海明码生成与校验
- 格式:doc
- 大小:514.00 KB
- 文档页数:22
海明码校验例题
海明码是一种错误检测和纠正的校验码,它通过在数据中添加额外的校验位来检测和纠正错误。
下面是一个海明码的例题,通过这个例题来演示海明码的原理和计算方法。
题目:求信息1011的海明码。
首先,我们需要确定海明码的长度。
根据海明码的规则,数据位和校验位的总长度应该是2的整数次幂。
在本题中,我们可以选择长度为4的数据位和3个校验位,因此海明码的总长度为7位。
接下来,我们需要确定校验位的位置。
根据海明码的规则,校验位应该位于2的n(n=0,1,2....)次方位置上。
在本题中,我们可以将校验位分别放在第1、第2和第4位上。
然后,我们需要计算每个校验位的值。
海明码的每个校验位都是对应的数据位的异或运算结果。
在本题中,我们可以按照如下方式计算每个校验位的值:
●校验位1的值 = 数据位1 ^ 数据位2 ^ 数据位3 ^ 数据位4
●校验位2的值 = 数据位1 ^ 数据位2 ^ 数据位3
●校验位3的值 = 数据位1 ^ 数据位2
最后,我们将计算出的校验位和数据位组合在一起,得到海明码。
在本题中,我们的数据位为1011,因此我们可以将校验位计算结果放在第1、第2和第4位上,得到海明码为:1011 001 000。
通过这个例题,我们可以看出海明码通过添加额外的校验位来检测和纠正错误。
在实际应用中,海明码可以用于数据传输、存储等领域,提高数据的可靠性和安全性。
说明海明码校验的工作机制海明码校验的工作机制。
海明码校验是一种常用的错误检测和纠正技术,它可以帮助我们在数据传输过程中检测和纠正错误,确保数据的完整性和准确性。
海明码校验是由美国数学家理查德·W·海明提出的,它利用了一些数学原理和算法来实现对数据的检验和纠正。
在本文中,我们将详细介绍海明码校验的工作机制,包括海明码的生成和校验过程,以及它的应用场景和优缺点。
海明码的生成过程。
海明码是一种特殊的纠错码,它可以通过一些简单的数学运算来生成。
海明码的生成过程包括以下几个步骤:1. 数据分组,首先,需要将要传输的数据分成若干个数据块,每个数据块包含若干个比特(0或1)。
2. 添加校验位,对于每个数据块,需要添加一些校验位来实现错误检测和纠正。
校验位的数量取决于数据块的大小和需要实现的纠错能力。
3. 计算校验位,校验位的计算是通过一些数学运算来实现的,通常是利用异或操作和位移操作来计算。
校验位的值是通过对数据块中的比特进行运算得到的。
4. 合并数据块,将数据块和对应的校验位合并成一个完整的海明码。
海明码的校验过程。
一旦生成了海明码,就可以在数据传输过程中使用它来进行校验。
海明码的校验过程包括以下几个步骤:1. 数据传输,将生成的海明码发送给接收方进行数据传输。
2. 接收数据,接收方接收到海明码后,需要对其进行解码,得到原始的数据块和校验位。
3. 计算校验位,接收方利用接收到的海明码中的数据块和校验位,重新计算校验位的值。
4. 检测错误,接收方将重新计算得到的校验位和接收到的校验位进行比较,如果两者不一致,则说明数据传输过程中出现了错误。
5. 纠正错误,如果检测到错误,接收方可以利用海明码中的校验位来纠正错误,通常是通过一些数学运算来实现的。
海明码的应用场景。
海明码校验在计算机网络、通信系统、存储系统等领域都有广泛的应用。
它可以帮助我们在数据传输过程中检测和纠正错误,确保数据的完整性和准确性。
纠错编码-海明码⼀.海明码海明码只能发现双⽐特错误,纠正单⽐特错误⼆.⼯作原理“动⼀发⽽牵全⾝”,因为海明码是⼀个多重校验码,也就是码字中的信息码位同时被多个校验码进⾏校验三.⼯作流程1.确定校验码位数海明不等式2^r>=k+r+1,r为冗余信息位,k为信息位eg:要发送的数据为D=101101则数据的位数k=6满⾜的不等式最⼩r为4也就是D=101101的海明码应该有6+4=10位,其中原始数据6位,校验码4位2.确定校验码和数据的位置还是上⾯的那个例⼦D=101101,假设这4位校验码分别为P1,P2,P3,P4,数据从左往右为D1,D2...D6校验码必须是在2n次⽅位置,如第1、2、4、8、16、32,...位(对应2^0 2^1 2^2 2^3 2^4 2^5……,是从最左边的位数起的),这样⼀来就知道了信息码的分布位置,也就是⾮2n次⽅位置,如第3、5、6、7、9、10、11、12、13,...位(是从最左边的位数起的)即数据位12345678910代码P1P2D1P3D2D3D4P4D5D6实际值1011013.求出校验码的值D=101101⼆进制0001001000110100010101100111100010011010数据位12345678910代码P1P2D1P3D2D3D4P4D5D6实际值0010011101可以看出P1对应的⼆进制第⼀位为1(看⼆进制是⼏位的话就看最后⼀个数据位是⼏位⼆进制格式)可以发现D1,D2,D4,D5对应的⼆进制第⼀位也是1,则P1代码校验的数据为D1,D2,D4,D5令所有要校验的位异或=0(即同0异1)1 0 1 0p1(第1个校验位,也是整个码字的第1位)的校验规则是:从当前位数起,校验1位,然后跳过1位,再校验1位,再跳过1位,....。
这样就可得出p1校验码位可以校验的码字位包括:第1位(p2(第2个校验位,也是整个码字的第2位)的校验规则是:从当前位数起,连续校验2位,然后跳过2位,再连续校验2位,再跳过2位,……。
海明码校验方法
海明码校验那可老厉害了!先说说步骤呗,得先确定要校验的数据位数,这就像你要盖房子得先知道要盖多大面积似的。
然后根据数据位数计算出需要多少个校验位,哇塞,这可不能马虎,就跟挑队友一样得选合适的。
接着把数据和校验位放在合适的位置,这就好比摆棋子,得摆对地方。
最后进行校验,看看有没有错误,这就像考试检查答案一样,可重要了呢!注意事项也不少,得仔细计算校验位,不然一步错步步错,那可就悲催了。
而且放置数据和校验位的时候不能搞错位置,不然就白忙活了。
那安全性和稳定性咋样呢?嘿,这海明码校验就像一个忠诚的卫士,守护着数据的安全。
只要正确使用,就能大大提高数据的准确性和可靠性,不用担心数据出错,多棒啊!
应用场景可多了去了。
在数据传输中,它能确保数据完整无误地到达目的地,就像快递小哥把包裹安全送到你手上一样。
在存储数据的时候,也能防止数据被损坏,就像给宝贝找了个安全的保险箱。
优势也很明显啊,能快速检测出错误,还能定位错误的位置,这就像有个超级侦探,一下子就能找到问题所在。
比如说在网络通信中,海明码校验就发挥了大作用。
如果没有它,数据在传输过程中可能就会出错,那可就麻烦了。
有了它,就能保证数据的准确性,让通信更加顺畅。
海明码校验真的超棒,是数据安全的好帮手,你还能不试试?。
海明码校验例题摘要:1.海明码的概念与原理2.海明码的校验方法3.海明码的例题解析正文:一、海明码的概念与原理海明码是一种用于数据传输时检测和纠正错误的编码方法,由美国数学家海明在1950 年提出。
海明码的主要原理是利用冗余信息来实现数据的校验和修复。
在数据传输过程中,通过增加一定的冗余信息,使得接收方能够检测到传输中出现的错误,并根据冗余信息对错误进行修复。
二、海明码的校验方法海明码的校验方法主要有两种:奇偶校验和CRC 校验。
1.奇偶校验:通过在数据位之间插入奇数或偶数个校验位,使得整个编码后的数据包中1 的个数为奇数或偶数。
接收方在接收到数据后,统计1 的个数,如果与发送方一致,则认为数据传输正确;如果不一致,则说明数据传输出现错误。
2.CRC 校验:CRC(Cyclic Redundancy Check)校验是一种基于循环冗余的校验方法。
在数据传输过程中,发送方计算待发送数据的CRC 值,并将其附加在数据后面。
接收方收到数据后,也对数据进行CRC 计算,然后将接收到的CRC 值与计算得到的CRC 值进行比较。
如果两者相同,则认为数据传输正确;如果不同,则说明数据传输出现错误。
三、海明码的例题解析假设我们有一个数据传输系统,需要传输一个4 位的数据包,为了保证数据的正确性,我们希望在传输过程中能够检测到并纠正单个比特的错误。
为了实现这一目标,我们可以使用海明码进行编码。
具体编码过程如下:1.在数据位之间插入3 个校验位,使得整个数据包中1 的个数为奇数。
这样,在传输过程中,如果出现单个比特的错误,总1 的个数将变为偶数。
2.接收方在接收到数据后,统计1 的个数。
如果1 的个数为奇数,则认为数据传输正确;如果为偶数,则说明数据传输出现错误。
3.如果检测到错误,接收方可以根据校验位信息对错误进行修复。
例如,通过奇偶校验,我们可以知道错误发生在哪个比特位置,并据此对错误进行纠正。
综上所述,海明码是一种有效的数据校验和修复方法。
海明码数据位和校验位关系什么是海明码海明码(Hamming Code)是一种用于检测和纠正错误的线性二进制码。
它由理查德·W·海明(Richard W. Hamming)于1950年提出,被广泛应用于计算机存储和通信系统中。
在计算机存储和通信中,数据传输过程中可能会发生错误。
为了保证数据的准确性,需要使用一种纠错编码来检测并纠正这些错误。
海明码就是一种常用的纠错编码方式。
海明码的原理海明码通过在待传输的数据中添加冗余位来实现错误检测和纠正。
冗余位被称为校验位,它们的值由数据位决定。
假设待传输的数据有m个比特(bit),则需要添加r个校验位,使总共有n=m+r个比特。
其中,r满足以下不等式:2^r ≥ m + r + 1根据以上不等式可以求得最小满足条件的r值。
对于每一个校验位,它的位置是2^i-1(i从1开始),即第1、2、4、8…个位置上都是校验位。
对于每一个校验位来说,它所涵盖的数据比特取决于它的位置。
假设第i个校验位涵盖的数据比特为D1, D2, …, Dk,则该校验位的值为:Ci = D1 ⊕ D2 ⊕ … ⊕ Dk其中,⊕表示异或运算。
这样,每个校验位都可以检测到特定位置上的错误。
海明码的编码过程海明码的编码过程可以分为以下几个步骤:1.确定待传输数据的长度m和校验位的数量r,并计算总共需要传输的比特数n。
2.根据待传输数据,确定每个校验位所涵盖的数据比特。
3.计算每个校验位的值,并将其添加到待传输数据中对应位置。
4.将编码后的数据进行传输。
下面以一个具体例子来说明海明码的编码过程。
假设待传输数据为1010,通过计算可以确定需要添加两个校验位。
因此,总共需要传输4+2=6个比特。
数据比特P1 P2 D1 P3 D2 D31 0 1其中,P1覆盖了D1、D2、D3,P2覆盖了D1、D2,P3覆盖了D1、D3。
计算P1的值:P1 = D1 ⊕ D2 ⊕ D3 = 1 ⊕ 0 ⊕ 1 = 0计算P2的值:P2 = D1 ⊕ D2 = 1 ⊕ 0 = 1计算P3的值:P3 = D1 ⊕ D3 = 1 ⊕ 1 = 0将校验位的值添加到待传输数据中,得到编码后的数据:101010。
沈阳航空航天大学课程设计报告课程设计名称:计算机组成原理课程设计课程设计题目:海明码生成与校验电路的设计院(系):计算机学院专业:网络工程班级:84010202学号:2008040102061姓名:刘炎明指导教师:毛艳娥沈阳航空工业学院课程设计报告目录第1章总体设计方案 (1)1.1设计原理 (1)1.2设计思路 (1)1.3设计环境 (3)第2章详细设计方案 (4)2.1设计与实现 (4)2.1.1设计方案 (4)2.1.2器件的选择与引脚锁定 (5)2.2功能模块的设计与实现 (6)2.2.1生成模块的设计与实现 (7)2.2.2 错误模块的设计与实现 (8)2.2.3 校验模块的设计与实现 (10)2.3仿真调试 (12)第3章编程下载与硬件测试 (15)3.1编程下载 (15)3.2硬件测试及结果分析 (15)参考文献 (18)附录(程序清单或电路原理图) (19)第1章总体设计方案1.1 设计原理海明校验码是由理查得·海明(Richard Hanmming)于1950年提出的,它不仅具有检测错误的能力,同时还具有给出错误所在的准确位置的能力,这在通信领域有着很广泛的应用。
海明码是奇偶校验的一种扩充。
它采用多位校验码的方式,在这些校验位中的每一位都对不同的信息数据位进行奇偶校验,通过合理地安排每个校验位对原始数据进行校验位组合,可以达到发现错误,纠正错误的目的。
(1)数据位和校验位的关系假设数据位有m位,如何设定校验位k的长度才能满足纠正一位错误的要求呢?我们这里做一个简单的推导。
k位的校验码可以有2^k个值。
如果能够满足:2^k–1>=m + k (m+ k为编码后的总长度),在理论上k个校验码就可以判断是哪一位(包括信息码和校验码)出现问题。
(2)海明码的编码规律若海明码的最高位号为m,最低位号为1,即H m H m-1…H2H1,则海明码的编码规律通常是:a.校验位与数据位之和为m,每个校验位P i在海明码中被分在2i-1的位置,其余各位为数据位,并按从低向高逐位依次排列的关系分配各数据位。
b.海明码的每一位H i(包含数据位和校验位本身)由多个校验位校验,其关系是被校验的每一位位号要等于校验它的各校验位的位号之和。
这样安排的目的,是希望校验的结果能正确反映出出错位的位号。
1.2 设计思路(一)海明码的生成:因为要求的是8位的二进制数据,所以此处的k为8,按照数据位和校验位的对应关系,r应为5,由于总校验位只是检测两位出错还是一位出错,因此设计时不必考虑它的值,设r为4,故海明码的总位数为12,可表示为:H12——H1,4个校验位P4~P1对应的海明码位号分别为:H8/H4/H2/H1,则有如下排列关系:D8D7D6D5P4D4D3D2P3D1P2P1 按照海明码的原理得出如下的表格:P1=D1⊕D2⊕D4⊕D5⊕D7P2=D1⊕D3⊕D4⊕D6⊕D7P3=D2⊕D3⊕D4⊕D8P4=D5⊕D6⊕D7⊕D8(二)海明码的校验:海明码校验函数(S函数)及校验过程 <偶校验>S1=P1⊕D1⊕D2⊕D4⊕D5⊕D7S2=P2⊕D1⊕D3⊕D4⊕D6⊕D7S3=P3⊕D2⊕D3⊕D4⊕D8S4=P4⊕D5⊕D6⊕D7⊕D81.3 设计环境·硬件环境:伟福COP2000型计算机组成原理实验仪、XCV200实验板、微机;·EDA环境:Xilinx foundation f3.1设计软件、COP2000仿真软件。
图1.1Xilinx foundation f3.1设计平台第2章详细设计方案2.1 设计与实现实现海明码的生成与校验逻辑功能,采用原理图设计输入方式完成,电路实现基于XCV200可编程逻辑芯片。
完成原理图的设计后,把输入/输出信号安排到XCV200指定的引脚上去,实现芯片的引脚锁定。
2.1.1设计方案原理图主要由生成,错误模块和校验三个模块组装而成的一个完整的设计实体。
图2.1 生成模块图2.2 错误模块图2.3 校验模块2.1.2器件的选择与引脚锁定(1)器件的选择由于硬件设计环境是基于伟福COP2000型计算机组成原理实验仪和XCV200实验板,故采用的目标芯片为Xlinx XCV200可编程逻辑芯片。
(2)引脚锁定把顶层图形文件中的输入/输出信号安排到Xlinx XCV200芯片指定的引脚上去,实现芯片的引脚锁定。
2.2 功能模块的设计与实现海明码生成与校验设计电路是由3个模块组成,其中生成模块是由8个输入端输入海明码的8位数据位,经异或门求得校验位P1,P2,P3,P4,由此输出12位海明码;错误模块是由三八译码器来改变输入数据的某一位,从而产生错误的海明码;校验模块是对错误的数据进行纠正修改。
2.2.1生成模块的设计与实现(1)元件结构海明码生成模块,原理是通过输入的数据I1~I8按照公式:P1=D1⊕D2⊕D4⊕D5⊕D7,P2=D1⊕D3⊕D4⊕D6⊕D7,P3=D2⊕D3⊕D4⊕D8,P4=D5⊕D6⊕D7⊕D8,生成了4位校验码P1/P2 /P3/P4,从而得出了12位海明码。
图2.4生成模块内部电路(2)功能仿真对生成模块进行功能仿真,验证其功能的正确性。
图2.5SHENGCHENG模块仿真结果分析:输入I1-I8为10100000,输出O1-O12为101101000000,结果是正确的海明码。
2.2.2 错误模块的设计与实现(1)元件结构本模块的原理是通过3线8线译码器的3进1出,输出一个1,与8位输入数据中的一位异或,使之发生错误,从而得出一组错误的数据。
图2.6错误产生模块内部电路(2)功能仿真对创建的ERROR元件进行功能仿真,验证其功能的正确性图2.7ERROR模块仿真结果分析:输入L1-L3为000,输入I1-I8为10100000,输出K1为0,产生一位错误。
2.2.3 校验模块的设计与实现(1)元件的内部结构原理是通过公式:S1=P1⊕D1⊕D2⊕D4⊕D5⊕D7,S2=P2⊕D1⊕D3⊕D4⊕D6⊕D7,S3=P3⊕D2⊕D3⊕D4⊕D8,S4=P4⊕D5⊕D6⊕D7⊕D8,连成的电路对数据进行校验,判断数据是那一位出错,并对出错的那一位与错误数据异或,从而得出正确的数据。
图2.8校验模块内部电路(2)功能仿真对校验模块进行功能仿真,验证其功能的正确性图2.9校验模块仿真2.3 仿真调试仿真调试是为了验证设计电路逻辑功能的正确性,输入8位二进制数据位生成12位海明码,中间经三八译码器来改变一位数据位,经校验电路修改,最后输出正确的8位二进制数据位。
(1)创建仿真信号在进行仿真时,输入数据位用了上面的两组数据。
第一组数据,I1~I8为10100000,生成的海明码O1~O12为10110100000 第二组数据,I1~I8为10010001,生成的海明码O1~O12为001000110001 这两组数据又经三八译码器改变其中一位错的数据输入到校验电路里,经校验后输出原本的数据位,最终实现了海明码生成和校验功能。
(2)仿真结果功能仿真波形结果如图2.10、图2.11所示,仿真数据结果如表2.3所示。
对表中内容进行计算,可以看出功能仿真结果是正确的,进而说明此次电路设计成功。
表2。
3:图2.10 第一组数据功能仿真波形结果图2.11 第二组数据功能仿真波形结果程下载与硬件测试第3章编程下载与硬件测试3.1 编程下载利用Xilinx ISE的编程下载功能,下载编译我的工程,从而得到的*.bin文件,即可下载到XCV200实验板的XCV200可编程逻辑芯片中,完成编译下载。
3.2 硬件测试及结果分析利用XCV200实验板进行硬件功能测试。
海明码数据位的输入数据通过XCV200实验板的输入开关实现,输出数据通过XCV200实验板的LED指示灯实现,其对应关系如表3.1所示。
表3.1 XCV200实验板信号对应关系输入数据,逐个测试输出结果,即用XCV200实验板的开关K0、K1输入数据,同时观察LEDA和LEDB的输出,得到如表3.2所示的硬件测试结果。
表3.2 硬件测试结果图3.1 第一组数据cop2000仿真下载结果结果分析:输入K1:1-K1:3为000,对应L1-L3,输入I1-I8为10010001,输出B7—A4为001000110001对应O1-O12。
图3.2 第二组数据cop2000仿真下载结果结果分析:输入K1:1-K1:3为000,对应L1-L3,输入I1-I8为10010010,输出B7-A4为111100110010对应O1-O12。
签。
参考文献参考文献[1] 白中英,计算机组成原理(第三版)..北京:科学出版社,2000[2] 王爱英.计算机组成与结构(第4版)[M].北京:清华大学出版社,2006[3] 范延滨,微型计算机系统原理、接口与EDA设计技术(第三版).北京:北京邮电大学出版社,2006沈阳航空航天大学课程设计报告附录附录(程序清单或电路原理图)总电路原理图沈阳航空航天大学课程设计报告。