.22.(12分)已知:△ABC内接于⊙O,过点A作直线EF.(1)如图①,AB为直径,要使EF为⊙O的切线,还需添加的条件是(只需写出三种情况):①;②;③.(2)如图②,AB是非直径的弦,∠CAE=∠B,求证:EF是⊙O的切线.(3)如图③,AB是非直径的弦,∠CAE=∠ABC,EF还是⊙O的切线吗?若是,请说明理由;若不是,请解释原因.23.(12分)某电脑公司开发出一种软件,从研发到年初上市后,经历了从亏损到盈利的过程,如图中的图象是抛物线的一段,它刻画了该软件上市以来累积利润S(万元)与销售时间t(月)之间的函数关系(即前t个月的利润总和S与t之间的函数关系),根据图象提供的信息,解答下列问题:(1)该种软件上市第几个月后开始盈利?(2)求累积利润S(万元)与时间t(月)之间的函数表达式;(3)截止到几月末,公司累积利润达到30万元?(4)求公司第6个月末所累积的利润.24.(12分)如图,在正方形ABCD中,AB=4,E,F分别是边BC,CD边上的动点,且AE=AF,设△AEF的面积为y,EC的长为x.(1)求y与x之间的函数表达式,并写出自变量x的取值范围.(2)当x取何值时,△AEF的面积最大,最大面积是多少?(3)在直角坐标系中画出y关于x的函数的图象.2016-2017学年山东省潍坊市诸城市初三上学期期末数学试卷参考答案与试题解析一、选择题(本题共12小题,每小题3分,共36分)1.(3分)下列关于函数y=(x﹣6)2+3的图象,下列叙述错误的是()A.图象是抛物线,开口向上B.对称轴为直线x=6C.顶点是图象的最高点,坐标为(6,3)D.当x<6时,y随x的增大而减小;当x>6时,y随x的增大而增大【分析】根据二次函数的开口,二次函数的对称轴,二次函数的顶点坐标以及二次函数的增减性对各选项分析判断即可得解.【解答】解:A、函数y=(x﹣6)2+3是抛物线,开口向上,正确,故本选项错误;B、函数y=(x﹣6)2+3的对称轴是直线x=6,正确,故本选项错误;C、函数y=(x﹣6)2+3的顶点是图象的最低点,坐标为(6,3),故本选项正确;D、当x<6时,y随x的增大而减小;当x>6时,y随x的增大而增大,正确,故本选项错误.故选:C.2.(3分)下列方程中两个实数根的和等于2的方程是()A.2x2﹣4x+3=0B.2x2﹣2x﹣3=0C.2y2+4y﹣3=0D.2t2﹣4t﹣3=0【分析】利用判别式对A进行判断;根据根与系数的关系对B、C、D进行判断.【解答】解:A、△=(﹣4)2﹣4×2×3<0,方程没有实数解,所以A选项错误;B、两个实数根的和等于1,所以B选项错误;C、两个实数根的和等于﹣2,所以C选项错误;D、两个实数根的和等于2,所以D选项正确.故选:D.3.(3分)如图,扇形OAB的圆心角为90°,点C,D是弧AB的三等分点,半径OC,OD分别与弦AB交于点E,F,下列说法错误的是()A.AE=EF=FB B.AC=CD=DB C.EC=FD D.∠DFB=75°【分析】由三角形内角和定理求出∠OCD的度数,根据三角形外角的性质得出∠OEF及∠OFE的度数,由此即可得出结论;根据三角形内角和定理即可得出∠AEO的度数;连接AC,BD,可得出CD=AE=BF,由②可知EF∥CD,所以EF<CD,故可得出结论.【解答】解:∵点C,D是弧AB的三等分点,∴AC=CD=DB,∴选项B正确;∵OA=OB,∴∠OAB=∠OBA=45°,∵∠AOC=∠BOD=30°,∴∠OEF=∠OAB+∠AOC=45°+30°=75°,同理∠OFE=75°,∴OE=OF,∵OC=OD,∴CE=DF,选项C正确;连接AC,BD,∵由选项C知,OC=OD,OE=OF,∴EF∥CD,∴EF<CD,∵C,D是的三等分点,∴AC=CD=BD,∵∠AOC=∠COD,OA=OC=OD,∴△ACO≌△DCO.∴∠ACO=∠OCD.∵∠OEF=∠OAE+∠AOE=45°+30°=75°,故选项D正确;∠OCD==75°,∴∠OEF=∠OCD,∴CD∥AB,∴∠AEC=∠OCD,∴∠ACO=∠AEC.故AC=AE,同理,BF=BD.又∵AC=CD=BD∴CD=AE=BF≠EF,故选项A错误;故选:A.4.(3分)下列关于圆的叙述正确的有()①圆内接四边形的对角互补;②相等的圆周角所对的弧相等;③正多边形内切圆的半径与正多边形的半径相等;④同圆中的平行弦所夹的弧相等.A.1个B.2个C.3个D.4个【分析】利用圆内接四边形的性质、圆周角定理、正多边形的性质分别判断后即可确定正确的选项个数.【解答】解:①圆内接四边形的对角互补;正确;②相等的圆周角所对的弧相等;错误;③正多边形内切圆的半径与正多边形的半径相等;错误;④同圆中的平行弦所夹的弧相等;正确;正确的有2个,故选:B.5.(3分)如图,以半径为2的正六边形ABCDEF的中心O为原点建立平面直角坐标系,顶点A,D在x轴上,则点C的坐标为()A.(1,﹣2)B.(1,﹣)C.(1,﹣)D.(﹣1,﹣)【分析】连接OC,由于正六边形的中心角是60°,则△COD是等边三角形,OC=2,设BC交y轴于G,那么∠GOC=30°,然后解Rt△GOC,求出GC与OG的值,进而得到点C的坐标.【解答】解:连接OC.∵∠COD=60°,OC=OD,∴△COD是等边三角形,∴OC=OD=2.设BC交y轴于G,则∠GOC=30°.在Rt△GOC中,∵∠GOC=30°,OC=2,∴GC=1,OG=.∴C(1,﹣).故选:C.6.(3分)如图,△ABC的内切圆O与各边分别相切于点D,E,F,那么下列叙述错误的是()A.点O是△ABC的三条角平分线的交点B.点O是△DEF的三条中线的交点C.点O是△DEF的三条边的垂直平分线的交点D.△DEF一定是锐角三角形【分析】根据切线的性质得到OD⊥AB,OE⊥BC,OF⊥AC,根据同圆的半径相等得到OD=OE=OF,于是得到点O是△ABC的三条角平分线的交点,根据外接圆的圆心的性质得到点O是△DEF的三条边的垂直平分线的交点,根据四边形的内角和和圆周角定理得到DEF是锐角三角形.【解答】解:连接OD,OE,OF,∵△ABC的内切圆O与各边分别相切于点D,E,F,∴OD⊥AB,OE⊥BC,OF⊥AC,∵OD=OE=OF,∴点O是△ABC的三条角平分线的交点,∵⊙O是△DEF的外接圆,∴点O是△DEF的三条边的垂直平分线的交点,∵∠ADO=∠AFO=90°,∴∠A+∠DOF=180°,∴∠DOF=180°﹣∠A,∴∠DEF=∠DOF=90°﹣A,∴∠DEF是锐角,同理∠EDF与∠DFE是锐角,∴△DEF是锐角三角形,故选:B.7.(3分)如图所示,图中共有相似三角形()A.2对B.3对C.4对D.5对【分析】可以运用相似三角形的判定方法进行验证.【解答】解:共四对,分别是△PAC∽△PBD、△AOC∽△DOB、△AOB∽△COD、△PAD∽△PCB.故选:C.8.(3分)如图,已知∠AOB=60°,点P在边OA上,OP=24,点M,N在边OB 上,PM=PN,若NM=6,则OM等于()A.6B.7C.8D.9【分析】过点P作PC⊥OB于C,根据直角三角形两锐角互余求出∠OPC=30°,根据直角三角形30°角所对的直角边等于斜边的一半可得OC=OP,再根据等腰三角形三线合一的性质可得CM=MN,然后根据OM=OC﹣CM计算即可得解.【解答】解:如图,过点P作PC⊥OB于C,∵∠AOB=60°,∴∠OPC=30°,∴OC=OP=×24=12,∵PM=PN,∴CM=MN=×6=3,∴OM=OC﹣CM=12﹣3=9.故选:D.9.(3分)已知开口向下的抛物线y=ax2﹣3x+a2﹣2a﹣3经过坐标原点,那么a等于()A.﹣1B.3C.﹣3D.3或﹣1【分析】把原点坐标代入抛物线解析式可得到关于a的方程,可求得a的值,再结合开口向下可求得答案.【解答】解:∵抛物线y=ax2﹣3x+a2﹣2a﹣3经过坐标原点,∴a2﹣2a﹣3=0,解得a=﹣1或a=3,∵抛物线开口向下,∴a<0,∴a=﹣1,故选:A.10.(3分)已知A(m,y1)和B(﹣2,y2)是函数y=﹣上的点,且y1>y2,则m的取值范围是()A.﹣2<m<0B.m>﹣2C.m<﹣2D.m<﹣2或m>0【分析】先根据k=﹣6<0判断出函数的增减性,再由y1>y2即可得出结论.【解答】解:∵函数y=﹣中,k=﹣6<0,∴此函数图象的两个分支分别位于第二四象限.∵B(﹣2,y2)中x=﹣2<0,∴点B位于第二象限.∵y1>y2,∴A(m,y1)位于第二象限.∵函数图象在每一象限内y随x的增大而增大,∴﹣2<m<0.故选:A.11.(3分)在平面直角坐标系中,平移二次函数y=x2+4x+3的图象能够与二次函数y=x2的图象重合,则平移方式为()A.向左平移2个单位,向下平移1个单位B.向左平移2个单位,向上平移1个单位C.向右平移2个单位,向下平移1个单位D.向右平移2个单位,向上平移1个单位【分析】按照“左加右减,上加下减”的规律求则可.【解答】解:二次函数y=x2+4x+3=(x+2)2﹣1,将其向右平移2个单位,再向上平移1个单位得到二次函数y=x2.故选:D.12.(3分)如图,正方形ABCD边长为2,AB∥x轴,AD∥y轴,顶点A恰好落在双曲线y=上,边CD,BC分别交双曲线于E,F两点,若线段AE过原点,则EF的长为()A.1B.C.D.【分析】根据正、反比例的对称性即可得出点A的坐标为(﹣,﹣1)、点E的坐标为(,1),结合正方形的边长为2以及反比例函数图象上点的坐标特征即可的点C、点F的坐标,由此即可得出EC、CF的长度,再根据勾股定理即可得出结论.【解答】解:∵线段AE过原点,且点A、E均在双曲线y=上,∴点A、E关于原点对称,∵正方形ABCD边长为2,∴点A的坐标为(﹣,﹣1),点E的坐标为(,1),∴点C的坐标为(,1),点F的坐标为(,),∴EC=﹣=1,CF=1﹣=,∴EF==.故选:C.二、填空题(本题共6小题,每小题3分,共18分)13.(3分)某航空公司托运行李的费用y元与托运行李的质量x(kg)之间的函数关系如图所示,根据图中的信息可知:免费托运行李质量应不超过19 kg.【分析】由函数图象由待定系数法可以直接求出函数的解析式;由题意得知免费托运,就是运费为0,当y=0代入求出函数的解析式就可以得出结论;【解答】解:设y与x之间的函数关系式为y=kx+b,由函数图象,得,解得:,∴y=30x﹣570(x>19),由题意,得当y=0时,x=19,∴免费托运行李质量的范围是不超过19千克.故答案为:19.14.(3分)如图,在△ABC中,D为AC边上一点,且∠DBA=∠C,若AD=2cm,AB=4cm,那么CD的长等于6cm.【分析】由条件可证得△ABC∽△ADB,可得到=,从而可求得AC的长,最后计算CD的长.【解答】解:∵∠DBA=∠C,∠A是公共角,∴△ABC∽△ADB,∴=,即=,解得AC=8,∴CD=8﹣2=6cm.故答案为:6.15.(3分)如图,在Rt△ABC中,∠C=90°,∠B=58°,内切圆O与边AB,BC,CA分别相切于点D,E,F,则∠DEF的度数为74°.【分析】连接OD、OF,根据三角形内角和定理求出∠A,根据切线的性质得到OD⊥AB,OF⊥AC,求出∠DOF,根据圆周角定理解答即可.【解答】解:连接OD、OF,∵∠C=90°,∠B=58°,∴∠A=90°﹣58°=32°,∵内切圆O与边AB,CA分别相切于点D,F,∴OD⊥AB,OF⊥AC,∴∠DOF=180°﹣32°=148°,由圆周角定理得,∠DEF=∠DOF=74°,故答案为:74°.16.(3分)一架直升飞机执行海上搜救任务,在空中A处发现海面上有一目标B,仪器显示这时飞机距目标5km,俯角为30°,求这时飞机的飞行高度为 2.5 km.【分析】根据题意求出∠B,根据正弦的定义解答即可.【解答】解:由题意得,∠B=∠α=30°,在Rt△ABC中,AC=AB•sinB=2.5km,故答案为:2.5.17.(3分)如图,扇形纸扇完全打开后,阴影部分为贴纸,外侧两竹条AB,AC 的夹角为120°,弧BC的长为30πcm,AD的长为15cm,则贴纸的面积等于600πcm2.【分析】分析题干知,贴纸的面积等于大扇形的面积﹣小扇形的面积.【解答】解:∵弧BC的长为30πcm,∴=30π,解得AB=45cm,贴纸的面积=大扇形的面积﹣小扇形的面积,=×30π×45﹣××15=600πcm2,故答案为600π.18.(3分)已知函数y1=x2与函数y2=﹣x+3的图象交于点A(﹣2,4)和点B (,),若y1<y2,则x的取值范围是﹣2<x<.【分析】画出两函数图象,根据两函数图象的上下位置关系结合两函数图象交点的横坐标即可得出结论.【解答】解:根据题意画出两函数图象,如图所示.观察函数图象可知:当﹣2<x<时,二次函数图象在一次函数图象下方,∴y1<y2,则x的取值范围﹣2<x<.故答案为:﹣2<x<.三、解答题(本题共6小题,共66分)19.(10分)解方程、求值.(1)解方程:x2﹣4x﹣5=0(2)求值:sin30°+tan60°﹣cos45°+tan30°.【分析】(1)因式分解法求解可得;(2)将三角函数值代入,再根据实数的混合运算顺序计算可得.【解答】解:(1)∵(x+1)(x﹣5)=0,∴x+1=0或x﹣5=0,解得:x=﹣1或x=5;(2)原式=×+﹣+=.20.(10分)如图,在△ABC中,BD⊥AC,垂足为D,AB=AC=9,BC=6,求BD 的长.【分析】作AE⊥BC于E,由等腰三角形的性质得出BE=CE=BC=3,由勾股定理求出AE,证明△AEC∽△BDC,得出对应边成比例,即可求出BD的长.【解答】解:作AE⊥BC于E,如图所示:则∠AEC=90°,∵AB=AC,∴BE=CE=BC=3,∴AE==6,∵BD⊥AC,∴∠BDC=90°=∠AEC,又∵∠C=∠C,∴△AEC∽△BDC,∴AE:BD=AC:BC,∴BD===4.21.(10分)在矩形ABCD中,AB=6,AD=8,P是BC边上一个动点(不与点B 重合).设PA=x,点D到PA的距离为y,求y与x之间的函数表达式,并求出自变量x的取值范围.【分析】首先利用相似三角形的判定与性质得出y与x之间的关系,进而求出x 的取值范围.【解答】解:∵在矩形ABCD中,∴AD∥BC,∴∠DAE=∠APB,∵∠B=∠AED=90°,∴△ABP∽△DEA,∴=,∴=,故y=,∵AB=6,AD=8,∴矩形对角线AC==10,∴x的取值范围是:6<x≤10.22.(12分)已知:△ABC内接于⊙O,过点A作直线EF.(1)如图①,AB为直径,要使EF为⊙O的切线,还需添加的条件是(只需写出三种情况):①AB⊥EF;②∠ABC=∠EAC;③∠BAE=90°.(2)如图②,AB是非直径的弦,∠CAE=∠B,求证:EF是⊙O的切线.(3)如图③,AB是非直径的弦,∠CAE=∠ABC,EF还是⊙O的切线吗?若是,请说明理由;若不是,请解释原因.【分析】(1)根据切线的判断由AB⊥EF或∠BAE=90°可判断EF为⊙O的切线;当∠ABC=∠EAC,根据圆周角定理得∠ABC+∠CAB=90°,所以∠EAC+∠CAB=90°,即AB⊥EF,于是也可判断EF为⊙O的切线;(2)作直径AD,连结CD,由AD为直径得∠ACD=90°,则∠D+∠CAD=90°,根据圆周角定理得∠D=∠B,而∠CAE=∠B,所以∠CAE=∠D,则∠EAC+∠CAD=90°,根据切线的判定定理得到EF为⊙O的切线;(3)作直径AD,连结CD,BD,由AD为直径得∠ABD=90°,而∠CAE=∠ABC,即∠DAE+∠DAC=∠ABD+∠DBC,而∠DAC=∠DBC,所以∠DAE=∠ABD=90°,根据切线的判定即可得到EF为⊙O的切线.【解答】(1)解:当AB⊥EF或∠BAE=90°可判断EF为⊙O的切线;当∠ABC=∠EAC,∵AB为直径,∴∠ACB=90°,∴∠ABC+∠CAB=90°,∴∠EAC+∠CAB=90°,∴AB⊥EF,∴EF为⊙O的切线;故答案为AB⊥EF、∠BAE=90°、∠ABC=∠EAC;(2)证明:如图2,作直径AD,连结CD,∵AD为直径,∴∠ACD=90°,∴∠D+∠CAD=90°,∵∠D=∠B,∠CAE=∠B,∴∠CAE=∠D,∴∠EAC+∠CAD=90°,∴AD⊥EF,∴EF为⊙O的切线;(3)如图3,作直径AD,连结CD,BD,∵AD为直径,∴∠ABD=90°,∵∠CAE=∠ABC,∴∠DAE+∠DAC=∠ABD+∠DBC,而∠DAC=∠DBC,∴∠DAE=∠ABD=90°,∴AD⊥EF,∴EF为⊙O的切线.23.(12分)某电脑公司开发出一种软件,从研发到年初上市后,经历了从亏损到盈利的过程,如图中的图象是抛物线的一段,它刻画了该软件上市以来累积利润S(万元)与销售时间t(月)之间的函数关系(即前t个月的利润总和S与t之间的函数关系),根据图象提供的信息,解答下列问题:(1)该种软件上市第几个月后开始盈利?(2)求累积利润S(万元)与时间t(月)之间的函数表达式;(3)截止到几月末,公司累积利润达到30万元?(4)求公司第6个月末所累积的利润.【分析】(1)根据函数图象可以直接解答本题;(2)根据函数图象中的数据可以求得累积利润S(万元)与时间t(月)之间的函数表达式;(3)将S=30代入(2)中的函数解析式即可解答本题;(4)将t=6代入(2)中的函数解析式即可解答本题.【解答】解:(1)由图象可得,该种软件上市第4个月后开始盈利;(2)设S=a(t﹣2)2﹣2,∵函数图象过点(0,0),∴0=a(0﹣2)2﹣2,得a=,∴累积利润S(万元)与时间t(月)之间的函数表达式是:S=(t﹣2)2﹣2;(3)当S=30时,30=(t﹣2)2﹣2,解得,t1=10,t2=﹣6(舍去),即截止到10月末,公司累积利润达到30万元;(4)当t=6时,S=(6﹣2)2﹣2=6,即公司第6个月末所累积的利润是6万元.24.(12分)如图,在正方形ABCD中,AB=4,E,F分别是边BC,CD边上的动点,且AE=AF,设△AEF的面积为y,EC的长为x.(1)求y与x之间的函数表达式,并写出自变量x的取值范围.(2)当x取何值时,△AEF的面积最大,最大面积是多少?(3)在直角坐标系中画出y关于x的函数的图象.【分析】(1)根据正方形的性质可得AB=AD,再利用“HL”证明Rt△ABE和Rt△ADF 全等,根据全等三角形对应边相等可得BE=DF,然后求出CE=CF,再根据△AEF 的面积等于正方形的面积减去三个直角三角形的面积列式整理即可得解;(2)结合(1)中二次函数解析式和x的取值范围来求△AEF的面积的最大值;(3)利用(1)中二次函数解析式画出函数图象,注意x的取值范围.【解答】解:(1)在正方形ABCD中,AB=AD,在Rt△ABE和Rt△ADF中,,∴Rt△ABE≌Rt△ADF(HL),∴BE=DF,∴CE=CF,∵CE=x,∴BE=DF=4﹣x,∴y=42﹣2××4×(4﹣x)﹣x2,=﹣x2+4x,即y=﹣x2+4x.∵E、F分别是BC、CD边上的动点,且保证A、E、F能构成三角形,∴x的取值范围是:0≤x≤4;(2)∵y=﹣x2+4x=﹣(x﹣4)2+8,0<x≤4,∴当x=4时,△AEF的面积最大,最大面积是8;(3)如图所示,。
山东潍坊诸城市九年级上期中数学卷(解析版)(初三)期中考试姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题(每空xx 分,共xx分)【题文】如图,在△ABC中,DE∥BC,且AE=CE,则△ADE与四边形DBCE的面积之比等于().A.1 B. C. D.【答案】C.【解析】试题分析:因为DE∥BC,所以可得△ADE∽△ABC,根据相似三角形的面积比等于相似比的平方解答即可.∵DE∥BC,∴△ADE∽△ABC,∴AE:AC=DE:BC,∵AE=CE,∴DE:BC=1:2,∴△ADE与△ABC的面积之比是1:4,∴△ADE与四边形DBCE的面积之比是1:3.故选C.考点:相似三角形的判定与性质.【题文】如图,某水库堤坝横断面迎水坡AB的坡比是1:,堤坝高BC=50m,则迎水坡面AB的长度是().A.100m B.100m C.150m D.50m【答案】A.【解析】评卷人得分试题分析:根据题意可得,把BC=50m,代入即可算出AC的长,再利用勾股定理算出AB的长即可.∵堤坝横断面迎水坡AB的坡比是1: ,∴,∵BC=50m,∴AC=50m,∴AB==100m,故选:A.考点:解直角三角形的应用-坡度坡角问题.【题文】若一元二次方程x2+bx+5=0配方后为(x﹣3)2=k,则b,k的值分别为().A.0,4 B.0,5 C.﹣6,5 D.﹣6,4【答案】D.【解析】试题分析:先把(x﹣3)2=k化成x2﹣6x+9﹣k=0,再根据一元二次方程x2+bx+5=0得出b=﹣6,9﹣k=5,然后求解即可.∵(x﹣3)2=k,∴x2﹣6x+9﹣k=0,∵一元二次方程x2+bx+5=0配方后为(x﹣3)2=k,∴b=﹣6,9﹣k=5,∴k=4,∴b,k的值分别为﹣6、4;故选D.考点:解一元二次方程-配方法.【题文】如图,要使△ABC∽△CBD,则下列选项中不能作为条件添加的是().A.BC2=BD∙BA B.∠A=∠BCD C.AC2=AD∙AB D.∠BDC=∠ACB【答案】C.【解析】试题分析:图中已知条件是∠ABC=∠CBD,所以根据“两角法”、“两边及其夹角法”进行添加条件即可.如图,∠ABC=∠CBD.A、若添加BC2=BD∙BA即时,可以判定△ABC∽△CBD,故本选项错误;B、若添加∠A=∠BCD时,可以判定△ABC∽△CBD,故本选项错误;C、若添加AC2=AD∙AB即时,可以判定△ABC∽△ACD,故本选项正确;D、若添加∠BDC=∠ACB时,可以判定△ABC∽△CBD,故本选项错误;故选:C.考点:相似三角形的判定.【题文】如图,在Rt△ABC中,∠C=90°,AB=6,cosB=,则BC的长为().A.4 B.2 C. D.【答案】A.【解析】试题分析:根据cosB=,可得=,再把AB的长代入可以计算出CB的长.∵cosB=,∴=,∵AB=6,∴CB=×6=4,故选:A.考点:锐角三角函数的定义.【题文】关于x的一元二次方程x2﹣5x+p2﹣2p+5=0的一个根为1,则实数p的值是().A.4 B.0或2 C.1 D.﹣1【答案】C.【解析】试题分析:本题根据一元二次方程的根的定义、一元二次方程的定义求解.∵x=1是方程的根,由一元二次方程的根的定义,可得p2﹣2p+1=0,解此方程得到p=1.故本题选C.考点:一元二次方程的解.【题文】轮船从B处以每小时50海里的速度沿南偏东30°方向匀速航行,在B处观测灯塔A位于南偏东75°方向上,轮船航行半小时到达C处,在C处观测灯塔A位于北偏东60°方向上,则C处与灯塔A的距离是()海里.A.25 B.25 C.50 D.25【答案】D.【解析】试题分析:根据题中所给信息,求出∠BCA=90°,再求出∠CBA=45°,从而得到△ABC为等腰直角三角形,然后根据解直角三角形的知识解答.如图:根据题意,∠1=∠2=30°,∵∠ACD=60°,∴∠ACB=30°+60°=90°,∴∠CBA=75°﹣30°=45°,∴△ABC为等腰直角三角形,∵BC=50×0.5=25,∴AC=BC=25(海里).故选D.考点:1.等腰直角三角形;2.方向角.【题文】如果关于x的一元二次方程kx2﹣x+1=0有两个不相等的实数根,那么k的取值范围是()A. k<B. k<且k≠0C. ﹣≤k<D. ﹣≤k<且k≠0【答案】D【解析】试题分析:根据方程有两个不相等的实数根,则△>0,由此建立关于k的不等式,然后就可以求出k的取值范围.由题意知:2k+1≥0,k≠0,△=2k+1﹣4k>0,综合k的取值范围是-≤k<,且k≠0.故选:D.考点:根的判别式.【题文】为了测量被池塘隔开的A,B两点之间的距离,根据实际情况,作出如图图形,其中AB⊥BE,EF⊥BE,AF交BE于D,C在BD上.有四位同学分别测量出以下四组数据:①BC,∠ACB;②CD,∠ACB,∠ADB;③EF,DE,BD;④DE,DC,BC.能根据所测数据,求出A,B间距离的有().A.1组 B.2组 C.3组 D.4组【答案】C.【解析】试题分析:此题比较综合,要多方面考虑,①因为知道∠ACB和BC的长,所以可利用∠ACB的正切来求AB 的长;②可利用∠ACB和∠ADB的正切求出AB;③借助于相似三角形的性质,因为△ABD∽△EFD可利用,求出AB;④无法求出A,B间距离.故共有3组可以求出A,B间距离.故选C.考点:1.相似三角形的应用;2.解直角三角形的应用.【题文】如图,正方形ABCD的两边BC,AB分别在平面直角坐标系的x轴、y轴的正半轴上,正方形A′B ′C′D′与正方形ABCD是以AC的中点O′为中心的位似图形,已知AC=3,若点A′的坐标为(1,2),则正方形A′B′C′D′与正方形ABCD的相似比是().A. B. C. D.【答案】B.【解析】试题分析:延长A′B′交BC于点E,根据大正方形的对角线长求得其边长,然后求得小正方形的边长后即可求两个正方形的相似比.∵在正方形ABCD中,AC=3,∴BC=AB=3,延长A′B′交BC于点E,∵点A ′的坐标为(1,2),∴OE=1,EC=A′E=3﹣1=2,∴OE:BC=1:3,∴AA′:AC=1:3,∵AA′=CC′,∴AA′=CC′=A′C′,∴A′C′:AC=1:3,∴正方形A′B′C′D′与正方形ABCD的相似比是.故选B.考点:1.位似变换;2.坐标与图形性质.【题文】如图,边长为1的正方形ABCD绕点A逆时针旋转30°到正方形AB′C′D′,图中阴影部分的面积为().A. B. C.1﹣ D.1﹣【答案】C.【解析】试题分析:设B′C′与CD的交点为E,连接AE,利用“HL”证明Rt△AB′E和Rt△ADE全等,根据全等三角形对应角相等∠DAE=∠B′AE,再根据旋转角求出∠DAB′=60°,然后求出∠DAE=30°,再解直角三角形求出DE,然后根据阴影部分的面积=正方形ABCD的面积﹣四边形ADEB′的面积,列式计算即可得解.如图,设B′C′与CD的交点为E,连接AE,在Rt△AB′E和Rt△ADE中,,∴Rt△AB′E≌Rt△ADE(HL),∴∠DAE=∠B′AE,∵旋转角为30°,∴∠DAB′=60°,∴∠DAE=×60°=30°,∴DE=1×=,∴阴影部分的面积=1×1﹣2×(×1×)=1﹣.故选:C.考点:1.旋转的性质;2.正方形的性质.【题文】如图,Rt△ABC中,AB⊥AC,AB=3,AC=4,P是BC边上一点,作PE⊥AB于E,PD⊥AC于D,设BP=x ,则PD+PE=().A.+3 B.4- C. D.【答案】A.【解析】试题分析:先根据勾股定理求得BC的长,再根据相似三角形的判定得到△CDP∽△CAB,△BPE∽△BCA,利用相似三角形的边对应成比例就不难求得PD+PE了.∵在Rt△ABC中,AB⊥AC,AB=3,AC=4,∴由勾股定理得BC=5,∵AB⊥AC,PE⊥AB,PD⊥AC,∴PE∥AC,PD∥AB,∴△CDP∽△CAB,△BPE∽△BCA,∴,,∴PD=,PE=,∴PD+PE=+=+3.故选A.考点:1.相似三角形的判定与性质;2.勾股定理.【题文】观察下列等式①sin30°= cos60°=②sin45°= cos45°=③sin60°= cos30°=…根据上述规律,计算sin2a+sin2(90°﹣a)=.【答案】1.【解析】试题分析:根据①②③可得出规律,即sin2a+sin2(90°﹣a)=1,继而可得出答案.由题意得,sin230°+sin2(90°﹣30°)=1;sin245°+sin2(90°﹣45°)=1;sin260°+sin2(90°﹣60°)=1;故可得sin2a+sin2(90°﹣a)=1.故答案为:1.考点:互余两角三角函数的关系.【题文】如图,在一块长为22米、宽为17米的矩形地面上,要修建同样宽的两条互相垂直的道路(两条道路各与矩形的一条边平行),剩余部分种上草坪,使草坪面积为300平方米.若设道路宽为x米,则根据题意可列出方程为.【答案】(22﹣x)(17﹣x)=300.【解析】试题分析:把所修的两条道路分别平移到矩形的最上边和最左边,则剩下的草坪是一个长方形,根据长方形的面积公式列方程.设道路的宽应为x米,由题意有(22﹣x)(17﹣x)=300,故答案为:(22﹣x)(17﹣x)=300.考点:由实际问题抽象出一元二次方程.【题文】如图,△ABC中,DE∥FG∥BC,且S△ADE=S梯形DFGE=S梯形FBCG,DE:FG:BC=.【答案】1::.【解析】试题分析:由平行线可得△ADE∽△AFG∽△ABC,进而利用相似三角形面积比等于对应边的平方比,即可得出结论.∵S△ADE=S梯形DFGE=S梯形FBCG,∵DE∥FG∥BC,∴△ADE∽△AFG∽△ABC,∴=,=,由于相似三角形的面积比等于对应边长的平方比,∴DE:FG:BC=1::.故答案为:1::.考点:相似三角形的判定与性质.【题文】已知线段AB的长为2,以AB为边在AB的下方作正方形ACDB.取AB边上一点E,以AE为边在AB 的上方作正方形AENM.过E作EF⊥CD,垂足为F点,如图.若正方形AENM与四边形EFDB的面积相等,则AE的长为.【答案】﹣1.【解析】试题分析:设AE=x,则BE=2﹣x,就有EFDB的面积为2(2﹣x),正方形AENM的面积=x2,根据正方形AENM 与四边形EFDB的面积相等建立方程求出其解即可.设AE=x,则BE=2﹣x,由图形得x2=2(2﹣x),解得:x1=﹣1,x2=﹣﹣1(舍去),故答案为:﹣1.考点:一元二次方程的应用.【题文】如图,将45°的∠AOB按下面的方式放置在一把刻度尺上:顶点O与尺下沿的端点重合,OA与尺下沿重合,OB与尺上沿的交点B在尺上的读数恰为2cm.若按相同的方式将37°的∠AOC放置在该刻度尺上,则OC与尺上沿的交点C在尺上的读数约为 cm.(结果精确到0.1cm,参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)【答案】2.7.【解析】试题分析:过点B作BD⊥OA于D,过点C作CE⊥OA于E.首先在等腰直角△BOD中,得到BD=OD=2cm,则CE=2cm,然后在直角△COE中,根据正切函数的定义即可求出OE的长度.过点B作BD⊥OA于D,过点C作CE⊥OA于E.在△BOD中,∠BDO=90°,∠DOB=45°,∴BD=OD=2cm,∴CE=BD=2cm.在△COE中,∠CEO=90°,∠COE=37°,∵tan37°=≈0.75,∴OE≈2.7cm.∴OC与尺上沿的交点C在尺上的读数约为2.7cm.故答案为2.7.考点:解直角三角形的应用.【题文】已知a≠b,且a、b满足a2﹣3a﹣4=0,b2﹣3b﹣4=0,那么+的值等于.【答案】﹣.【解析】试题分析:由a、b满足a2﹣3a﹣4=0、b2﹣3b﹣4=0,可得出a、b是方程x2﹣3x﹣4=0的两个根,利用根与系数的关系即可得出a+b=3、ab=﹣4,将+变形成,代入数据即可得出结论.∵a 、b满足a2﹣3a﹣4=0,b2﹣3b﹣4=0,∴a、b是方程x2﹣3x﹣4=0的两个根,∴a+b=3,ab=﹣4,∴+====﹣.故答案为:﹣.考点:1.根与系数的关系;2.分式的值.【题文】解关于x的方程:(1)(2x﹣5)2=(x﹣2)2(2)(1+x)2+(1+x)=12(3)x2+ax+b=0(配方法)【答案】(1)x1=3,x2=.(2)x1=2,x2=﹣5.(3)当a2﹣4b<0时,方程无解.当a2﹣4b≥0时,x=﹣±.【解析】试题分析:(1)利用直接开方法解即可.(2)移项,利用因式分解法解即可.(3)根据配方法的步骤解即可.试题解析:(1)∵(2x﹣5)2=(x﹣2)2,∴2x﹣5=±(x﹣2),∴x1=3,x2=.(2)∵(1+x)2+(1+x)=12,∴(1+x)2+(1+x)﹣12=0∴(1+x+4)(1+x﹣3)=0,∴1+x+4=0或1+x﹣3=0,∴x1=2,x2=﹣5.(3)∵x2+ax+b=0,∴x2+ax=﹣b,∴x2+ax+()2=()2﹣b,∴(x+)2=,当a2﹣4b<0时,方程无解.当a2﹣4b≥0时,x=﹣±.考点:1. 直接开方法解一元二次方程;2.解一元二次方程-配方法;3.解一元二次方程-因式分解法.【题文】如图,在正方形ABCD中,E、F分别是边BC、CD上的点, =,CF=DF,连接AE、AF、EF,并延长FE交AB的延长线于点G.(1)若正方形的边长为4,则EG等于;(2)求证:△ECF∽△FDA;(3)比较∠EAB与∠EAF的大小.【答案】(1)3;(2)证明参见解析;(3)∠EAF<∠EAB.【解析】试题分析:(1)先根据正方形边长得CF=2,由平行相似得:△FCE∽△GBE,则,代入求得BG=6,根据勾股定理得:EG=3;(2)根据已知边的长度分别求=, ==,则=,再由正方形性质得:∠C=∠D=90°,则△ECF∽△FDA;(3)先根据(2)中的△ECF∽△FDA,得∠CFE=∠DAF,==,证明∠EFA=90°,分别计算∠EAB与∠EAF的正切值,根据两锐角正切大的角大,得出结论.试题解析:(1)∵四边形ABCD是正方形,∴AB=CD=BC=4,∠ABC=90°,DC∥AB,∵CF=DF,∴CF=CD=2,∵DC∥AG,∴△FCE∽△GBE,∴,∵=,∴=,BE=BC=×4=3,∴=,∴BG=6,在Rt△BEG中,EG===3;故答案为:3;(2)∵四边形ABCD是正方形,∴BC=AD=DC=4,∠C=∠D=90°,∵DF=FC=2,CE=1,∴=, ==,∴=,∴△ECF∽△FDA;(3)∵△ECF∽△FDA,∴∠CFE=∠DAF,==,∵∠DFA+∠DAF=90°,∴∠CFE+∠DFA=90°,∴∠EFA=90°,∴tan∠EAF==,∵=,∴tan∠EAB==,∵<,∴∠EAF<∠EAB.考点:相似形综合题.【题文】已知一元二次方程x2﹣2x+m﹣1=0.(1)当m取何值时,方程有两个不相等的实数根?(2)设x1,x2是方程的两个实数根,且满足x12+x1x2=1,求m的值.【答案】(1)m<2;(2)m=.【解析】试题分析:(1)若一元二次方程有两不等实数根,则根的判别式△=b2﹣4ac>0,建立关于m的不等式,即可求出m的取值范围.(2)x1是方程的实数根,就适合原方程,可得到关于x1与m的等式.再根据根与系数的关系知,x1x2=m﹣1,故可求得x1和m的值.试题解析:(1)根据题意得△=b2﹣4ac=4﹣4×(m﹣1)>0,解得m<2;(2)∵x1是方程的实数根,∴x12﹣2x1+m﹣1=0①,∵x1,x2是方程的两个实数根,∴x1•x2=m﹣1,∵x12+x1x2=1,∴x12+m﹣1=1②,由①②得x1=0.5,把x=0.5代入原方程得,m=.考点:1.根与系数的关系;2.一元二次方程的解;3.根的判别式.【题文】今年“五一“假期.某数学活动小组组织一次登山活动.他们从山脚下A点出发沿斜坡AB到达B 点.再从B点沿斜坡BC到达山顶C点,路线如图所示.斜坡AB的长为1040米,斜坡BC的长为400米,在C点测得B点的俯角为30°.已知A点海拔121米.C点海拔721米.(1)求B点的海拔;(2)求斜坡AB的坡度.【答案】(1)521米.(2)1:2.4.【解析】试题分析:(1)过C作CF⊥AM,F为垂足,过B点作BE⊥AM,BD⊥CF,E、D为垂足,构造直角三角形ABE 和直角三角形CBD,然后解直角三角形.(2)求出BE的长,根据坡度的概念解答.试题解析:如图,过C作CF⊥AM,F为垂足,过B点作BE⊥AM,BD⊥CF,E、D为垂足.在C点测得B点的俯角为30°,∴∠CBD=30°,又BC=400米,∴CD=400×sin30°=400×=200(米).∴B点的海拔为721﹣200=521(米).(2)∵BE=DF=521﹣121=400米,又∵AB=1040米,AE===960米,∴AB的坡度iAB===.故斜坡AB的坡度为1:2.4.考点:1.解直角三角形的应用-坡度坡角问题;2.解直角三角形的应用-仰角俯角问题.【题文】某工厂生产的某种产品按质量分为10个档次,第1档次(最低档次)的产品一天能生产76件,每件利润10元.每提高一个档次,每件利润增加2元.(1)每件利润为14元时,此产品质量在第几档次?(2)由于生产工序不同,产品每提高1个档次,一天产量减少4件.若生产第x档的产品一天的总利润为y元(其中x为正整数,且1≤x≤10),求出y关于x的函数关系式;若生产某档次产品一天的总利润为1080元,该工程生产的是第几档次的产品?【答案】(1)第3档次;(2)y=﹣8x2+128x+640;第5档次.【解析】试题分析:(1)由每提高一个档次,每件利润增加2元,14﹣10=4,需要提高2个档次,由此即可解决问题.(2)根据一天的利润=生产的件数×每件的利润,即可求出y与x的关系,再列出方程即可解决问题.试题解析:(1)由每提高一个档次,每件利润增加2元,每件利润为14元时,14﹣10=4,4÷2=2,需要提高2个档次,所以此产品质量在第3档次.(2)由题意y=[10+2(x﹣1)][76﹣4(x﹣1)]=﹣8x2+128x+640.(1≤x≤10).当y=1080时,﹣8x2+128x+640=1080,解得x=5或11(舍弃).所以工程生产的是第5档次的产品时,一天的总利润为1080元.考点:1.二次函数的应用;2.一元二次方程的应用.【题文】如图1,小红家阳台上放置了一个晒衣架.如图2是晒衣架的侧面示意图,立杆AB、CD相交于点O,B、D两点立于地面,经测量:AB=CD=136cm,OA=OC=51cm,OE=OF=34cm,现将晒衣架完全稳固张开,扣链EF成一条直线,且EF=32cm.(1)求证:AC∥BD;(2)求扣链EF与立杆AB的夹角∠OEF的度数(精确到0.1°);(3)小红的连衣裙穿在衣架后的总长度达到122cm,垂挂在晒衣架上是否会拖落到地面?请通过计算说明理由.(参考数据:sin61.9°≈0.882,cos61.9°≈0.471,tan61.9°≈0.553;可使用科学计算器)【答案】(1)证明参见解析;(2) 61.9°;(3) 小红的连衣裙会拖落到地面.理由参见解析.【解析】试题分析:(1)根据等角对等边和对顶角相等得出∠OAC=∠OCA=(180º-∠AOC)和∠OBD=∠ODB=(180º-∠BOD),∠AOC=∠BOD进而利用平行线的判定得出即可;或利用三角形相似和平行线判定可得出结论;(2)首先过点O作OM⊥EF于点M,则EM=16cm,利用cos∠OEF=0.471,即可得出∠OEF 的度数;(3)首先证明Rt△OEM∽Rt△ABH,进而得出AH的长即可.试题解析:(1)方法一:∵AB、CD相交于点O,∴∠AOC=∠BOD,∵OA=OC,∴∠OAC=∠OCA=(180º-∠AOC ),同理可证:∠OBD=∠ODB=(180º-∠BOD),∴∠OAC=∠OBD,∴AC∥BD;方法二:AB=CD=136cm,OA=OC=51cm,∴OB=OD=85cm,∴,又∵∠AOC=∠BOD,∴△AOC∽△BOD,∴∠OAC=∠OBD;∴AC∥BD ;(2)在△OEF中,OE=OF=34cm,EF=32cm;过点O作OM⊥EF于点M,则EM=16cm;∴cos∠OEF=0.471,用科学计算器求得∠OEF=61.9°;(3)方法一:小红的连衣裙会拖落到地面;在Rt△OEM中,OM== =30cm,过点A作AH⊥BD于点H,同(1)可证:EF∥BD,∴∠ABH=∠OEM,则Rt△OEM∽Rt△ABH,∴,AH=cm,因为小红的连衣裙垂挂在衣架后的总长度122cm>晒衣架的高度AH=120cm.所以小红的连衣裙会拖落到地面.方法二:小红的连衣裙会拖落到地面;同(1)可证:EF∥BD,∴∠ABD=∠OEF=61.9°;过点A作AH⊥BD于点H,在Rt△ABH中sin∠ABD=,AH=AB×sin∠ABD=136×sin61.9°=136×0.882≈120.0cm,因为小红的连衣裙垂挂在衣架后的总长度122cm>晒衣架的高度AH=120cm.所以小红的连衣裙会拖落到地面.考点:1.相似三角形的应用;2.解直角三角形的应用.。
2016-2017学年九年级(上)期中数学试卷一、选择题(每小题3分,共30分.下列各题均有四个选项,其中只有一个是符合题意的.)1.抛物线y=(x﹣1)2+2的对称轴是()A.直线x=﹣1 B.直线x=1 C.直线x=﹣2 D.直线x=22.若将抛物线y=2x2先向左平移2个单位,再向下平移1个单位得到一个新的抛物线,则新抛物线的顶点坐标是()A.(﹣2,1)B.(﹣2,﹣1) C.(2,1) D.(2,﹣1)3.如图,在△ABC中,DE∥BC,AD:AB=1:3,若△ADE的面积等于4,则△ABC的面积等于()A.12 B.16 C.24 D.364.如图,在4×4的正方形网格中,tanα的值等于()A.B.C.D.5.如图,在平面直角坐标系中,以P(4,6)为位似中心,把△ABC缩小得到△DEF,若变换后,点A、B的对应点分别为点D、E,则点C的对应点F的坐标应为()A.(4,2) B.(4,4) C.(4,5) D.(5,4)6.为了测量被池塘隔开的A,B两点之间的距离,根据实际情况,作出如图所示图形,其中AB⊥BE,EF⊥BE,AF交BE于D,C在BD上.有四位同学分别测量出以下四组数据,根据所测数据不能求出A,B间距离的是()A.BC,∠ACB B.DE,DC,BC C.EF,DE,BD D.CD,∠ACB,∠ADB7.将抛物线y=2x2+1绕原点O旋转180°,则旋转后的抛物线的解析式为()A.y=﹣2x2B.y=﹣2x2+1 C.y=2x2﹣1 D.y=﹣2x2﹣18.图(1)是一个横断面为抛物线形状的拱桥,当水面在l时,拱顶(拱桥洞的最高点)离水面2m,水面宽4m.如图(2)建立平面直角坐标系,则抛物线的关系式是()A.y=﹣2x2B.y=2x2C.y=﹣x2D.y=x29.二次函数y=ax2+bx+c的部分对应值如下表:x …﹣2 ﹣1 0 1 2 3 …y … 5 0 ﹣3 ﹣4 ﹣3 0 …当函数值y<0时,x的取值范围是()A.﹣2<x<0 B.﹣1<x<0 C.﹣1<x<3 D.0<x<210.如图,正△ABC的边长为3cm,动点P从点A出发,以每秒1cm的速度,沿A→B→C的方向运动,到达点C时停止,设运动时间为x(秒),y=PC2,则y关于x的函数的图象大致为()A .B .C .D .二、填空题(每小题3分,共18分)11.已知△ABC ∽△A 1B 1C 1,AB :A 1B 1=2:3,则S △ABC 与S △A1B1C1之比为.12.在Rt △ABC 中,∠C=90°,BC :AC=3:4,则cosA= .13.点A (x 1,y 1)、B (x 2,y 2)在二次函数y=x 2﹣4x ﹣1的图象上,若当1<x 1<2,3<x 2<4时,则y 1与y 2的大小关系是y 1y 2.(用“>”、“<”、“=”填空)14.二次函数y=m 2x 2+(2m+1)x+1的图象与x 轴有两个交点,则m 取值范围是.15.在研究了平行四边形的相关内容后,老师提出这样一个问题:“四边形ABCD 中,AD ∥BC ,请添加一个条件,使得四边形ABCD 是平行四边形”.经过思考,小明说“添加AD=BC ”,小红说“添加AB=DC ”.你同意的观点,理由是.16.如图,在平面直角坐标系xOy 中,二次函数y=﹣x 2﹣2x 图象位于x 轴上方的部分记作F 1,与x轴交于点P 1和O ;F 2与F 1关于点O 对称,与x 轴另一个交点为P 2;F 3与F 2关于点P 2对称,与x 轴另一个交点为P 3;….这样依次得到F 1,F 2,F 3,…,F n ,则其中F 1的顶点坐标为,F 8的顶点坐标为,F n 的顶点坐标为(n 为正整数,用含n 的代数式表示).三、解答题(本题共72分,第17-21题,每小题6分,第22-25题,每小题6分,第26题7分,第27题7分,第28题8分)17.计算:3tan30°+2cos45°﹣sin60°﹣2sin30°.18.已知:二次函数y=ax2+bx+c的图象经过(﹣3,0)、(1,0)、(0,﹣3)三点,(1)求:二次函数的表达式;(2)求:二次函数的对称轴、顶点坐标,并画出此二次函数的图象.19.如图,?ABCD中,点E在BA的延长线上,连接CE,与AD相交于点F.(1)求证:△EBC∽△CDF;(2)若BC=8,CD=3,AE=1,求AF的长.20.已知:如图,在△ABC中,CD⊥AB,sinA=,AB=13,CD=12,求AD的长和tanB的值.21.如图,有一座抛物线形拱桥,在正常水位时水面AB的宽为20米,如果水位上升3米,则水面CD的宽是10米.(1)建立如图所示的直角坐标系,求此抛物线的解析式;(2)当水位在正常水位时,有一艘宽为6米的货船经过这里,船舱上有高出水面 3.6米的长方体货物(货物与货船同宽).问:此船能否顺利通过这座拱桥?22.如图,一艘海轮位于灯塔P的南偏东45°方向,距离灯塔100海里的A处,它计划沿正北方向航行,去往位于灯塔P的北偏东30°方向上的B处.(1)B处距离灯塔P有多远?(2)圆形暗礁区域的圆心位于PB的延长线上,距离灯塔200海里的O处.已知圆形暗礁区域的半径为50海里,进入圆形暗礁区域就有触礁的危险.请判断若海轮到达B处是否有触礁的危险,并说明理由.23.如图,在四边形ABCD中,∠C=60°,∠B=∠D=90°,AD=2AB,CD=3,求BC的长.24.在平面直角坐标系xOy中,点P(x,y)经过变换τ得到点P′(x′,y′),该变换记作τ(x,y)=(x′,y′),其中(a,b为常数).例如,当a=1,且b=1时,τ(﹣2,3)=(1,﹣5).(1)当a=1,且b=﹣2时,τ(0,1)= ;(2)若τ(1,2)=(0,﹣2),则a= ,b= ;(3)设点P(x,y)是直线y=2x上的任意一点,点P经过变换τ得到点P′(x′,y′).若点P与点P′重合,求a和b的值.25.动手操作:小明利用等距平行线解决了二等分线段的问题.作法:(1)在e上任取一点C,以点C为圆心,AB长为半径画弧交c于点D,交d于点E;(2)以点A为圆心,CE长为半径画弧交AB于点M;∴点M为线段AB的二等分点.解决下列问题:(尺规作图,保留作图痕迹)(1)仿照小明的作法,在图2中作出线段AB的三等分点;(2)点P是∠AOB内部一点,过点P作PM⊥OA于M,PN⊥OB于N,请找出一个满足下列条件的点P.(可以利用图1中的等距平行线)①在图3中作出点P,使得PM=PN;②在图4中作出点P,使得PM=2PN.26.小东同学在学习了二次函数图象以后,自己提出了这样一个问题:探究:函数的图象与性质.小东根据学习函数的经验,对函数的图象与性质进行了如下探究:下面是小东的探究过程,请补充完成:(1)函数的自变量x的取值范围是;(2)下表是y与x的几组对应值.x …﹣2 ﹣1 0 2 3 4 …y …m …则m的值是;(3)如图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点,并画出该函数的图象;(4)小东进一步探究发现,该函数图象在第一象限内的最低点的坐标是,结合函数的图象,写出该函数的其他性质(一条即可):.27.如图1,在等腰直角△ABC中,∠BAC=90°,AB=AC=2,点E是BC边上一点,∠DEF=45°且角的两边分别与边AB,射线CA交于点P,Q.(1)如图2,若点E为BC中点,将∠DEF绕着点E逆时针旋转,DE与边AB交于点P,EF与CA的延长线交于点Q.设BP为x,CQ为y,试求y与x的函数关系式,并写出自变量x的取值范围;(2)如图3,点E在边BC上沿B到C的方向运动(不与B,C重合),且DE始终经过点A,EF与边AC交于Q点.探究:在∠DEF运动过程中,△AEQ能否构成等腰三角形,若能,求出BE的长;若不能,请说明理由.28.已知:如图1,抛物线的顶点为M,平行于x轴的直线与该抛物线交于点A,B(点A在点B左侧),根据对称性△AMB恒为等腰三角形,我们规定:当△AMB为直角三角形时,就称△AMB为该抛物线的“完美三角形”.(1)①如图2,求出抛物线y=x2的“完美三角形”斜边AB的长;②抛物线y=x2+1与y=x2的“完美三角形”的斜边长的数量关系是;(2)若抛物线y=ax2+4的“完美三角形”的斜边长为4,求a的值;(3)若抛物线y=mx2+2x+n﹣5的“完美三角形”斜边长为n,且y=mx2+2x+n﹣5的最大值为﹣1,求m,n的值.2016-2017学年九年级(上)期中数学试卷参考答案与试题解析一、选择题(每小题3分,共30分.下列各题均有四个选项,其中只有一个是符合题意的.)1.抛物线y=(x﹣1)2+2的对称轴是()A.直线x=﹣1 B.直线x=1 C.直线x=﹣2 D.直线x=2【考点】二次函数的性质.【分析】由抛物线的顶点式y=(x﹣h)2+k直接看出对称轴是x=h.【解答】解:∵抛物线的顶点式为y=(x﹣1)2+2,∴对称轴是x=1.故选B.【点评】要求熟练掌握抛物线解析式的各种形式的运用.2.若将抛物线y=2x2先向左平移2个单位,再向下平移1个单位得到一个新的抛物线,则新抛物线的顶点坐标是()A.(﹣2,1)B.(﹣2,﹣1) C.(2,1) D.(2,﹣1)【考点】二次函数图象与几何变换.【分析】先确定出原抛物线的顶点坐标,再根据向左平移横坐标减,向下平移,纵坐标减解答即可.【解答】解:抛物线y=2x2的顶点坐标为(0,0),∵向左平移2个单位,向下平移1个单位,∴新抛物线的顶点坐标是(﹣2,﹣1).故选:B.【点评】本题考查了二次函数图象与几何变换,利用点的平移规律左减右加,上加下减解答是解题的关键.3.(2015秋?北京校级期中)如图,在△ABC中,DE∥BC,AD:AB=1:3,若△ADE的面积等于4,则△ABC的面积等于()A.12 B.16 C.24 D.36【考点】相似三角形的判定与性质.【分析】由条件证明△ADE∽△ABC,且相似比为,再利用相似三角形的性质可求得△ABC的面积.【解答】解:∵DE∥BC,∴△ADE∽△ABC,∴=()2=()2=,∵S△ADE=2,∴=,解得S△ABC=36.故选D.【点评】本题主要考查相似三角形的判定和性质,掌握相似三角形的面积比等于相似比的平方是解题的关键.4.如图,在4×4的正方形网格中,tanα的值等于()A.B.C.D.【考点】锐角三角函数的定义.【专题】网格型.【分析】直接根据锐角三角函数的定义即可得出结论.【解答】解:∵AD⊥BC,AD=3,BD=2,∴tanα==.故选C.【点评】本题考查的是锐角三角函数的定义,熟记锐角三角函数的定义是解答此题的关键.5.如图,在平面直角坐标系中,以P(4,6)为位似中心,把△ABC缩小得到△DEF,若变换后,点A、B的对应点分别为点D、E,则点C的对应点F的坐标应为()A.(4,2) B.(4,4) C.(4,5) D.(5,4)【考点】位似变换.【专题】数形结合.【分析】根据两个图形必须是相似形;②对应点的连线都经过同一点,即可得出F点的坐标.【解答】解:∵△DEF∽△ABC,且F点在CP的连线上,∴可得F点位置如图所示:故P点坐标为(4,4).故选B.【点评】本题考查位似的定义,难度不大,注意掌握两位似图形的对应点的连线都经过同一点,这一点即是位似中心.6.为了测量被池塘隔开的A,B两点之间的距离,根据实际情况,作出如图所示图形,其中AB⊥BE,EF⊥BE,AF交BE于D,C在BD上.有四位同学分别测量出以下四组数据,根据所测数据不能求出A,B间距离的是()A.BC,∠ACB B.DE,DC,BC C.EF,DE,BD D.CD,∠ACB,∠ADB【考点】相似三角形的应用.【分析】根据三角形相似可知,要求出AB,只需求出EF即可.所以借助于相似三角形的性质,根据即可解答.【解答】解:此题比较综合,要多方面考虑,A、因为知道∠ACB和BC的长,所以可利用∠ACB的正切来求AB的长;B、无法求出A,B间距离.C、因为△ABD∽△EFD,可利用,求出AB;D、可利用∠ACB和∠ADB的正切求出AB;据所测数据不能求出A,B间距离的是选项B;故选:B.【点评】本题考查相似三角形的应用和解直角三角形的应用;将实际问题转化为数学问题是解决问题的关键.7.将抛物线y=2x2+1绕原点O旋转180°,则旋转后的抛物线的解析式为()A.y=﹣2x2B.y=﹣2x2+1 C.y=2x2﹣1 D.y=﹣2x2﹣1【考点】二次函数图象与几何变换.【分析】根据关于原点对称的两点的横坐标纵坐标都互为相反数求解则可.【解答】解:根据题意,可得﹣y=2(﹣x)2+1,得到y=﹣2x2﹣1.故旋转后的抛物线解析式是y=﹣2x2﹣1.故选D.【点评】此题主要考查了根据二次函数的图象的变换求抛物线的解析式.8.图(1)是一个横断面为抛物线形状的拱桥,当水面在l时,拱顶(拱桥洞的最高点)离水面2m,水面宽4m.如图(2)建立平面直角坐标系,则抛物线的关系式是()A.y=﹣2x2B.y=2x2C.y=﹣x2D.y=x2【考点】根据实际问题列二次函数关系式.【专题】压轴题.【分析】由图中可以看出,所求抛物线的顶点在原点,对称轴为y轴,可设此函数解析式为:y=ax2,利用待定系数法求解.【解答】解:设此函数解析式为:y=ax2,a≠0;那么(2,﹣2)应在此函数解析式上.则﹣2=4a即得a=﹣,那么y=﹣x2.故选:C.【点评】根据题意得到函数解析式的表示方法是解决本题的关键,关键在于找到在此函数解析式上的点.9.二次函数y=ax2+bx+c的部分对应值如下表:x …﹣2 ﹣1 0 1 2 3 …y … 5 0 ﹣3 ﹣4 ﹣3 0 …当函数值y<0时,x的取值范围是()A.﹣2<x<0 B.﹣1<x<0 C.﹣1<x<3 D.0<x<2【考点】二次函数的性质.【分析】根据图表可以得出二次函数的顶点坐标为(1,﹣4),图象与x轴的交点坐标为(﹣1,0),(3,0),且图象开口向上,结合图象可以得出函数值y<0时,x的取值范围.【解答】解:根据图表可以得出二次函数的顶点坐标为(1,﹣4),图象与x轴的交点坐标为(﹣1,0),(3,0),如右图所示:∴当函数值y<0时,x的取值范围是:﹣1<x<3.故选C.【点评】此题主要考查了二次函数的性质,利用图表得出二次函数的图象即可得出函数值的取值范围.数形结合是这部分考查重点,同学们应熟练掌握.10.如图,正△ABC的边长为3cm,动点P从点A出发,以每秒1cm的速度,沿A→B→C的方向运动,到达点C时停止,设运动时间为x(秒),y=PC2,则y关于x的函数的图象大致为()A.B.C.D.【考点】动点问题的函数图象.【专题】压轴题.【分析】需要分类讨论:①当0≤x≤3,即点P在线段AB上时,根据余弦定理知cosA=,所以将相关线段的长度代入该等式,即可求得y与x的函数关系式,然后根据函数关系式确定该函数的图象.②当3<x≤6,即点P在线段BC上时,y与x的函数关系式是y=(6﹣x)2=(x﹣6)2(3<x≤6),根据该函数关系式可以确定该函数的图象.【解答】解:∵正△ABC的边长为3cm,∴∠A=∠B=∠C=60°,AC=3cm.①当0≤x≤3时,即点P在线段AB上时,AP=xcm(0≤x≤3);根据余弦定理知cosA=,即=,解得,y=x2﹣3x+9(0≤x≤3);该函数图象是开口向上的抛物线;解法二:过C作CD⊥AB,则AD=1.5cm,CD=cm,点P在AB上时,AP=x cm,PD=|1.5﹣x|cm,∴y=PC2=()2+(1.5﹣x)2=x2﹣3x+9(0≤x≤3)该函数图象是开口向上的抛物线;②当3<x≤6时,即点P在线段BC上时,PC=(6﹣x)cm(3<x≤6);则y=(6﹣x)2=(x﹣6)2(3<x≤6),∴该函数的图象是在3<x≤6上的抛物线;故选:C.【点评】本题考查了动点问题的函数图象.解答该题时,需要对点P的位置进行分类讨论,以防错选.二、填空题(每小题3分,共18分)11.已知△ABC∽△A1B1C1,AB:A1B1=2:3,则S△ABC与S△A1B1C1之比为4:9 .【考点】相似三角形的性质.【分析】根据相似三角形的面积比等于相似比的平方即可得到答案.【解答】解:∵△ABC∽△A1B1C1,AB:A1B1=2:3,∴.【点评】本题考查对相似三角形性质的理解:(1)相似三角形周长的比等于相似比;(2)相似三角形面积的比等于相似比的平方;(3)相似三角形对应高的比、对应中线的比、对应角平分线的比都等于相似比.12.(2007?眉山)在Rt△ABC中,∠C=90°,BC:AC=3:4,则cosA= .【考点】锐角三角函数的定义.【专题】压轴题.【分析】根据BC:AC=3:4,设BC:AC的长,再根据勾股定理及直角三角形中锐角三角函数的定义求解.【解答】解:∵Rt△ABC中,∠C=90°,BC:AC=3:4,∴设BC=3x,则AC=4x,∴AB=5x,∴cosA===.【点评】本题利用了勾股定理和锐角三角函数的定义,比较简单.13.点A(x1,y1)、B(x2,y2)在二次函数y=x2﹣4x﹣1的图象上,若当1<x1<2,3<x2<4时,则y1与y2的大小关系是y1<y2.(用“>”、“<”、“=”填空)【考点】二次函数图象上点的坐标特征.【分析】先根据二次函数的解析式判断出抛物线的开口方向及对称轴,根据图象上的点的横坐标距离对称轴的远近来判断纵坐标的大小.【解答】解:由二次函数y=x2﹣4x﹣1=(x﹣2)2﹣5可知,其图象开口向上,且对称轴为x=2,∵1<x1<2,3<x2<4,∴A点横坐标离对称轴的距离小于B点横坐标离对称轴的距离,∴y1<y2.故答案为:<.【点评】本题主要考查对二次函数图象上点的坐标特征,二次函数的性质等知识点的理解和掌握,能求出对称轴和根据二次函数的性质求出正确答案是解此题的关键.14.二次函数y=m2x2+(2m+1)x+1的图象与x轴有两个交点,则m取值范围是m>﹣且m≠0 .【考点】抛物线与x轴的交点.【专题】二次函数图象及其性质.【分析】题目考查二次函数图象与x轴的交点个数与二次函数系数之间的关系,当图象与x轴有两个交点时,△>0,当图象与x轴有一个交点时,△=0,当图象与x轴没有交点时,△<0,同时不要遗漏二次函数二次项系数不为零.【解答】解:∵二次函数y=m2x2+(2m+1)x+1的图象与x轴有两个交点,∴△>0即b2﹣4ac>0代入得:(2m+1)2﹣4×m2×1>0解得:m>﹣∵二次函数二次项系数大于零,∴m2>0∴m≠0综上所述:【点评】题目考查二次函数定义及二次函数图象与x轴交点个数与△的关系,在计算△>0取值范围后,不要忘记二次函数不为零的前提.题目较简单.15.在研究了平行四边形的相关内容后,老师提出这样一个问题:“四边形ABCD 中,AD∥BC,请添加一个条件,使得四边形ABCD是平行四边形”.经过思考,小明说“添加AD=BC”,小红说“添加AB=DC”.你同意小明的观点,理由是一组对边平行且相等的四边形是平行四边形.【考点】平行四边形的判定.【分析】根据一组对边平行且相等的四边形是平行四边形可得小明正确.【解答】解:四边形ABCD 中,AD∥BC,请添加一个条件,使得四边形ABCD是平行四边形,应添加AD=BC,根据一组对边平行且相等的四边形是平行四边形,因此小明说的对;小红添加的条件,也可能是等腰梯形,因此小红错误,故答案为:小明;一组对边平行且相等的四边形是平行四边形.【点评】此题主要考查了平行四边形的判定,关键是熟练掌握平行四边形的判定定理.16.如图,在平面直角坐标系xOy中,二次函数y=﹣x2﹣2x图象位于x轴上方的部分记作F1,与x 轴交于点P1和O;F2与F1关于点O对称,与x轴另一个交点为P2;F3与F2关于点P2对称,与x轴另一个交点为P3;….这样依次得到F1,F2,F3,…,F n,则其中F1的顶点坐标为(﹣1,1),F8的顶点坐标为(13,﹣1),F n的顶点坐标为[2n﹣3,(﹣1)n+1] (n为正整数,用含n的代数式表示).【考点】二次函数图象与几何变换.【分析】根据抛物线的解析式来求F1的顶点坐标;根据该“波浪抛物线”顶点坐标纵坐标分别为1和﹣1即可得出结论.【解答】解:∵y=﹣x2﹣2x=﹣(x+1)2+1,∴F1的顶点坐标为(﹣1,1).又y=﹣x2﹣2x=﹣x(x+2),∴P1(﹣2,0),∴根据函数的对称性得到:F2的顶点坐标为(1,﹣1),P2(2,0),F3的顶点坐标为(3,1),P3(4,0),…F的顶点坐标为(13,﹣1),8的顶点坐标为[2n﹣3,(﹣1)n+1].Fn故答案是:(﹣1,1);(13,﹣1);[2n﹣3,(﹣1)n+1].【点评】本题考查了二次函数图象与几何变换.解题的关键是找到F n的顶点坐标变换规律.三、解答题(本题共72分,第17-21题,每小题6分,第22-25题,每小题6分,第26题7分,第27题7分,第28题8分)17.计算:3tan30°+2cos45°﹣sin60°﹣2sin30°.【考点】特殊角的三角函数值.【分析】将特殊角的三角函数值代入求解.【解答】解:原式=3×+2×﹣﹣2×=+﹣1.【点评】本题考查了特殊角的三角函数值,解答本题的关键是掌握几个特殊角的三角函数值.18.(2015秋?北京校级期中)已知:二次函数y=ax2+bx+c的图象经过(﹣3,0)、(1,0)、(0,﹣3)三点,(1)求:二次函数的表达式;(2)求:二次函数的对称轴、顶点坐标,并画出此二次函数的图象.【考点】待定系数法求二次函数解析式;二次函数的图象;二次函数的性质.【专题】计算题.【分析】(1)设交点式二次函数解析式为:y=a(x﹣1)(x+3),然后把(0,﹣3)代入求出a即可;(2)把(1)中解析式配成顶点式,然后根据二次函数的性质得到二次函数的对称轴、顶点坐标,然后利用描点法画函数图象.【解答】解:(1)∵二次函数的图象经过(﹣3,0)、(1,0)两点∴设二次函数解析式为:y=a(x﹣1)(x+3)又∵图象经过(0,﹣3)点,∴﹣3=a(0﹣1)(0+3)解得a=1∴二次函数解析式为:y=x2+2x﹣3;(2)∵y=x2+2x﹣3=(x+1)2﹣4,∴二次函数图象的对称轴为直线x=﹣1;顶点坐标为:(﹣1,﹣4);如图,【点评】本题考查了待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解.也考查了二次函数的图象.19.如图,?ABCD中,点E在BA的延长线上,连接CE,与AD相交于点F.(1)求证:△EBC∽△CDF;(2)若BC=8,CD=3,AE=1,求AF的长.【考点】相似三角形的判定与性质;平行四边形的性质.【分析】(1)利用平行四边形的性质:对角相等和对边平行可得∠B=∠D和∠FCD=∠E,有两对角相等的三角形相似可判定△EBC∽△CDF;(2)有(1)可知:△EBC∽△CDF,利用相似三角形的性质:对应边的比值相等即可求出AF的长.【解答】(1)证明:∵四边形ABCD是平行四边形,∴∠B=∠D,AB∥CD,∴∠FCD=∠E,∴△EBC∽△CDF;(2)解:∵△EAF∽△EBC,∴,即.解得:AF=2.【点评】本题考查了平行四边形的性质以及相似三角形的判定和相似三角形的性质,难度不大,属于基础性题目.20.已知:如图,在△ABC中,CD⊥AB,sinA=,AB=13,CD=12,求AD的长和tanB的值.【考点】解直角三角形;锐角三角函数的定义.【分析】由sinA=,CD=12,根据三角函数可得AC=15,根据勾股定理可得AD=9,则BD=4,再根据正切的定义求出tanB的值.【解答】解:∵CD⊥AB,∴∠CDA=90°…(1分)∵sinA=∴AC=15.…(2分)∴AD=9.…∴BD=4.…(4分)∴tanB=…【点评】考查了解直角三角形和锐角三角函数的定义,要熟练掌握好边角之间的关系.21.如图,有一座抛物线形拱桥,在正常水位时水面AB的宽为20米,如果水位上升3米,则水面CD的宽是10米.(1)建立如图所示的直角坐标系,求此抛物线的解析式;(2)当水位在正常水位时,有一艘宽为6米的货船经过这里,船舱上有高出水面 3.6米的长方体货物(货物与货船同宽).问:此船能否顺利通过这座拱桥?【考点】二次函数的应用.【专题】应用题.【分析】(1)以拱桥最顶端为原点,建立直角坐标系,根据题目中所给的数据写出函数解析式.(2)计算出本问可用两种方法求得,求x=3米时求出水面求出此时y的值,A、B点的横坐标减去y 此时的值到正常水面AB的距离与 3.6相比较即可得出答案.【解答】解:(1)设抛物线解析式为y=ax2,因为抛物线关于y轴对称,AB=20,所以点B的横坐标为10,设点B(10,n),点D(5,n+3),n=102?a=100a,n+3=52a=25a,即,解得,∴;(2)∵货轮经过拱桥时的横坐标为x=3,∴当x=3时,∵﹣(﹣4)>3.6∴在正常水位时,此船能顺利通过这座拱桥.答:在正常水位时,此船能顺利通过这座拱桥.【点评】此题考查了坐标系的建立,以及抛物线的性质与求值.22.如图,一艘海轮位于灯塔P的南偏东45°方向,距离灯塔100海里的A处,它计划沿正北方向航行,去往位于灯塔P的北偏东30°方向上的B处.(1)B处距离灯塔P有多远?(2)圆形暗礁区域的圆心位于PB的延长线上,距离灯塔200海里的O处.已知圆形暗礁区域的半径为50海里,进入圆形暗礁区域就有触礁的危险.请判断若海轮到达B处是否有触礁的危险,并说明理由.【考点】解直角三角形的应用-方向角问题.【分析】(1)首先作PC⊥AB于C,利用∠CPA=90°﹣45°=45°,进而利用锐角三角函数关系得出PC的长,即可得出答案;(2)首先求出OB的长,进而得出OB>50,即可得出答案.【解答】解:(1)作PC⊥AB于C.(如图)在Rt△PAC中,∠PCA=90°,∠CPA=90°﹣45°=45°.∴.在Rt△PCB中,∠PCB=90°,∠PBC=30°.∴.答:B处距离灯塔P有海里.(2)海轮到达B处没有触礁的危险.理由如下:∵,而,∴.∴OB>50.∴B处在圆形暗礁区域外,没有触礁的危险.【点评】此题主要考查了解直角三角形的应用,利用数形结合以及锐角三角函数关系得出线段PC的长是解题关键.23.如图,在四边形ABCD中,∠C=60°,∠B=∠D=90°,AD=2AB,CD=3,求BC的长.【考点】解直角三角形.【分析】延长DA、CB交于点E,解直角三角形求出DE、EC,求出∠E=30°,解直角三角形求出EB,即可求出答案.【解答】解:延长DA、CB交于点E,∵在Rt△CDE中,tanC==,cosC==,∴DE=3,EC=6,∵AD=2AB设AB=k,则AD=2k,∵∠C=60°,∠B=∠D=90°,∴∠E=30°,∵在Rt△ABE中,sinE==tanE==,∴AE=2AB=2k,EB=AB=k,∴DE=4k=3,解得:k=,∴EB=,∴BC=6﹣=.【点评】本题考查了解直角三角形的应用,主要考查学生进行计算的能力,是一道比较好的题目,关键是构造直角三角形.24.在平面直角坐标系xOy中,点P(x,y)经过变换τ得到点P′(x′,y′),该变换记作τ(x,y)=(x′,y′),其中(a,b为常数).例如,当a=1,且b=1时,τ(﹣2,3)=(1,﹣5).(1)当a=1,且b=﹣2时,τ(0,1)= (﹣2,2);(2)若τ(1,2)=(0,﹣2),则a= ﹣1 ,b= ;(3)设点P(x,y)是直线y=2x上的任意一点,点P经过变换τ得到点P′(x′,y′).若点P与点P′重合,求a和b的值.【考点】一次函数综合题.【分析】(1)将a=1,b=﹣2,τ(0,1),代入,可求x′,y′的值,从而求解;(2)将τ(1,2)=(0,﹣2),代入,可得关于a,b的二元一次方程组,解方程组即可求解;(3)由点P(x,y)经过变换τ得到的对应点P'(x',y')与点P重合,可得τ(x,y)=(x,y).根据点P(x,y)在直线y=2x上,可得关于a,b的二元一次方程组,解方程组即可求解.【解答】解:(1)当a=1,且b=﹣2时,x′=1×0+(﹣2)×1=﹣2,y′=1×0﹣(﹣2)×1=2,则τ(0,1)=(﹣2,2);(2)∵τ(1,2)=(0,﹣2),∴,解得a=﹣1,b=;(3)∵点P(x,y)经过变换τ得到的对应点P'(x',y')与点P重合,∴τ(x,y)=(x,y).∵点P(x,y)在直线y=2x上,∴τ(x,2x)=(x,2x).∴,即∵x为任意的实数,∴,解得.∴,.故答案为:(﹣2,2);﹣1,.【点评】考查了一次函数综合题,关键是对题意的理解能力,具有较强的代数变换能力,要求学生熟练掌握解二元一次方程组.25.(2015秋?北京校级期中)动手操作:小明利用等距平行线解决了二等分线段的问题.作法:(1)在e上任取一点C,以点C为圆心,AB长为半径画弧交c于点D,交d于点E;(2)以点A为圆心,CE长为半径画弧交AB于点M;∴点M为线段AB的二等分点.解决下列问题:(尺规作图,保留作图痕迹)(1)仿照小明的作法,在图2中作出线段AB的三等分点;(2)点P是∠AOB内部一点,过点P作PM⊥OA于M,PN⊥OB于N,请找出一个满足下列条件的点P.(可以利用图1中的等距平行线)①在图3中作出点P,使得PM=PN;②在图4中作出点P,使得PM=2PN.【考点】作图—应用与设计作图.【分析】(1)作法:①在e上任取一点C,以点C为圆心,AB长为半径画弧交b于点D,交d于点E,交c于点F;②以点A为圆心,CE长为半径画弧交AB于点P1,再以点B为圆心,CE长为半径画弧交AB于点P2;则点P1、P2为线段AB的三等分点;(2)①以O为圆心,任意长为半径画弧,交OA于M,交OB于N;在d上任取一点C,以点C为圆心,MN长为半径画弧交b于点D,交c于点E;以点M为圆心,CE长为半径画弧交MN于点P;则P 点为所求;②以O为圆心,任意长为半径画弧,交OA于M,交OB于N;在d上任取一点C,以点C为圆心,MN 长为半径画弧交a于点D,交c于点E,交b于点F;②以点M为圆心,CF长为半径画弧交MN于点P;则P点为所求.【解答】解:(1)如下图所示,点P1、P2为线段AB的三等分点;(2)①如下图所示,点P即为所求;②如下图所示,点P即为所求.【点评】本题考查了作图﹣应用与设计作图,学生的阅读理解能力及知识的迁移能力,理解等距平行线的含义及平行线分线段成比例定理是解题的关键.26.小东同学在学习了二次函数图象以后,自己提出了这样一个问题:探究:函数的图象与性质.小东根据学习函数的经验,对函数的图象与性质进行了如下探究:下面是小东的探究过程,请补充完成:(1)函数的自变量x的取值范围是x≠1 ;(2)下表是y与x的几组对应值.x …﹣2 ﹣1 0 2 3 4 …y …m …则m的值是;(3)如图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点,并画出该函数的图象;。
九年级(上)期中数学试卷学校: __________ 姓名: ___________ 班级: ___________ 考号: __________ 一、选择题(本大题共12小题,共36.0分)1. 已知OO 的半径为5,点P 到圆心0的距离为8,那么点P 与O0的位置关系是( )A.点P 在O 0上B.点P 在O 0内C.点P 在O 0外D.无法确定 2. 在厶 ABC 屮,DE\\BC, AD : AB 二 3: 4, “ABC 的面积等于 48,贝 lj A ADE的面积等于()A. 12B. 24C. 27D. 363.如图,在R 让ABC 中,斜边AB 的长为〃 2,"二35。
,则直角边BC 的长是()A. msin35°B. mcos35°C.msin35°4.如图是一个古代车轮的碎片,小明为求其外圆半径,连接 外圆上的两点A 、B,并使A3与车轮内圆相切于点D,半 径为OC1AB 交外圆于点C.测得CZ>10cm, AB=60cm, 则这个车轮的外圆半径是()A. 10cmB. 30cmC. 60c 加D.50c加5. 6.下列四个命题屮,是真命题的是()①度数相等的弧所对的圆周角相等;②长度相等的弧的度数都相等;③眩的垂直平 分线经过圆心;④相等的圆心角所对的两条弦相等.A.①B.①②C.①③如图,将O0沿弦AB 折叠,圆弧恰好经过圆心O,点P 是优 弧丽上一点,则"PB 的度数为()A. 45°B. 30°C. 75°D. 60°7. 某水库大坝的横断面是梯形,坝内斜坡的坡度i = l.・苗,坝外斜坡的坡度z=l : 1,则两个坡角的和为()A. 90°B. 60°C. 75°D. 105°8. 如图,"BC 中,"二78。
,AC=6.将MBC 沿图示 企、屮的虚线剪开,剪下的阴影三角形与原三角形不相似的是A.B.B9. B78c 、D.如图,'ABC 内接于OO, A 为劣弧BC^BAC=\20°t 过点B 作G )O 的直径BD, AD=6f 则AC 的长为( ) A. 2V3 B. V3 C. 2 D. 4V3 C/78°10.如图,丁轩同学在晚上由路灯AC 走向路灯BD,当他 走到点P 时,发现身后他影子的顶部刚好接触到路灯 4C 的底部,当他向前再步行20加到达Q 点时,发现身 前他影子的顶部刚好接触到路灯的底部,已知丁轩 同学的身高是1.5加,两个路灯的高度都是9加,则两路 灯之间的距离是()A. 24/??B. 25mC. 28加 11.如图,已知点E (-4, 2) , F (-2, -2),以O 为位似中心,按比例尺1: 2,把缩小,则点E 的对应点E' 的坐标为()A. (2,-1)或(一2,1)B. (8,_4)或(一8,-4)C. (2,-1)D. (8, —4)D. 30/??12.如图,4B 是半圆直径,半径OC 丄AB 于点O,点D 是弧BC 的中点,连结CD 、AD. OD,给出以下四个结 论:①乙DOB 二丛DC ;②CE=OE ;③\ODE 〜\ADO ;④ 2CET=CE*AB.B其中正确结论的序号是()A.①③B.②④C.①④ 二、填空题(本大题共6小题,共18・0分)D.①②③13.弧长等于半径的圆弧所对的圆心角是 _______ 度. 14. 计算:V2sin45°+tan60° •tan30°-cos60°= __ . 15. 如图,四边形ABCD 是菱形,zS4=60°, AB=2f 扇形EBF 的半径为2,圆心角为60。
山东省潍坊市九年级上学期期中数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共6题;共12分)1. (2分)若一元二次方程的一个根为0,则k的值为()A . k= 1B . k=1C . k=-1D .2. (2分)如图,在矩形ABCD中,对角线AC、BD交于点O,以下说法错误的是()A . ∠ABC=90°B . AC=BDC . OA=OBD . OA=AD3. (2分)用配方法解方程x2+8x+7=0,则配方正确的是()A . (x+4)2=9B . (x-4)2=9C . (x-8)2=16D . (x+8)2=574. (2分)如图,已知在△ABC中,点D、E、F分别是边AB、AC、BC上的点,DE=BF,EF=BD,且AD:DB=3:5,那么CF:CB等于()A . 3:5B . 3:8C . 5:8D . 2:55. (2分) (2017八下·无锡期中) 如图,在△ABC中,∠ABC=90°,BD为AC的中线,过点C作CE⊥BD于点E,过点A作BD的平行线,交CE的延长线于点F,在AF的延长线上截取FG=BD,连接BG,DF.若CF=6,AC=AF+2,则四边形BDFG的周长为()A . 9.5B . 10C . 12.5D . 206. (2分)中午1点,身高为165cm的小冰的影长为55cm,同学小雪此时在同一地点的影长为60cm,那么小雪的身高为()A . 180cmB . 175cmC . 170cmD . 160cm二、填空题 (共6题;共7分)7. (1分)已知关于x的一元二次方程有实数根,若k为非负整数,则k等于________.8. (1分)已知=,则的值是________ .9. (1分)如图所示,将一个矩形ABCD纸片,剪去两个完全相同的矩形后,剩余的阴影部分纸片面积大小为24,且AB=8,则被剪掉的矩形的长为________10. (1分)如图,矩形ABCD的对角线相交于O,要使它成为正方形,应添加的条件是________ (只填写一个条件即可)11. (2分)如图,是一个简单的数值运算程序.则输入x的值为________ 或________ .12. (1分)正方形ABCD的边长是4,点P是AD边的中点,点E是正方形边上的一点.若△PBE是等腰三角形,则腰长为________.三、解答题 (共11题;共137分)13. (10分)(2018·惠阳模拟) 如图,将△ABC沿着射线BC方向平移至△A′B′C′,使点A′落在∠ACB 的外角平分线CD上,连结AA′.(1)判断四边形ACC′A′的形状,并说明理由;(2)在△ABC中,∠B=90°,AB=8,cos∠BAC= ,求CB′的长.14. (5分)已知关于x的一元二次方程x2 = 2(1—m)x—m2的两实数根为x1 , x2 ,(1)求m的取值范围;(2)设y = x1 + x2 ,当y取得最小值时,求相应m的值,并求出y的最小值。
2015-2016学年山东省潍坊市九年级(上)期中数学试卷一、选择题.(本题共12个小题,在每小题所列四个选项中,只有一个选项符合题意,把符合题意的选项写在答题卡中)1.在一次游戏当中,小明将下面四张扑克牌中的三张旋转了180°,得到的图案和原来的一模一样,小芳看了后,很快知道没有旋转那张扑克牌是( )A.黑桃Q B.梅花2 C.梅花6 D.方块92.下列说法:①三角形的外心到三角形各顶点的距离相等②经过三个点一定可以作圆③半圆是弧,但弧不一定是半圆④长度相等的两条弧是等弧.正确的命题有( )A.1个B.2个C.3个D.4个3.把二次函数y=+x﹣1化为y=a(x﹣h)2+k的形式是( )A.y=(x+1)2+2 B.y=(x+1)2﹣2 C.y=(x﹣2)2+2 D.y=(x+2)2﹣24.某种商品零售价经过两次降价后,每件的价格由原来的800元降为现在的578元,则平均每次降价的百分率为( )A.10% B.12% C.15% D.17%5.二次函数y=ax2+bx﹣1(a≠0)的图象经过点(1,1),则代数式1﹣a﹣b的值为( ) A.﹣3 B.﹣1 C.2 D.56.如图,AB是⊙O的直径,CD是⊙O的切线,切点为D,CD与AB的延长线交于点C,∠A=30°,给出下面3个结论:①AD=CD;②BD=BC;③AB=2BC,其中正确结论的个数是( )A.3 B.2 C.1 D.07.下列方程中有实数根的是( )A.x2﹣3x+4=0 B.x2+2x+3=0 C.x2+x+1=0 D.x2+x﹣1=08.点A的坐标为(﹣2,3),点B与点A关于原点对称,则点B的坐标为( ) A.(﹣3,2)B.(﹣2,﹣3)C.(3,﹣2)D.(2,﹣3)9.二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论正确的是( )A.a<0 B.b2﹣4ac<0C.当﹣1<x<3时,y>0 D.﹣10.圆锥体的底面半径为2,侧面积为8π,则其侧面展开图的圆心角为( ) A.90°B.120°C.150°D.180°11.用一把带有刻度的直角尺,①可以画出两条平行的直线a与b,如图(1)②可以画出∠AOB的平分线OP,如图(2)③可以检验工件的凹面是否成半圆,如图(3)④可以量出一个圆的半径,如图(4)上述四个方法中,正确的个数是( )A.4个B.3个C.2个D.1个12.同圆的内接正三角形、正方形、正六边形边长的比是( )A.1:2:3 B.1:C. D.3:4:6二、填空题.13.一元二次方程(a+1)x2﹣ax+a2﹣1=0的一个根为0,则a=__________.14.将抛物线向左平移5个单位,再向上平移3个单位后得到的抛物线的解析式为__________.15.⊙O的直径为10cm,AB,CD是⊙O的两条弦,AB∥CD,AB=8cm,CD=6cm,则AB 和CD的距离是__________.16.如图,四边形ABCD内接于⊙O,若∠BOD=160°,则∠BCD=__________.17.如图,D为等腰直角三角形斜边BC上的一点,△ABD绕点A旋转后与△ACE重合,如果AD=1,那么DE=__________.18.若三角形的外心在它的一条边上,那么这个三角形是__________.19.某一型号飞机着陆后滑行的距离y(单位:m)与滑行时间x(单位:s)之间的函数关系式是y=60x﹣1.5x2,该型号飞机着陆后滑行__________m才能停下来.20.⊙O的半径为R,点O到直线l的距离为d,R,d是方程x2﹣4x+m=0的两根,当直线l与⊙O相切时,m的值为__________.三、解答题21.解下列方程(1)x2+4x﹣5=0(配方法)(2)x(x﹣4)=2﹣8x (公式法)(3)x﹣3=4(x﹣3)2(因式分解法)22.已知关于x的一元二次方程x2+3x+1﹣m=0(1)请选取一个你喜爱的m的值,使方程有两个不相等的实数根.(2)设x1、x2使(1)中所得方程的两个根,求x1x2+x1+x2的值.23.如图,A(4、4),B(﹣2,2),C(3,0),(1)画出它的以原点O为对称中心的△A′B′C′;(2)写出A′,B′,C′三点的坐标;(3)把每个小正方形的边长看作1,试求△ABC的面积.24.如图,在⊙O中,弦BC垂直于半径OA,垂足为E,D是优弧上一点,连接BD,AD,OC,∠ADB=30°.(1)求∠AOC的度数;(2)若弦BC=6cm,求图中阴影部分的面积.25.某市政府大力扶持大学生创业,李明在政府的扶持下投资销售一种进价为每件20元的护眼台灯.销售过程中发现,每月销售量y(件)与销售单价x(元)之间的关系可近似的看作一次函数:y=﹣10x+500.(1)设李明每月获得利润为w(元),当销售单价定为多少元时,每月可获得最大利润?(2)如果李明想要每月获得2000元的利润,那么销售单价应定为多少元?(3)根据物价部门规定,这种护眼台灯的销售单价不得高于32元,如果李明想要每月获得的利润不低于2000元,那么他每月的成本最少需要多少元?(成本=进价×销售量)26.(14分)如图,抛物线y=ax2+bx+c的对称轴为直线x=﹣3,该抛物线交x轴于A、B两点,交y轴于点C(0,4),以AB为直径的⊙M恰好经过点C.(1)求这条抛物线所对应的函数关系式;并求它的顶点坐标和最值,并分析它的增减性(2)设⊙M与y轴的另一个交点为D,请在抛物线的对称轴上求作一点E,使得△BDE的周长最小,并求出点E的坐标.2015-2016学年山东省潍坊市九年级(上)期中数学试卷一、选择题.(本题共12个小题,在每小题所列四个选项中,只有一个选项符合题意,把符合题意的选项写在答题卡中)1.在一次游戏当中,小明将下面四张扑克牌中的三张旋转了180°,得到的图案和原来的一模一样,小芳看了后,很快知道没有旋转那张扑克牌是( )A.黑桃Q B.梅花2 C.梅花6 D.方块9【考点】中心对称图形.【专题】操作型.【分析】根据中心对称图形的性质结合扑克牌的花色解答.【解答】解:牌黑桃Q、草花2、方块9是中心对称图形,旋转180度后与原图重合.若得到的图案和原来的一模一样,则需梅花6不发生变化.因为梅花六第二排旋转后会改变.故选:C.【点评】根据旋转前后图形的大小和形状没有改变,观察图案形状来判断.2.下列说法:①三角形的外心到三角形各顶点的距离相等②经过三个点一定可以作圆③半圆是弧,但弧不一定是半圆④长度相等的两条弧是等弧.正确的命题有( )A.1个B.2个C.3个D.4个【考点】命题与定理.【分析】根据三角形外心的性质对①进行判断;根据确定圆的条件对②进行判断;根据半圆与弧的定义对③进行判断;根据等弧的定义对④进行判断.【解答】解:三角形的外心到三角形各顶点的距离相等,所以①正确;经过不共线的三点一定可以作圆,所以②错误;半圆是弧,但弧不一定是半圆,所以③正确;能够完全重合的弧是等弧,所以④错误.故选B.【点评】主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的定义与性质.3.把二次函数y=+x﹣1化为y=a(x﹣h)2+k的形式是( )A.y=(x+1)2+2 B.y=(x+1)2﹣2 C.y=(x﹣2)2+2 D.y=(x+2)2﹣2【考点】二次函数的三种形式.【分析】利用配方法先提出二次项系数,再加上一次项系数的一半的平方来凑完全平方式,把一般式转化为顶点式.【解答】解:y=+x﹣1=(x2+4x+4)﹣1﹣1=(x+2)2﹣2.故选D.【点评】本题考查了二次函数解析式的三种形式:(1)一般式:y=ax2+bx+c(a≠0,a、b、c为常数);(2)顶点式:y=a(x﹣h)2+k;(3)交点式(与x轴):y=a(x﹣x1)(x﹣x2).4.某种商品零售价经过两次降价后,每件的价格由原来的800元降为现在的578元,则平均每次降价的百分率为( )A.10% B.12% C.15% D.17%【考点】一元二次方程的应用.【专题】增长率问题.【分析】设平均每次降价的百分率为x,那么第一次降价后为800(1﹣x),第二次降价后为800(1﹣x)(1﹣x),然后根据每件的价格由原来的800元降为现在的578元即可列出方程,解方程即可.【解答】解:设平均每次降价的百分率为x,依题意得800(1﹣x)2=578,∴(1﹣x)2=,∴1﹣x=±0.85,∴x=0.15=15%或x=1.85(舍去).答:平均每次降价的百分率为15%.故选C.【点评】此题主要考查了增长率的问题,一般公式为原来的量×(1±x)2=后来的量,增长用+,减少用﹣.5.二次函数y=ax2+bx﹣1(a≠0)的图象经过点(1,1),则代数式1﹣a﹣b的值为( ) A.﹣3 B.﹣1 C.2 D.5【考点】二次函数图象上点的坐标特征.【专题】整体思想.【分析】把点(1,1)代入函数解析式求出a+b,然后代入代数式进行计算即可得解.【解答】解:∵二次函数y=ax2+bx﹣1(a≠0)的图象经过点(1,1),∴a+b﹣1=1,∴a+b=2,∴1﹣a﹣b=1﹣(a+b)=1﹣2=﹣1.故选:B.【点评】本题考查了二次函数图象上点的坐标特征,整体思想的利用是解题的关键.6.如图,AB是⊙O的直径,CD是⊙O的切线,切点为D,CD与AB的延长线交于点C,∠A=30°,给出下面3个结论:①AD=CD;②BD=BC;③AB=2BC,其中正确结论的个数是( )A.3 B.2 C.1 D.0【考点】切线的性质.【专题】几何图形问题.【分析】连接OD,CD是⊙O的切线,可得CD⊥OD,由∠A=30°,可以得出∠ABD=60°,△ODB是等边三角形,∠C=∠BDC=30°,再结合在直角三角形中300所对的直角边等于斜边的一半,继而得到结论①②③成立.【解答】解:如图,连接OD,∵CD是⊙O的切线,∴CD⊥OD,∴∠ODC=90°,又∵∠A=30°,∴∠ABD=60°,∴△OBD是等边三角形,∴∠DOB=∠ABD=60°,AB=2OB=2OD=2BD.∴∠C=∠BDC=30°,∴BD=BC,②成立;∴AB=2BC,③成立;∴∠A=∠C,∴DA=DC,①成立;综上所述,①②③均成立,故答案选:A.【点评】本题考查了圆的有关性质的综合应用,在本题中借用切线的性质,求得相应角的度数是解题的关键.7.下列方程中有实数根的是( )A.x2﹣3x+4=0 B.x2+2x+3=0 C.x2+x+1=0 D.x2+x﹣1=0【考点】根的判别式.【专题】计算题.【分析】本题是根的判别式的应用试题,不解方程而又准确的判断出方程解的情况,那只有根的判别式.当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根.【解答】解:A、△=9﹣16=﹣7<0,故没有实数根,故错误;B、△=4﹣12=﹣8<0,故没有实数根,故错误;C、△=1﹣4=﹣3<0,故没有实数根,故错误;D、△=1+4=5>0,故有实数根,故正确;故选D.【点评】本题考查了一元二次方程根的判别式的应用.要注意无理方程,分式方程有意义的条件,并会以此来检验根的合理性.总结一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.8.点A的坐标为(﹣2,3),点B与点A关于原点对称,则点B的坐标为( ) A.(﹣3,2)B.(﹣2,﹣3)C.(3,﹣2)D.(2,﹣3)【考点】关于原点对称的点的坐标.【分析】直接利用两个点关于原点对称时,它们的坐标符号相反,即点P(x,y)关于原点O的对称点是P′(﹣x,﹣y),进而得出答案.【解答】解:∵点A的坐标为(﹣2,3),点B与点A关于原点对称,∴点B的坐标为:(2,﹣3).故选:D.【点评】此题主要考查了关于原点对称点的性质,正确掌握横纵坐标的关系是解题关键.9.二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论正确的是( )A.a<0 B.b2﹣4ac<0C.当﹣1<x<3时,y>0 D.﹣【考点】二次函数图象与系数的关系.【专题】存在型.【分析】根据二次函数的图象与系数的关系对各选项进行逐一分析即可.【解答】解:A、∵抛物线的开口向上,∴a>0,故选项A错误;B、∵抛物线与x轴有两个不同的交点,∴△=b2﹣4ac>0,故选项B错误;C、由函数图象可知,当﹣1<x<3时,y<0,故选项C错误;D、∵抛物线与x轴的两个交点分别是(﹣1,0),(3,0),∴对称轴x=﹣==1,故选项D正确.故选D.【点评】本题考查的是二次函数的图象与系数的关系,能利用数形结合求解是解答此题的关键.10.圆锥体的底面半径为2,侧面积为8π,则其侧面展开图的圆心角为( )A.90°B.120°C.150°D.180°【考点】圆锥的计算.【专题】计算题.【分析】设圆锥的侧面展开图的圆心角为n°,母线长为R,先根据锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式得到•2π•2•R=8π,解得R=4,然后根据弧长公式得到=2•2π,再解关于n的方程即可.【解答】解:设圆锥的侧面展开图的圆心角为n°,母线长为R,根据题意得•2π•2•R=8π,解得R=4,所以=2•2π,解得n=180,即圆锥的侧面展开图的圆心角为180°.故选:D.【点评】本题考查了圆锥的计算:锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.11.用一把带有刻度的直角尺,①可以画出两条平行的直线a与b,如图(1)②可以画出∠AOB的平分线OP,如图(2)③可以检验工件的凹面是否成半圆,如图(3)④可以量出一个圆的半径,如图(4)上述四个方法中,正确的个数是( )A.4个B.3个C.2个D.1个【考点】切线的性质;圆周角定理.【专题】作图题;压轴题.【分析】根据基本作图的方法,逐项分析,从而得出正确个数.【解答】解:①根据平行线的判定:同位角相等,两直线平行,可知正确;②可以画出∠AOB的平分线OP,可知正确;③根据90°的圆周角所对的弦是直径,可知正确;④此作法正确.∴正确的有4个.故选A.【点评】此题主要考查图形中平行线、角平分线的画法,90°的圆周角所对的弦是直径,圆的切线的性质等知识.此题综合性较强,有一定的灵活性.12.同圆的内接正三角形、正方形、正六边形边长的比是( )A.1:2:3 B.1:C. D.3:4:6【考点】正多边形和圆.【专题】计算题.【分析】根据题意画出图形,设出圆的半径,再由正多边形及直角三角形的性质求解即可.【解答】解:设圆的半径为R,如图(一),连接OB,过O作OD⊥BC于D,则∠OBC=30°,BD=OB•cos30°=R,故BC=2BD=R;如图(二),连接OB、OC,过O作OE⊥BC于E,则△OBE是等腰直角三角形,2BE2=OB2,即BE=,故BC=R;如图(三),连接OA、OB,过O作OG⊥AB,则△OAB是等边三角形,故AG=OA•cos60°=R,AB=2AG=R,∴圆内接正三角形、正方形、正六边形的边长之比为R:R:R=::1.故选C.【点评】本题考查的是圆内接正三角形、正方形及正六边形的性质,根据题意画出图形,作出辅助线构造出直角三角形是解答此题的关键.二、填空题.13.一元二次方程(a+1)x2﹣ax+a2﹣1=0的一个根为0,则a=1.【考点】一元二次方程的定义.【专题】计算题;待定系数法.【分析】根据一元二次方程的定义和一元二次方程的解的定义得到a+1≠0且a2﹣1=0,然后解不等式和方程即可得到a的值.【解答】解:∵一元二次方程(a+1)x2﹣ax+a2﹣1=0的一个根为0,∴a+1≠0且a2﹣1=0,∴a=1.故答案为:1.【点评】本题考查了一元二次方程的定义:含一个未知数,并且未知数的最高次数为2的整式方程叫一元二次方程,其一般式为ax2+bx+c=0(a≠0).也考查了一元二次方程的解的定义.14.将抛物线向左平移5个单位,再向上平移3个单位后得到的抛物线的解析式为.【考点】二次函数图象与几何变换.【分析】根据二次函数图象左加右减,上加下减的平移规律进行求解.【解答】解:抛物线向左平移5个单位,得:y=﹣(x﹣5+5)2+3=﹣x2+3;再向上平移3个单位,得:y=﹣x2+3+3=﹣x2+6.【点评】主要考查的是函数图象的平移,用平移规律“左加右减,上加下减”直接代入函数解析式求得平移后的函数解析式.15.⊙O的直径为10cm,AB,CD是⊙O的两条弦,AB∥CD,AB=8cm,CD=6cm,则AB 和CD的距离是7cm或1cm.【考点】垂径定理;勾股定理.【专题】分类讨论.【分析】作OE⊥AB于E,交CD于F,连结OA、OC,如图,根据平行线的性质得OF⊥CD,再利用垂径定理得到AE=BE=AB=4cm,CF=DF=CD=3cm,接着根据勾股定理,在Rt△OAE中计算出OE=3cm,在Rt△OCF中计算出OF=4cm,然后分类讨论:当圆心O在AB与CD之间时,EF=OF+OE;当圆心O不在AB与CD之间时,EF=OF﹣OE.【解答】解:作OE⊥AB于E,交CD于F,连结OA、OC,如图,∵AB∥CD,∴OF⊥CD,∴AE=BE=AB=4cm,CF=DF=CD=3cm,在Rt△OAE中,∵OA=5cm,AE=4cm,∴OE=3cm,在Rt△OCF中,∵OC=5cm,CF=3cm,∴OF=4cm,当圆心O在AB与CD之间时,EF=OF+OE=3+4+=7cm;当圆心O不在AB与CD之间时,EF=OF﹣OE=4﹣3=1cm;即AB和CD之间的距离为7cm或1cm.故答案为7cn或1cm.【点评】本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理.学会运用分类讨论的思想解决数学问题.16.如图,四边形ABCD内接于⊙O,若∠BOD=160°,则∠BCD=100°.【考点】圆内接四边形的性质.【分析】先根据圆周角定理求出∠A的度数,再由圆内接四边形的性质求出∠BCD的度数即可.【解答】解:∵∠BOD=160°,∴∠A=80°.∵四边形ABCD内接于⊙O,∴∠BCD=180°﹣∠A=180°﹣80°=100°.故答案为:100°.【点评】本题考查的是圆内接四边形的性质,熟知圆内接四边形的对角互补是解答此题的关键.17.如图,D为等腰直角三角形斜边BC上的一点,△ABD绕点A旋转后与△ACE重合,如果AD=1,那么DE=.【考点】旋转的性质.【分析】根据题意,△ABC是等腰直角三角形,△ABD≌△ACE,AD=1,故AD=AE=1,利用勾股定理可求出DE.【解答】解:因为△ABD与△ACE是互相旋转可得的,故△ABD≌△ACE.因为AD=1,故AD=AE=1,又可证△ADE是等腰直角三角形,所以DE==.【点评】本题难度较简单,主要考查的是旋转的性质以及勾股定理的相关知识.18.若三角形的外心在它的一条边上,那么这个三角形是直角三角形.【考点】三角形的外接圆与外心;勾股定理的逆定理.【分析】根据直径所对的圆周角是直角得该三角形是直角三角形.【解答】解:锐角三角形的外心在三角形的内部,直角三角形的外心是其斜边的中点,钝角三角形的外心在其三角形的外部;由此可知若三角形的外心在它的一条边上,那么这个三角形是直角三角形.【点评】注意:直角三角形的外心就是其斜边的中点.19.某一型号飞机着陆后滑行的距离y(单位:m)与滑行时间x(单位:s)之间的函数关系式是y=60x﹣1.5x2,该型号飞机着陆后滑行600m才能停下来.【考点】二次函数的应用.【分析】根据飞机从滑行到停止的路程就是滑行的最大路程,即是求函数的最大值.【解答】解:∵a=﹣1.5<0,∴函数有最大值.∴y最大值===600,即飞机着陆后滑行600米才能停止.故答案为:600.【点评】此题主要考查了二次函数的应用,运用二次函数求最值问题常用公式法或配方法得出是解题关键.20.⊙O的半径为R,点O到直线l的距离为d,R,d是方程x2﹣4x+m=0的两根,当直线l与⊙O相切时,m的值为4.【考点】直线与圆的位置关系;根的判别式.【专题】判别式法.【分析】先根据切线的性质得出方程有且只有一个根,再根据△=0即可求出m的值.【解答】解:∵d、R是方程x2﹣4x+m=0的两个根,且直线L与⊙O相切,∴d=R,∴方程有两个相等的实根,∴△=16﹣4m=0,解得,m=4,故答案为:4.【点评】本题考查的是切线的性质及一元二次方程根的判别式,熟知以上知识是解答此题的关键.三、解答题21.解下列方程(1)x2+4x﹣5=0(配方法)(2)x(x﹣4)=2﹣8x (公式法)(3)x﹣3=4(x﹣3)2(因式分解法)【考点】解一元二次方程-因式分解法;解一元二次方程-配方法;解一元二次方程-公式法.【分析】(1)将一元二次方程配成(x+m)2=n的形式,再利用直接开平方法求解.(2)将原方程转化为一元二次方程的一般形式,然后利用求根公式进行解答.(3)先移项,然后利用提取公因式法进行因式分解.【解答】解:(1)移项,得x2+4x=5,配方,得x2+4x+4=5+4,即(x+2)2=9,开方,得x+2=±3,则x1=1,x2=﹣5;(2)由原方程,得x2+4x﹣2=0,则a=1,b=4,c=﹣2,所以x==﹣2±,解得x1=﹣2+,x2=﹣2﹣;(3)x﹣3=4(x﹣3)2,(x﹣3)﹣4(x﹣3)2=0,(x﹣3)(1﹣4x+12)=0,即(x﹣3)(13﹣4x)=0,解得x1=3,x2=.【点评】本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.22.已知关于x的一元二次方程x2+3x+1﹣m=0(1)请选取一个你喜爱的m的值,使方程有两个不相等的实数根.(2)设x1、x2使(1)中所得方程的两个根,求x1x2+x1+x2的值.【考点】根的判别式;根与系数的关系.【分析】(1)根据一元二次方程根的判别式的意义得到当△>0时,方程有两个不相等的实数根,即有32﹣4(1﹣m)>0,解得m>﹣,在此范围内m可取1;(2)利用根与系数关系即可求得两根的和与两根的积,再代入x1x2+x1+x2即可求解.【解答】解:(1)当△>0时,方程有两个不相等的实数根,即32﹣4(1﹣m)>0,解得m>﹣,所以m可取1;(2)∵m=1时,方程为x2+3x=0,∴x1+x2=﹣3,x1x2=0,∴x1x2+x1+x2=0﹣3=﹣3.【点评】本题考查了一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.也考查了根与系数的关系.23.如图,A(4、4),B(﹣2,2),C(3,0),(1)画出它的以原点O为对称中心的△A′B′C′;(2)写出A′,B′,C′三点的坐标;(3)把每个小正方形的边长看作1,试求△ABC的面积.【考点】作图-旋转变换.【专题】作图题.【分析】(1)利用关于原点对称的点的坐标特征写出点A、B、C的对应点A′、B′、C′的坐标,然后描点即可得到△A′B′C′;(2)由(1)可得A′,B′,C′三点的坐标;(3)利用一个矩形的面积分别减去三个直角三角形的面积可计算出△ABC的面积.【解答】解:(1)如图,△A′B′C′为所作;(2)Aˊ(﹣4,﹣4),Bˊ(2,﹣2),Cˊ(﹣3,0);(3)S△ABC=4×6﹣×1×4﹣×5×2﹣×6×2=11.【点评】本题考查了作图﹣旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.24.如图,在⊙O中,弦BC垂直于半径OA,垂足为E,D是优弧上一点,连接BD,AD,OC,∠ADB=30°.(1)求∠AOC的度数;(2)若弦BC=6cm,求图中阴影部分的面积.【考点】垂径定理;勾股定理;圆周角定理;扇形面积的计算.【专题】几何综合题.【分析】(1)先根据垂径定理得出BE=CE,=,再根据圆周角定理即可得出∠AOC的度数;(2)先根据勾股定理得出OE的长,再连接OB,求出∠BOC的度数,再根据S阴影=S扇形OBC﹣S△OBC计算即可.【解答】解:(1)连接OB,∵BC⊥OA,∴BE=CE,=,又∵∠ADB=30°,∴∠AOC=∠AOB=2∠ADB,∴∠AOC=60°;(2)∵BC=6,∴CE=BC=3,在Rt△OCE中,OC==2,∴OE===,∵=,∴∠BOC=2∠AOC=120°,∴S阴影=S扇形OBC﹣S△OBC=×π×(2)2﹣×6×=4π﹣3(cm2).【点评】本题考查的是垂径定理,涉及到圆周角定理及扇形面积的计算,勾股定理,熟知以上知识是解答此题的关键.25.某市政府大力扶持大学生创业,李明在政府的扶持下投资销售一种进价为每件20元的护眼台灯.销售过程中发现,每月销售量y(件)与销售单价x(元)之间的关系可近似的看作一次函数:y=﹣10x+500.(1)设李明每月获得利润为w(元),当销售单价定为多少元时,每月可获得最大利润?(2)如果李明想要每月获得2000元的利润,那么销售单价应定为多少元?(3)根据物价部门规定,这种护眼台灯的销售单价不得高于32元,如果李明想要每月获得的利润不低于2000元,那么他每月的成本最少需要多少元?(成本=进价×销售量)【考点】二次函数的应用.【专题】应用题.【分析】(1)由题意得,每月销售量与销售单价之间的关系可近似看作一次函数,利润=(定价﹣进价)×销售量,从而列出关系式;(2)令w=2000,然后解一元二次方程,从而求出销售单价;(3)根据抛物线的性质和图象,求出每月的成本.【解答】解:(1)由题意,得:w=(x﹣20)•y,=(x﹣20)•(﹣10x+500)=﹣10x2+700x﹣10000,,答:当销售单价定为35元时,每月可获得最大利润.(2)由题意,得:﹣10x2+700x﹣10000=2000,解这个方程得:x1=30,x2=40,答:李明想要每月获得2000元的利润,销售单价应定为30元或40元.(3)∵a=﹣10<0,∴抛物线开口向下,∴当30≤x≤40时,w≥2000,∵x≤32,∴当30≤x≤32时,w≥2000,设成本为P(元),由题意,得:P=20(﹣10x+500)=﹣200x+10000,∵a=﹣200<0,∴P随x的增大而减小,∴当x=32时,P最小=3600,答:想要每月获得的利润不低于2000元,每月的成本最少为3600元.【点评】此题考查二次函数的性质及其应用,还考查抛物线的基本性质,另外将实际问题转化为求函数最值问题,从而来解决实际问题.26.(14分)如图,抛物线y=ax2+bx+c的对称轴为直线x=﹣3,该抛物线交x轴于A、B两点,交y轴于点C(0,4),以AB为直径的⊙M恰好经过点C.(1)求这条抛物线所对应的函数关系式;并求它的顶点坐标和最值,并分析它的增减性(2)设⊙M与y轴的另一个交点为D,请在抛物线的对称轴上求作一点E,使得△BDE的周长最小,并求出点E的坐标.【考点】二次函数综合题.【分析】(1)连接MC,首先求出点A和点B的坐标,根据题意列出a,b和c的三元一次方程组,求出a,b和c的值,进而求出抛物线的解析式,根据二次函数的性质求出最大值并分析函数的增减性;(2)连接AD,交抛物线的对称轴于点E,则点E即为所求作的点,求出直线AD的解析式,令x=﹣3,求出y的值,即可求出点P的坐标.【解答】解:(1)连接MC,如图1所示,在Rt△MCO中,∵OC=4,OM=3,∴由勾股定理得MC==5.∴MA=MB=5,∴A(﹣8,0)、B(2,0),∴,∴y=﹣x2﹣x+4,∵y=﹣x2﹣x+4=﹣(x2+6x+9)++4=﹣(x+3)2+,顶点坐标(﹣3,),当x=﹣3时,取最大值为,当x>﹣3时,y随x的增大而减小;当x<﹣3时,y随x的增大而增大;(2)连接AD交抛物线的对称轴于点E,则点E即为所求作的点.设直线AD的解析式为y=kx+b,∵A(﹣8,0)、D(0,﹣4),∴,∴,∴可求得直线AD所对应的函数关系式为y=﹣x﹣4.当x=﹣3时,y=﹣.∴点E的坐标为(﹣3,﹣).【点评】本题主要考查了二次函数综合题,此题涉及到待定系数法求二次函数解析式、二次函数的性质以及轴对称的性质,解答(1)问的关键是点A和点B的坐标,解答(2)问的关键是找出点P的位置,此题难度不大.。
2016-2017学年山东省潍坊市诸城市九年级(上)期中数学试卷一、选择题(共12小题,每小题3分,满分36分)1.(3分)如图,在△ABC中,DE∥BC,且AE=CE,则△ADE与四边形DBCE的面积之比等于()A.1 B.C.D.2.(3分)如图,某水库堤坝横断面迎水坡AB的坡比是1,堤坝高BC=50m,则迎水坡面AB的长度是()A.100m B.100m C.150m D.50m3.(3分)若一元二次方程x2+bx+5=0配方后为(x﹣3)2=k,则b,k的值分别为()A.0,4 B.0,5 C.﹣6,5 D.﹣6,44.(3分)如图,要使△ABC∽△CBD,则下列选项中不能作为条件添加的是()A.BC2=BD∙BA B.∠A=∠BCD C.AC2=AD∙AB D.∠BDC=∠ACB5.(3分)如图,在Rt△ABC中,∠C=90°,AB=6,cosB=,则BC的长为()A.4 B.2 C.D.6.(3分)关于x的一元二次方程x2﹣5x+p2﹣2p+5=0的一个根为1,则实数p 的值是()A.4 B.0或2 C.1 D.﹣17.(3分)轮船从B处以每小时50海里的速度沿南偏东30°方向匀速航行,在B 处观测灯塔A位于南偏东75°方向上,轮船航行半小时到达C处,在C处观测灯塔A位于北偏东60°方向上,则C处与灯塔A的距离是()海里.A.25B.25C.50 D.258.(3分)如果关于x的一元二次方程kx2﹣x+1=0有两个不相等的实数根,那么k的取值范围是()A.k<B.k<且k≠0C.﹣≤k<D.﹣≤k<且k≠09.(3分)为了测量被池塘隔开的A,B两点之间的距离,根据实际情况,作出如图图形,其中AB⊥BE,EF⊥BE,AF交BE于D,C在BD上.有四位同学分别测量出以下四组数据:①BC,∠ACB;②CD,∠ACB,∠ADB;③EF,DE,BD;④DE,DC,BC.能根据所测数据,求出A,B间距离的有()A.1组 B.2组 C.3组 D.4组10.(3分)如图,正方形ABCD的两边BC,AB分别在平面直角坐标系的x轴、y轴的正半轴上,正方形A′B′C′D′与正方形ABCD是以AC的中点O′为中心的位似图形,已知AC=3,若点A′的坐标为(1,2),则正方形A′B′C′D′与正方形ABCD 的相似比是()A.B.C.D.11.(3分)如图,边长为1的正方形ABCD绕点A逆时针旋转30°到正方形AB′C′D′,图中阴影部分的面积为()A.B.C.1﹣D.1﹣12.(3分)如图,Rt△ABC中,AB⊥AC,AB=3,AC=4,P是BC边上一点,作PE⊥AB于E,PD⊥AC于D,设BP=x,则PD+PE=()A.B.C.D.二、填空题(共6小题,每小题3分,满分18分)13.(3分)观察下列等式①sin30°=cos60°=②sin45°=cos45°=③sin60°=cos30°=…根据上述规律,计算sin2a+sin2(90°﹣a)=.14.(3分)如图,在一块长为22米、宽为17米的矩形地面上,要修建同样宽的两条互相垂直的道路(两条道路各与矩形的一条边平行),剩余部分种上草坪,使草坪面积为300平方米.若设道路宽为x米,则根据题意可列出方程为.15.(3分)如图,△ABC中,DE∥FG∥BC,且S△ADE=S梯形DFGE=S梯形FBCG,DE:FG:BC=.16.(3分)已知线段AB的长为2,以AB为边在AB的下方作正方形ACDB.取AB边上一点E,以AE为边在AB的上方作正方形AENM.过E作EF⊥CD,垂足为F点,如图.若正方形AENM与四边形EFDB的面积相等,则AE的长为.17.(3分)如图,将45°的∠AOB按下面的方式放置在一把刻度尺上:顶点O与尺下沿的端点重合,OA与尺下沿重合,OB与尺上沿的交点B在尺上的读数恰为2cm.若按相同的方式将37°的∠AOC放置在该刻度尺上,则OC与尺上沿的交点C在尺上的读数约为cm.(结果精确到0.1cm,参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)18.(3分)已知a≠b,且a、b满足a2﹣3a﹣4=0,b2﹣3b﹣4=0,那么+的值等于.三、解答题(共6小题,满分66分)19.(12分)解关于x的方程:(1)(2x﹣5)2=(x﹣2)2(2)(1+x)2+(1+x)=12(3)x2+ax+b=0(配方法)20.(12分)如图,在正方形ABCD中,E、F分别是边BC、CD上的点,=,CF=DF,连接AE、AF、EF,并延长FE交AB的延长线于点G.(1)若正方形的边长为4,则EG等于;(2)求证:△ECF∽△FDA;(3)比较∠EAB与∠EAF的大小.21.(10分)已知一元二次方程x2﹣2x+m﹣1=0.(1)当m取何值时,方程有两个不相等的实数根?(2)设x1,x2是方程的两个实数根,且满足x12+x1x2=1,求m的值.22.(10分)今年“五一“假期.某数学活动小组组织一次登山活动.他们从山脚下A点出发沿斜坡AB到达B点.再从B点沿斜坡BC到达山顶C点,路线如图所示.斜坡AB的长为1040米,斜坡BC的长为400米,在C点测得B点的俯角为30°.已知A点海拔121米.C点海拔721米.(1)求B点的海拔;(2)求斜坡AB的坡度.23.(10分)某工厂生产的某种产品按质量分为10个档次,第1档次(最低档次)的产品一天能生产76件,每件利润10元.每提高一个档次,每件利润增加2元.(1)每件利润为14元时,此产品质量在第几档次?(2)由于生产工序不同,产品每提高1个档次,一天产量减少4件.若生产第x档的产品一天的总利润为y元(其中x为正整数,且1≤x≤10),求出y关于x 的函数关系式;若生产某档次产品一天的总利润为1080元,该工程生产的是第几档次的产品?24.(12分)如图1,小红家阳台上放置了一个晒衣架.如图2是晒衣架的侧面示意图,立杆AB、CD相交于点O,B、D两点立于地面,经测量:AB=CD=136cm,OA=OC=51cm,OE=OF=34cm,现将晒衣架完全稳固张开,扣链EF成一条直线,且EF=32cm.(1)求证:AC∥BD;(2)求扣链EF与立杆AB的夹角∠OEF的度数(精确到0.1°);(3)小红的连衣裙穿在衣架后的总长度达到122cm,垂挂在晒衣架上是否会拖落到地面?请通过计算说明理由.(参考数据:sin61.9°≈0.882,cos61.9°≈0.471,tan61.9°≈0.553;可使用科学计算器)2016-2017学年山东省潍坊市诸城市九年级(上)期中数学试卷参考答案与试题解析一、选择题(共12小题,每小题3分,满分36分)1.(3分)如图,在△ABC中,DE∥BC,且AE=CE,则△ADE与四边形DBCE的面积之比等于()A.1 B.C.D.【解答】解:∵DE∥BC∴△ADE∽△ABC,∴AE:AC=DE:BC,∵AE=CE,∴DE:BC=1:2,∴△ADE与△ABC的面积之比是1:4,∴△ADE与四边形DBCE的面积之比是1:3.故选:C.2.(3分)如图,某水库堤坝横断面迎水坡AB的坡比是1,堤坝高BC=50m,则迎水坡面AB的长度是()A.100m B.100m C.150m D.50m【解答】解:∵堤坝横断面迎水坡AB的坡比是1,∴=,∵BC=50m,∴AC=50m,∴AB==100m,故选:A.3.(3分)若一元二次方程x2+bx+5=0配方后为(x﹣3)2=k,则b,k的值分别为()A.0,4 B.0,5 C.﹣6,5 D.﹣6,4【解答】解:∵(x﹣3)2=k,∴x2﹣6x+9﹣k=0,∵一元二次方程x2+bx+5=0配方后为(x﹣3)2=k,∴b=﹣6,9﹣k=5,∴k=4,∴b,k的值分别为﹣6、4;故选:D.4.(3分)如图,要使△ABC∽△CBD,则下列选项中不能作为条件添加的是()A.BC2=BD∙BA B.∠A=∠BCD C.AC2=AD∙AB D.∠BDC=∠ACB【解答】解:如图,∠ABC=∠CBD.A、若添加BC2=BD∙BA即=时,可以判定△ABC∽△CBD,故本选项错误;B、若添加∠A=∠BCD时,可以判定△ABC∽△CBD,故本选项错误;C、若添加AC2=AD∙AB即=时,可以判定△ABC∽△ACD,故本选项正确;D、若添加∠BDC=∠ACB时,可以判定△ABC∽△CBD,故本选项错误;故选:C.5.(3分)如图,在Rt△ABC中,∠C=90°,AB=6,cosB=,则BC的长为()A.4 B.2 C.D.【解答】解:∵cosB=,∴=,∵AB=6,∴CB=×6=4,故选:A.6.(3分)关于x的一元二次方程x2﹣5x+p2﹣2p+5=0的一个根为1,则实数p 的值是()A.4 B.0或2 C.1 D.﹣1【解答】解:∵x=1是方程的根,由一元二次方程的根的定义,可得p2﹣2p+1=0,解此方程得到p=1.故本题选C.7.(3分)轮船从B处以每小时50海里的速度沿南偏东30°方向匀速航行,在B 处观测灯塔A位于南偏东75°方向上,轮船航行半小时到达C处,在C处观测灯塔A位于北偏东60°方向上,则C处与灯塔A的距离是()海里.A.25B.25C.50 D.25【解答】解:根据题意,∠1=∠2=30°,∵∠ACD=60°,∴∠ACB=30°+60°=90°,∴∠CBA=75°﹣30°=45°,∴△ABC为等腰直角三角形,∵BC=50×0.5=25,∴AC=BC=25(海里).故选:D.8.(3分)如果关于x的一元二次方程kx2﹣x+1=0有两个不相等的实数根,那么k的取值范围是()A.k<B.k<且k≠0C.﹣≤k<D.﹣≤k<且k≠0【解答】解:由题意知:2k+1≥0,k≠0,△=2k+1﹣4k>0,∴≤k<,且k≠0.故选:D.9.(3分)为了测量被池塘隔开的A,B两点之间的距离,根据实际情况,作出如图图形,其中AB⊥BE,EF⊥BE,AF交BE于D,C在BD上.有四位同学分别测量出以下四组数据:①BC,∠ACB;②CD,∠ACB,∠ADB;③EF,DE,BD;④DE,DC,BC.能根据所测数据,求出A,B间距离的有()A.1组 B.2组 C.3组 D.4组【解答】解:此题比较综合,要多方面考虑,①因为知道∠ACB和BC的长,所以可利用∠ACB的正切来求AB的长;②可利用∠ACB和∠ADB的正切求出AB;③,因为△ABD∽△EFD可利用=,求出AB;④无法求出A,B间距离.故共有3组可以求出A,B间距离.故选:C.10.(3分)如图,正方形ABCD的两边BC,AB分别在平面直角坐标系的x轴、y轴的正半轴上,正方形A′B′C′D′与正方形ABCD是以AC的中点O′为中心的位似图形,已知AC=3,若点A′的坐标为(1,2),则正方形A′B′C′D′与正方形ABCD 的相似比是()A.B.C.D.【解答】解:∵在正方形ABCD中,AC=3∴BC=AB=3,延长A′B′交BC于点E,∵点A′的坐标为(1,2),∴OE=1,EC=A′E=3﹣1=2,∴OE:BC=1:3,∴AA′:AC=1:3,∵AA′=CC′,∴AA′=CC′=A′C′,∴A′C′:AC=1:3,∴正方形A′B′C′D′与正方形ABCD的相似比是.故选:B.11.(3分)如图,边长为1的正方形ABCD绕点A逆时针旋转30°到正方形AB′C′D′,图中阴影部分的面积为()A.B.C.1﹣D.1﹣【解答】解:如图,设B′C′与CD的交点为E,连接AE,在Rt△AB′E和Rt△ADE中,,∴Rt△AB′E≌Rt△ADE(HL),∴∠DAE=∠B′AE,∵旋转角为30°,∴∠DAB′=60°,∴∠DAE=×60°=30°,∴DE=1×=,∴阴影部分的面积=1×1﹣2×(×1×)=1﹣.故选:C.12.(3分)如图,Rt△ABC中,AB⊥AC,AB=3,AC=4,P是BC边上一点,作PE⊥AB于E,PD⊥AC于D,设BP=x,则PD+PE=()A.B.C.D.【解答】解:∵在Rt△ABC中,AB⊥AC,AB=3,AC=4,∴由勾股定理得BC=5,∵AB⊥AC,PE⊥AB,PD⊥AC,∴PE∥AC,PD∥AB∴△CDP∽△CAB,△BPE∽△BCA∴,∴PD=,PE=,∴PD+PE=+=+3.故选:A.二、填空题(共6小题,每小题3分,满分18分)13.(3分)观察下列等式①sin30°=cos60°=②sin45°=cos45°=③sin60°=cos30°=…根据上述规律,计算sin2a+sin2(90°﹣a)=1.【解答】解:由题意得,sin230°+sin2(90°﹣30°)=1;sin245°+sin2(90°﹣45°)=1;sin260°+sin2(90°﹣60°)=1;故可得sin2a+sin2(90°﹣a)=1.故答案为:1.14.(3分)如图,在一块长为22米、宽为17米的矩形地面上,要修建同样宽的两条互相垂直的道路(两条道路各与矩形的一条边平行),剩余部分种上草坪,使草坪面积为300平方米.若设道路宽为x米,则根据题意可列出方程为(22﹣x)(17﹣x)=300.【解答】解:设道路的宽应为x米,由题意有(22﹣x)(17﹣x)=300,故答案为:(22﹣x)(17﹣x)=300.15.(3分)如图,△ABC中,DE∥FG∥BC,且S△ADE=S梯形DFGE=S梯形FBCG,DE:FG:BC=1::.【解答】解:∵S=S梯形DFGE=S梯形FBCG,△ADE∵DE∥FG∥BC,∴△ADE∽△AFG∽△ABC,∴=,=,由于相似三角形的面积比等于对应边长的平方比,∴DE:FG:BC=1::.故答案为:1::.16.(3分)已知线段AB的长为2,以AB为边在AB的下方作正方形ACDB.取AB边上一点E,以AE为边在AB的上方作正方形AENM.过E作EF⊥CD,垂足为F点,如图.若正方形AENM与四边形EFDB的面积相等,则AE的长为.【解答】解:设AE=x,则BE=2﹣x,由图形得x2=2(2﹣x),解得:x1=﹣1,x2=﹣﹣1(舍去)故答案为:.17.(3分)如图,将45°的∠AOB按下面的方式放置在一把刻度尺上:顶点O与尺下沿的端点重合,OA与尺下沿重合,OB与尺上沿的交点B在尺上的读数恰为2cm.若按相同的方式将37°的∠AOC放置在该刻度尺上,则OC与尺上沿的交点C在尺上的读数约为 2.7cm.(结果精确到0.1cm,参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)【解答】解:过点B作BD⊥OA于D,过点C作CE⊥OA于E.在△BOD中,∠BDO=90°,∠DOB=45°,∴BD=OD=2cm,∴CE=BD=2cm.在△COE中,∠CEO=90°,∠COE=37°,∵tan37°=≈0.75,∴OE≈2.7cm.∴OC与尺上沿的交点C在尺上的读数约为2.7cm.故答案为2.7.18.(3分)已知a≠b,且a、b满足a2﹣3a﹣4=0,b2﹣3b﹣4=0,那么+的值等于﹣.【解答】解:∵a、b满足a2﹣3a﹣4=0,b2﹣3b﹣4=0,∴a、b是方程x2﹣3x﹣4=0的两个根,∴a+b=3,ab=﹣4,∴+====﹣.故答案为:﹣.三、解答题(共6小题,满分66分)19.(12分)解关于x的方程:(1)(2x﹣5)2=(x﹣2)2(2)(1+x)2+(1+x)=12(3)x2+ax+b=0(配方法)【解答】解:(1)∵(2x﹣5)2=(x﹣2)2∴2x﹣5=±(x﹣2),∴x1=3,x2=.(2)∵(1+x)2+(1+x)=12∴(1+x)2+(1+x)﹣12=0∴(1+x+4)(1+x﹣3)=0,∴1+x+4=0或1+x﹣3=0,∴x1=2,x2=﹣5.(3)∵x2+ax+b=0,∴x2+ax=﹣b∴x2+ax+()2=()2﹣b,∴(x+)2=当a2﹣4b<0时,方程无解.当a2﹣4b≥0时,x=﹣±.20.(12分)如图,在正方形ABCD中,E、F分别是边BC、CD上的点,=,CF=DF,连接AE、AF、EF,并延长FE交AB的延长线于点G.(1)若正方形的边长为4,则EG等于3;(2)求证:△ECF∽△FDA;(3)比较∠EAB与∠EAF的大小.【解答】解:(1)∵四边形ABCD是正方形,∴AB=CD=BC=4,∠ABC=90°,DC∥AB,∵CF=DF,∴CF=CD=2,∵DC∥AG,∴△FCE∽△GBE,∴,∵=,∴=,BE=BC=×4=3,∴,∴BG=6,在Rt△BEG中,EG===3;故答案为:3;(2)∵四边形ABCD是正方形,∴BC=AD=DC=4,∠C=∠D=90°,∵DF=FC=2,CE=1,∴=,==,∴,∴△ECF∽△FDA;(3)∵△ECF∽△FDA,∴∠CFE=∠DAF,,∵∠DFA+∠DAF=90°,∴∠CFE+∠DFA=90°,∴∠EFA=90°,∴tan∠EAF==,∵,∴tan∠EAB=,∴,∴∠EAF<∠EAB.21.(10分)已知一元二次方程x2﹣2x+m﹣1=0.(1)当m取何值时,方程有两个不相等的实数根?(2)设x1,x2是方程的两个实数根,且满足x12+x1x2=1,求m的值.【解答】解:(1)根据题意得△=b2﹣4ac=4﹣4×(m﹣1)>0,解得m<2;(2)∵x1是方程的实数根,∴x12﹣2x1+m﹣1=0 ①∵x1,x2是方程的两个实数根∴x1•x2=m﹣1∵x12+x1x2=1,∴x12+m﹣1=1 ②由①②得x1=0.5,把x=0.5代入原方程得,m=.22.(10分)今年“五一“假期.某数学活动小组组织一次登山活动.他们从山脚下A点出发沿斜坡AB到达B点.再从B点沿斜坡BC到达山顶C点,路线如图所示.斜坡AB的长为1040米,斜坡BC的长为400米,在C点测得B点的俯角为30°.已知A点海拔121米.C点海拔721米.(1)求B点的海拔;(2)求斜坡AB的坡度.【解答】解:如图,过C作CF⊥AM,F为垂足,过B点作BE⊥AM,BD⊥CF,E、D为垂足.在C点测得B点的俯角为30°,∴∠CBD=30°,又∵BC=400米,∴CD=400×sin30°=400×=200(米).∴B点的海拔为721﹣200=521(米).(2)∵BE=DF=521﹣121=400米,又∵AB=1040米,AE===960米,∴AB的坡度i AB===.故斜坡AB的坡度为1:2.4.23.(10分)某工厂生产的某种产品按质量分为10个档次,第1档次(最低档次)的产品一天能生产76件,每件利润10元.每提高一个档次,每件利润增加2元.(1)每件利润为14元时,此产品质量在第几档次?(2)由于生产工序不同,产品每提高1个档次,一天产量减少4件.若生产第x档的产品一天的总利润为y元(其中x为正整数,且1≤x≤10),求出y关于x 的函数关系式;若生产某档次产品一天的总利润为1080元,该工程生产的是第几档次的产品?【解答】解:(1)每件利润为14元时,此产品质量在第3档次.(2)由题意y=[10+2(x﹣1)][76﹣4(x﹣1)]=﹣8x2+128x+640.(1≤x≤10).当y=1080时,﹣8x2+128x+640=1080,解得x=5或11(舍弃).答:工程生产的是第5档次的产品时,一天的总利润为1080元.24.(12分)如图1,小红家阳台上放置了一个晒衣架.如图2是晒衣架的侧面示意图,立杆AB、CD相交于点O,B、D两点立于地面,经测量:AB=CD=136cm,OA=OC=51cm,OE=OF=34cm,现将晒衣架完全稳固张开,扣链EF成一条直线,且EF=32cm.(1)求证:AC∥BD;(2)求扣链EF与立杆AB的夹角∠OEF的度数(精确到0.1°);(3)小红的连衣裙穿在衣架后的总长度达到122cm,垂挂在晒衣架上是否会拖落到地面?请通过计算说明理由.(参考数据:sin61.9°≈0.882,cos61.9°≈0.471,tan61.9°≈0.553;可使用科学计算器)【解答】(1)证明:证法一:∵AB、CD相交于点O,∴∠AOC=∠BOD∵OA=OC,∴∠OAC=∠OCA=(180°﹣∠BOD),同理可证:∠OBD=∠ODB=(180°﹣∠BOD),∴∠OAC=∠OBD,∴AC∥BD,…3分证法二:AB=CD=136cm,OA=OC=51cm,∴OB=OD=85cm,∴又∵∠AOC=∠BOD∴△AOC∽△BOD,∴∠OAC=∠OBD;∴AC∥BD;(2)解:在△OEF中,OE=OF=34cm,EF=32cm;过点O作OM⊥EF于点M,则EM=16cm;∴cos∠OEF=0.471,用科学计算器求得∠OEF=61.9°;(3)解法一:小红的连衣裙会拖落到地面;在Rt△OEM中,=30cm,过点A作AH⊥BD于点H,同(1)可证:EF∥BD,∴∠ABH=∠OEM,则Rt△OEM∽Rt△ABH,∴所以:小红的连衣裙垂挂在衣架后的总长度122cm>晒衣架的高度AH=120cm.小红的连衣裙会拖落到地面.解法二:小红的连衣裙会拖落到地面;同(1)可证:EF∥BD,∴∠ABD=∠OEF=61.9°;过点A作AH⊥BD于点H,在Rt△ABH中,AH=AB×sin∠ABD=136×sin61.9°=136×0.882≈120.0cm所以:小红的连衣裙垂挂在衣架后的总长度122cm>晒衣架的高度AH=120cm.小红的连衣裙会拖落到地面.。