核测井
- 格式:ppt
- 大小:1.34 MB
- 文档页数:31
核测井(nuclear logging )是指将核技术应用于井中测量,根据岩石及其孔隙流体的核物理性质,研究井的地质剖面,勘探石油、天然气、煤以及金属、非金属矿藏,研究石油地质、油井工程和油田开发的核地球物理方法,又称放射性测井。
核测井----中子测井示意图主要分类核测井大体分四类:γ测井含自然γ和γ—γ测井(散射测井)。
前者又分自然γ和自然γ能谱测井;后者又分地层密度和岩性密度测井。
中子测井主要含中子寿命测井、一般中子测井和中子诱生γ测井。
中子寿命测井也称热中子衰减时间测井;一般中子测井含热中子测井和超热中子测井;它们又含有单探测器中子和补偿中子测井;中子诱生γ能谱测井通常包括快中子非弹性散射γ能谱测井(即C/O比测井)、中子俘获γ能谱测井和中子活化γ能谱测井等。
放射性核素示踪测井这种方法是利用放射核素作为示踪剂,将掺入流体中,并注入到井内,通过流体在井中的流动而使核素分布到各种孔隙空间。
利用核γ测井对示踪剂进行追踪测量,确定流体的运动状态及其分布规律。
核成像测井如核磁共振成像测井等。
技术发展核测井技术是随着当代核技术的发展和石油、煤炭、地质矿产等对核测井技术发展的需要而迅速发展起来的尖端测井技术之一。
随着人工射线源技术、传感器技术、测量技术、信息处理技术与计算机技术的发展,核测井技术仍处在飞速发展之中。
射线源技术核测井技术的大多数方法依赖于射线源性能,少部分方法利用井下地层的天然放射性进行测量。
现有的测井用射线源主要是γ射线源和中子源。
受井眼尺寸(偏小、弯曲、不规则等) 、井下环境(高温、高压等) 制约,地面实验用加速器γ源等技术尚难以应用于测井领域。
测井常用的γ源多是放射性同位素源,主要用于示踪测井。
随着核技术发展,核反应堆、加速器的不断建造,核燃料循环体系的建立,为放射性核素应用提供了日益丰富的物质基础。
放射性同位素广泛应用研究为更好利用现有设备资源开辟了新途径。
放射性同位素制备技术是同位素辐射技术应用的物质基础。
核测井原理概述 (2)第一章自然伽马测井和自然伽马能谱测井 (3)§1 伽马射线及其探测 (3)§2 岩石的自然伽马放射性(自然伽马测井的地质基础) (6)§3自然伽马射线强度沿井轴的分布 (13)§4 自然伽马测井的仪器刻度、井眼校正 (14)§5 自然伽马测井资料的应用 (15)§6 自然伽马能谱测井 (17)§7 自然伽马能谱测井资料的应用 (20)第二章中子测井 (21)§1中子测井基本原理 (22)§2超热中子测井 (25)第三章核磁共振 (50)§1顺磁共振的相关结果 (50)§2岩石孔隙中流体的核自旋驰豫及描述这种驰豫的方法 (58)概述核测井这门课程是和《原子核物理基础》是相互衔接的一门课程。
本课程的重点是自然伽马测井、自然伽马能谱测井,密度测井,中子测井以及核磁测井方法原理的讨论,资料的解释应用只稍作提及。
核测井,在核磁共振测井出现之前,我们又叫做放射性测井。
放射性测井主要有三种方法:自然伽马测井测量地层的天然放射性;密度测井测量人工伽马源与地层作用后的 射线;中子测井利用中子作用于地层作用,然后测量经地层慢化后的中子,或中子核反应产生的伽马射线。
这些测井方法主要用于了解地层的岩性和测量地层的孔隙度。
密度测井与中子测井结合也可用来判别储集层空间中的流体性质。
核磁测井严格地说不是放射性测井方法,核磁测井利用氢核具有核磁矩在外磁场作用下的共振吸收特性,测量地层中的氢核的状态和数目,进而求得地层的孔隙度及孔隙结构,束缚水饱和度等参数。
第一章 自然伽马测井和自然伽马能谱测井自然伽马测井测量地层中天然放射性矿物放出的伽马射线来了解地层的岩性等方面的特性。
本章从五个方面来讨论:1.伽马射线的测量(自然伽马测井的物理基础);2.岩石的放射性来源(自然伽马测井的地质基础);3.井中自然伽马的测量;4. 自然伽马测井资料的应用;5.最后介绍自然伽马能谱测井的原理及其应用。
核测井的原理及应用1. 什么是核测井核测井是指利用核技术对地下岩石进行测井的一种方法。
通过将放射性核素插入到地下井中并测量辐射线的强度,可以获取有关岩石成分、孔隙度、渗透率等信息。
2. 核测井的原理核测井利用放射性核素的辐射特性,通过测量辐射强度来推断岩石的性质。
2.1 放射性核素的选择核测井常用的放射性核素有铯(Cs)、铍(Be)、铀(U)等,这些核素具有适当的半衰期和射线能量,对地下岩石的测量具有较高的分辨率和深度范围。
2.2 辐射探测器在核测井中,辐射探测器起着重要的作用。
常用的辐射探测器有探头计数器和谱仪计数器。
2.3 数据采集与处理核测井得到的数据需要经过采集和处理才能得出准确的测量结果。
采集到的数据会经过滤波、校正等处理步骤,然后进行解释和分析。
3. 核测井的应用核测井在多个领域有广泛的应用,下面列举了一些主要的应用领域:3.1 石油勘探与开发核测井可用于评估油田储量、分析储层性质、确定油层厚度和垂直分布等。
通过核测井,可以帮助优化石油勘探与开发过程,提高油田的产量和开发效率。
3.2 水资源勘探核测井可以提供地下水层的详细信息,包括水层厚度、渗透性、含水层的位置等。
这些信息对于水资源勘探和管理非常重要,能够帮助合理利用地下水资源,预防地下水的过度开采和污染。
3.3 环境监测核测井在环境监测中也有广泛应用。
例如,可以通过核测井来测量地下水位、盐度、污染程度等指标,监测地下水资源的变化和污染情况,为保护环境和科学治理提供依据。
3.4 地质灾害预警核测井可用于地质灾害预警,例如地震、滑坡和地下水涌出等。
通过监测地下岩石的变化和应力分布情况,可以提前预警地质灾害的发生,保障人民生命财产安全。
3.5 建筑工程核测井在建筑工程中也有重要应用,如地基工程的勘探、隧道工程的地质探测等。
通过核测井,可以评估地下岩石的强度、稳定性和渗透性等属性,为建筑工程的设计和施工提供可靠的依据。
4. 结论核测井是一种基于核技术的地下岩石测量方法,通过测量放射性核素的辐射强度,可以获取有关岩石的性质和构造的信息。
核测井原理概述 (2)第一章自然伽马测井和自然伽马能谱测井 (3)§1 伽马射线及其探测 (3)§2 岩石的自然伽马放射性(自然伽马测井的地质基础) (6)§3自然伽马射线强度沿井轴的分布 (13)§4 自然伽马测井的仪器刻度、井眼校正 (14)§5 自然伽马测井资料的应用 (15)§6 自然伽马能谱测井 (17)§7 自然伽马能谱测井资料的应用 (20)第二章中子测井 (21)§1中子测井基本原理 (22)§2超热中子测井 (25)第三章核磁共振 (50)§1顺磁共振的相关结果 (50)§2岩石孔隙中流体的核自旋驰豫及描述这种驰豫的方法 (58)概述核测井这门课程是和《原子核物理基础》是相互衔接的一门课程。
本课程的重点是自然伽马测井、自然伽马能谱测井,密度测井,中子测井以及核磁测井方法原理的讨论,资料的解释应用只稍作提及。
核测井,在核磁共振测井出现之前,我们又叫做放射性测井。
放射性测井主要有三种方法:自然伽马测井测量地层的天然放射性;密度测井测量人工伽马源与地层作用后的 射线;中子测井利用中子作用于地层作用,然后测量经地层慢化后的中子,或中子核反应产生的伽马射线。
这些测井方法主要用于了解地层的岩性和测量地层的孔隙度。
密度测井与中子测井结合也可用来判别储集层空间中的流体性质。
核磁测井严格地说不是放射性测井方法,核磁测井利用氢核具有核磁矩在外磁场作用下的共振吸收特性,测量地层中的氢核的状态和数目,进而求得地层的孔隙度及孔隙结构,束缚水饱和度等参数。
第一章 自然伽马测井和自然伽马能谱测井自然伽马测井测量地层中天然放射性矿物放出的伽马射线来了解地层的岩性等方面的特性。
本章从五个方面来讨论:1.伽马射线的测量(自然伽马测井的物理基础);2.岩石的放射性来源(自然伽马测井的地质基础);3.井中自然伽马的测量;4. 自然伽马测井资料的应用;5.最后介绍自然伽马能谱测井的原理及其应用。
第三章 核测井核测井是测量记录反映岩石及其孔隙流体和井内介质的核物理性质的参数,研究井剖面岩层性质、寻找石油矿藏等的一类测井方法。
核测井包括以核物理学和核物理技术为基础的一系列测井方法,分为γ测井、中子测井和核磁测井三大类,具有下列优点:1、核测井揭示的是岩石的核物理性质,能深刻反映岩石的本质,是一种唯一确定岩石及其孔隙流体化学元素含量的测井方法;2、对测量条件有着广泛的适应性,能在含有各种井内流体的裸眼井、套管井中对各种不同类型的储层进行有效测量;3、能提供大量具有不同物理实质的参数,且大部分参数用其它方法不易获得。
§3-1自然伽马测井和自然伽马能谱测井一、伽马测井的核物理基础 1、放射性和放射性衰变 (1)核素和同位素核素:一种核素是指原子核的质子数和中子数都相等并处于同一能态的同一类原子,用下列符号表示:X A Z ,其中X 为元素的符号;Z 和A 分别表示质子数和质量数,例如H 31是一种核素。
同位素:是指几种质子数相同而中子数不同的核素统称为该种元素的同位素,例如H 11、H21、H 31这三种核素都是氢的同位素。
(2)放射性和放射性核素放射性:原子核自发地放出各种射线的性质统称为放射性。
放射性核素:能自发地发生衰变,由一种核变为另一种核的核素称为放射性核素,如H31就是放射性核素;稳定核素:不能自发发生变化的核素就是稳定核素,例如H 11、H 21就是稳定核素。
(3)核射线放射性物质能放出α、β、γ三种射线,性质各不相同,用途也不同。
α射线是高速运动的氦原子核He 42(α粒子),它的穿透能力最低,但电离能力最强。
在核测井中,利用α粒子和某些原子核的相互作用可制造中子源;β射线是高速运动的电子流,它的穿透能力比α射线强,但电离能力较α射线弱;γ射线是波长很短的电磁波,它的贯穿能力最强,但电离能力最弱。
γ射线能穿透几十厘米的地层、水泥环、套管和下井仪器的外壁而被探测仪器接收到,是核测井的主要探测对象。