1-半导体发光材料与器件
- 格式:ppt
- 大小:8.75 MB
- 文档页数:148
半导体半导体简介:顾名思义:常温下导电性能介于导体(conductor)与绝缘体(insulator)之间的材料,叫做半导体(semiconductor)。
我们通常把导电性和导电导热性差或不好的材料,如金刚石、人工晶体、琥珀、陶瓷等等,称为绝缘体。
而把导电、导热都比较好的金属如金、银、铜、铁、锡、铝等称为导体。
可以简单的把介于导体和绝缘体之间的材料称为半导体。
半导体定义:电阻率介于金属和绝缘体之间并有负的电阻温度系数的物质。
半导体室温时电阻率约在10E-5~10E7欧·米之间,温度升高时电阻率指数则减小。
半导体材料很多,按化学成分可分为元素半导体和化合物半导体两大类。
有元素半导体,化合物半导体,还有非晶态的玻璃半导体、有机半导体等。
半导体材料:半导体材料是一类具有半导体性能、可用来制作半导体器件和集成电路的电子材料。
半导体材料的电学性质对光、热、电、磁等外界因素的变化十分敏感,在半导体材料中掺入少量杂质可以控制这类材料的电导率。
正是利用半导体材料的这些性质,才制造出功能多样的半导体器件。
半导体材料按化学成分和内部结构,大致可分为以下几类。
1.元素半导体有锗、硅、硒、硼、碲、锑等。
2.化合物半导体由两种或两种以上的元素化合而成的半导体材料,包括Ⅲ-Ⅴ族化合物(砷化镓、磷化镓等)、Ⅱ-Ⅵ族化合物( 硫化镉、硫化锌等)、氧化物(锰、铬、铁、铜的氧化物),以及由Ⅲ-Ⅴ族化合物和Ⅱ-Ⅵ族化合物组成的固溶体(镓铝砷、镓砷磷等)。
3.无定形半导体材料,用作半导体的玻璃是一种非晶体无定形半导体材料,分为氧化物玻璃和非氧化物玻璃两种。
4.有机增导体材料已知的有机半导体材料有几十种,包括萘、蒽、聚丙烯腈、酞菁和一些芳香族化合物等,目前尚未得到应用。
制备不同的半导体器件对半导体材料有不同的形态要求,包括单晶的切片、磨片、抛光片、薄膜等。
半导体材料的不同形态要求对应不同的加工工艺。
常用的半导体材料制备工艺有提纯、单晶的制备和薄膜外延生长。
LED基本常识(一)半导体发光器件包括半导体发光二极管(简称LED)、数码管、符号管、米字管及点阵式显示屏(简称矩阵管)等。
事实上,数码管、符号管、米字管及矩阵管中的每个发光单元都是一个发光二极管。
一、半导体发光二极管工作原理、特性及应用(一)LED发光原理发光二极管是由Ⅲ-Ⅳ族化合物,如GaAs(砷化镓)、GaP(磷化镓)、GaAsP(磷砷化镓)等半导体制成的,其核心是PN结。
因此它具有一般P-N结的I-N特性,即正向导通,反向截止、击穿特性。
此外,在一定条件下,它还具有发光特性。
在正向电压下,电子由N区注入P区,空穴由P区注入N区。
进入对方区域的少数载流子(少子)一部分与多数载流子(多子)复合而发光,如图1所示。
假设发光是在P区中发生的,那么注入的电子与价带空穴直接复合而发光,或者先被发光中心捕获后,再与空穴复合发光。
除了这种发光复合外,还有些电子被非发光中心(这个中心介于导带、介带中间附近)捕获,而后再与空穴复合,每次释放的能量不大,不能形成可见光。
发光的复合量相对于非发光复合量的比例越大,光量子效率越高。
由于复合是在少子扩散区内发光的,所以光仅在靠近PN结面数μm以内产生。
理论和实践证明,光的峰值波长λ与发光区域的半导体材料禁带宽度Eg有关,即λ≈1240/Eg(mm)式中Eg的单位为电子伏特(eV)。
若能产生可见光(波长在380nm紫光~780nm红光),半导体材料的Eg应在3.26~1.63eV之间。
比红光波长长的光为红外光。
现在已有红外、红、黄、绿及蓝光发光二极管,但其中蓝光二极管成本、价格很高,使用不普遍。
(二)LED的特性1.极限参数的意义(1)允许功耗Pm:允许加于LED两端正向直流电压与流过它的电流之积的最大值。
超过此值,LED发热、损坏。
(2)最大正向直流电流IFm:允许加的最大的正向直流电流。
超过此值可损坏二极管。
(3)最大反向电压VRm:所允许加的最大反向电压。
超过此值,发光二极管可能被击穿损坏。
附件2:《半导体光电子材料与器件》教学大纲(理论课程及实验课程适用)一、课程信息课程名称(中文):半导体光电子材料与器件课程名称(英文):Semiconductor Optoelectronic materials and devices课程类别:选修课课程性质:专业方向课计划学时:32(其中课内学时:40 ,课外学时:0)计划学分:2先修课程:量子力学、物理光学、固体物理、激光原理与技术、半导体物理等选用教材:《半导体物理学简明教程》,孟庆巨胡云峰等编著,电子工业出版社,2014年6月,非自编;普通高等教育“十二五”规划教材,电子科学与技术专业规划教材开课院部:理学院适用专业:光电信息科学与工程、微电子学等专业课程负责人:梁春雷课程网站:无二、课程简介(中英文)《半导体光电子材料与器件》是光电信息科学与工程本科专业的专业课。
学习本课程之前,要求学生已经具有量子力学、热力学与统计物理、固体物理和半导体物理方面的知识。
本课程论述基于电子的微观运动规律为基础的各种半导体器件的工作原理。
其核心内容是硅光电子器件的工作原理和设计方法。
本课程的目的是让学生了解和掌握半导体器件相关的物理知识,熟练掌握各种常见半导体器件参数与器件的结构参数和材料参数之间的关系。
能够使用典型的光电子器件进行光电探测。
初步具备新型器件的跟踪研究能力和自主开发能力。
Semiconductor Optoelectronic Materials and Devices is the course designed for the undergraduate students of optoelectronic information science and engineering specialty. Before taking this class, the students are required to have the knowledge of quantum mechanics, thermodynamics and statistical physics, solid state physics and semiconductor physics.The class will discuss the principles of working of all kinds of Semiconductor devices based on the microscopic movement of electron. The main content will be the principle of working and the method of design of optoelectronic devices base on silicon. The purpose is to let the students understand and master physical knowledge related to the semiconductor devices, skillfully master all kinds of relations of semiconductor devices parameters with structural parameter and material parameter. The students are requires to be able to employ some typical devices for photoelectric detection, also they will be able to have the basic ability to follow and develop new devices.三、课程教学要求序号专业毕业要求课程教学要求关联程度1 工程知识本课程注重培养学生理论联系实际的能力、科学研究的思想方法、创新能力以及工程实践能力等。
什么是半导体材料?常见半导体材料有哪些?什么是半导体材料?What is a semiconductor material?半导体材料semiconductormaterial,是一类具有半导体性能(导电能力介于导体与绝缘体之间,电阻率约在1mΩ·cm~1GΩ·cm范围内)、可用来制作半导体器件和集成电路的电子材料。
自然界的物质、材料按导电能力大小可分为导体、半导体和绝缘体三大类。
半导体的电阻率在1mΩ·cm~1GΩ·cm范围(上限按谢嘉奎《电子线路》取值,还有取其1/10或10倍的;因角标不可用,暂用当前描述)。
在一般情况下,半导体电导率随温度的升高而升高,这与金属导体恰好相反。
凡具有上述两种特征的材料都可归入半导体材料的范围。
反映半导体半导体材料内在基本性质的却是各种外界因素如光、热、磁、电等作用于半导体而引起的物理效应和现象,这些可统称为半导体材料的半导体性质。
构成固态电子器件的基体材料绝大多数是半导体,正是这些半导体材料的各种半导体性质赋予各种不同类型半导体器件以不同的功能和特性。
半导体的基本化学特征在于原子间存在饱和的共价键。
作为共价键特征的典型是在晶格结构上表现为四面体结构,所以典型的半导体材料具有金刚石或闪锌矿(ZnS)的结构。
由于地球的矿藏多半是化合物,所以最早得到利用的半导体材料都是化合物,例如方铅矿(PbS)很早就用于无线电检波,氧化亚铜(Cu2O)用作固体整流器,闪锌矿(ZnS)是熟知的固体发光材料,碳化硅(SiC)的整流检波作用也较早被利用。
硒(Se)是最早发现并被利用的元素半导体,曾是固体整流器和光电池的重要材料。
元素半导体锗(Ge)放大作用的发现开辟了半导体历史新的一页,从此电子设备开始实现晶体管化。
中国的半导体研究和生产是从1957年首次制备出高纯度(99.999999%~99.9999999%)的锗开始的。
采用元素半导体硅(Si)以后,不仅使晶体管的类型和品种增加、性能提高,而且迎来了大规模和超大规模集成电路的时代。
高迁移率有机半导体材料与器件的研究2023国家自然科学奖1. 引言1.1 概述随着信息技术的迅速发展,有机半导体材料作为一种新型材料,引起了广泛的关注和研究。
高迁移率有机半导体材料是近年来研究的热点之一,其在电子器件领域具有广阔的应用前景。
本文将重点探讨高迁移率有机半导体材料与器件的研究,并对2023国家自然科学奖对该领域研究的支持和影响进行分析。
1.2 研究背景传统的硅基半导体材料具有成熟稳定的性能和制备工艺,但在柔性电子、可穿戴设备等领域存在局限性。
相比之下,有机半导体材料具有轻质、柔性可弯曲、低成本等优势,因此被认为是未来电子器件发展的重要方向之一。
然而,传统有机半导体材料通常具有较低的载流子迁移率,限制了其在高性能电子器件中的应用。
为了解决这个问题,高迁移率有机半导体材料被提出并广泛研究,以期实现高性能有机器件的制备。
1.3 目的和意义本文旨在系统地介绍高迁移率有机半导体材料及其相关器件的研究进展,并探讨其在电子器件领域的应用前景。
同时,文章将对2023年国家自然科学奖对于该领域研究的支持和影响进行分析,以便更好地了解该领域的最新发展和未来趋势。
相信通过本文的阐述,可以进一步推动高迁移率有机半导体材料与器件的研究,在相关领域取得更多重要突破,并为推动我国信息技术产业发展贡献力量。
以上是“1. 引言”部分内容,接下来将详细阐述“2. 高迁移率有机半导体材料的特点与应用”的相关内容。
2. 高迁移率有机半导体材料的特点与应用2.1 高迁移率有机半导体材料的概念高迁移率有机半导体材料是一类具有高电子或空穴迁移率的有机化合物。
相比传统无机半导体材料,高迁移率有机半导体材料在电子输运速度、可加工性和柔性等方面具备显著优势。
这些材料通常由有机分子或聚合物构成,其分子结构可以被调控和设计以实现更高的载流子迁移率。
2.2 材料特性与性能分析高迁移率有机半导体材料展示了许多独特的特性和优良的性能,使其在各种领域中拥有广泛的应用前景。
电子电路基础习题册参考答案(第三版)全国中等职业技术第一章常用半导体器件§1-1 晶体二极管一、填空题1、物质按导电能力的强弱可分为导体、绝缘体和半导体三大类,最常用的半导体材料是硅和锗。
2、根据在纯净的半导体中掺入的杂质元素不同,可形成N 型半导体和P 型半导体。
3、纯净半导体又称本征半导体,其内部空穴和自由电子数相等。
N型半导体又称电子型半导体,其内部少数载流子是空穴;P型半导体又称空穴型半导体,其内部少数载流子是电子。
4、晶体二极管具有单向导电性,即加正向电压时,二极管导通,加反向电压时,二极管截止。
一般硅二极管的开启电压约为0.5 V,锗二极管的开启电压约为0.1 V;二极管导通后,一般硅二极管的正向压降约为0.7 V,锗二极管的正向压降约为0.3 V。
5.锗二极管开启电压小,通常用于检波电路,硅二极管反向电流小,在整流电路及电工设备中常使用硅二极管。
6.稳压二极管工作于反向击穿区,稳压二极管的动态电阻越小,其稳压性能好。
7在稳压电路中,必须串接限流电阻,防止反向击穿电流超过极限值而发生热击穿损坏稳压管。
8二极管按制造工艺不同,分为点接触型、面接触型和平面型。
9、二极管按用途不同可分为普通二极管、整流二极管、稳压二极管、开关、热敏、发光和光电二极管等二极管。
10、二极管的主要参数有最大整流电流、最高反向工作电压、反向饱和电流和最高工作频率。
11、稳压二极管的主要参数有稳定电压、稳定电流和动态电阻。
12、图1-1-1所示电路中,二极管V1、V2均为硅管,当开关S与M相接时,A点的电位为无法确定V,当开关S与N相接时,A点的电位为0 V.13图1-1-2所示电路中,二极管均为理想二极管,当开关S打开时,A点的电位为10V 、流过电阻的电流是4mA ;当开关S闭合时,A点的电位为0 V,流过电阻的电流为2mA 。
14、图1-1-3所示电路中,二极管是理想器件,则流过二极管V1的电流为0.25mA ,流过V2的电流为0.25mA ,输出电压U0为+5V。