机械式蒸汽再压缩知识汇总
- 格式:doc
- 大小:3.63 MB
- 文档页数:32
机械式蒸汽再压缩技术(MVR)蒸发零排放详解1、MVR原理MVR是机械式蒸汽再压缩技术(Mechanical Vapor Recompression)的简称,是利用蒸发系统自身产生的二次蒸汽及其能量,将低品位的蒸汽经压缩机的机械做功提升为高品位的蒸汽热源。
如此循环向蒸发系统提供热能,从而减少对外界能源需求的一项节能技术。
为使蒸发装置的制造尽可能简单和操作方便,可使用离心式压缩机、罗茨式压缩机。
这些机器在1∶1.2到1∶2压缩比范围内其体积流量较高。
2、机械蒸汽再压缩蒸发器(MVR蒸发器)其工作过程是低温位的蒸汽经压缩机压缩,温度、压力提高,热焓增加,然后进入换热器冷凝,以充分利用蒸汽的潜热。
除开车启动外,整个蒸发过程中无需生蒸汽。
如图所示,将蒸发过程中产生的二次蒸汽进行压缩,然后返回蒸发器作为加热蒸汽。
蒸发产生的二次蒸汽温度较低,但含有大量潜热,二次蒸汽经压缩机压缩提高温度(压力)后,送回原蒸发器的换热器用作热源,使料液维持沸腾状态,而加热蒸汽本身则冷凝成水。
这样原来要废弃的蒸汽就得到充分的利用,回收潜热,提高热效率,经济性相当于多效蒸发的20效。
·MVR蒸发器主要特点:1)无需生蒸汽2)低能耗、低运行费用3)可与结晶器组合,做成MVR形式的连续结晶器·MVR蒸发器与多效蒸发器蒸发每吨水的费用比较:为了降低运行成本,本方案采用MVR技术,此项目使用进口风机,将二次蒸汽压缩,达到系统运行需要的蒸发温差。
除了在系统开启时使用蒸汽将系统预热外,整套系统正常运行时只需使用电力,不需补充生蒸汽。
风机的吸入端为部分真空,这样可以降低晶浆进入离心机时形成的闪蒸蒸汽。
系统运行不需要补充生蒸汽,因为系统产生的所有高温冷凝水都被用于将物料预热至接近沸点;风机压缩蒸汽时产生的热能将用于完成剩余的物料预热,同时补偿系统产生的热损失,提供足够的热能保证空气和不凝汽的排出。
风机采用变频控制电机驱动。
变频控制可以让风机在最佳转速下运行,消除入口导叶损失;通过软启动,降低对整个系统的冲击,延长风机和电机的使用寿命。
一、机械式蒸汽再压缩技术(以下简称MVR)是利用蒸发系统自身产生的二次蒸汽及其能量,将低品位的蒸汽经压缩机的机械做功提升为高品位的蒸汽热源。
如此循环向蒸发系统提供热能,从而减少对外界能源的需求的一项节能技术。
在该系统中,预热阶段的热源由蒸汽发生器提供,直至物料开始蒸发产生蒸汽。
物料经过加热产生的二次蒸汽,通过压缩机压缩成为高温高压的蒸汽,在此产生的高温高压蒸汽作为加热的热源,蒸发腔内的物料经加热不断蒸发,而经过压缩机的高温高压蒸汽通过不断的换热,冷却变成冷凝水,即处理后的水。
压缩机作为整个系统的热源,实现了电能向热能的转换,避免了整个系统对外界生蒸汽的依赖与摄取。
二、MVR系统设备组成从MVR蒸发工艺流程不难看出,MVR蒸发系统是由各个设备串联在一起所组成,各设备之间要在热力学和传热学方面巧妙地匹配,以使整个系统达到最佳效果。
系统中的主要设备有以下4个:1、压缩机。
MVR压缩机的选型主要有罗茨压缩机和离心压缩机两种。
罗茨鼓风机常被用来压缩小流量的蒸汽,属于是容积型压缩机,其提供风量小,温升大,适用于蒸发量小,沸点升高大的物料。
离心式压缩机为压差式风机,提供的压差小,流量大,温升小,排气均匀,气流无脉冲,适合蒸发量较大,沸点升高较小的物料。
综合来看,离心式压缩机的稳定性要优于罗茨压缩机,但离心式压缩机有时会发生喘振现象,会导致压缩机不稳定。
2、蒸发器。
蒸发处理装置的型式一般分为升膜蒸发和降膜蒸发两种。
其主要根据处理物的特性、能耗进行选择。
目前,国内主要采用降膜蒸发方式。
3、热交换器。
在MVR热泵蒸发工艺过程中,所使用的换热器多为间壁式换热器。
在这类换热器内,冷热流体不直接接触,而是通过间壁进行换热。
生产中常用的间壁式换热器类型有:列管式换热器、波纹式换热器和螺旋式换热器。
4、气液分离器。
气液分离器是提供物料和二次蒸汽分离的场所。
其作用主要为将雾沫中的溶液聚集成液滴,把液滴与二次蒸汽分离。
值得一提的是,分离器的设计要充分考虑蒸发量、蒸发温度、物料粘度、分离器液位等因素。
机械蒸汽再压缩技术的基本原理机械蒸汽再压缩技术,听起来是不是有点高大上?但别担心,今天咱们就来聊聊这个看似复杂的技术,轻松又有趣,保证让你听完之后对它有个明白的了解。
咱们得知道这玩意儿的基本原理。
简单来说,它就像一个巧妙的循环系统。
想象一下你在家里煮水,水蒸气冒出来了,对吧?这个蒸气不是白冒的,里面可藏着不少能量。
这种能量,就是机械蒸汽再压缩技术的精髓所在。
想象一下,咱们把这些蒸气抓住,然后用一种特殊的方式把它压缩,哇,那能量就会变得更集中,就像你挤牙膏一样。
压缩后的蒸气再回到锅炉里,可以继续加热,用来发电或者供热,简直就像“再来一杯”的感觉。
这样一来,原本会被浪费掉的能量,竟然被我们巧妙地利用起来了。
这就像是“费尽心机”,而又“灵活应变”的智慧,真是高明之举。
这技术的妙处,不仅在于能量的再利用,更在于它对环境的友好。
大家都知道,传统的发电方式往往会产生大量的废气,环境污染得厉害。
可这机械蒸汽再压缩技术就像一个环保小卫士,它减少了温室气体的排放。
就像咱们平时吃的青菜,既健康又环保,谁不爱呢?用这种技术,咱们可以在发电的同时,给地球减轻负担,真是“一举两得”。
你是不是开始好奇了,这技术到底是怎么实现的呢?其实它的核心就在于热泵和压缩机。
热泵就像个万能的搬运工,把低温的热量转移到高温的地方,而压缩机则像个强壮的小伙子,把蒸气一压一缩,能量瞬间爆发。
就像你在游乐场玩过山车,刚开始缓缓上升,随后就是急速下坠,那种刺激感不要太爽!这个过程虽然有点复杂,但也不乏乐趣。
机械蒸汽再压缩技术并不是一帆风顺的,毕竟什么东西都有它的“短板”。
比如说,它需要一些专门的设备和材料,成本可能会稍微高一些。
但是,时间一久,这些投入就能通过节省的能量和降低的排放,慢慢“回本”。
就像投资股市,前期的浮亏只要坚持下去,后面就可能迎来收益。
说到这里,大家可能会想,这技术在哪里用得上呢?实际上,工业生产、供热系统、甚至一些大型的发电厂都有它的身影。
机械式蒸汽再压缩(MVR)蒸发器利用蒸发器中产生的二次蒸汽,经压缩机压缩,压力、温度升高,热焓增加,然后送到蒸发器的加热室当作加热蒸汽使用,使料液维持沸腾状态,而加热蒸汽本身则冷凝成水。
这样,原来要废弃的蒸汽就得到了充分的利用,回收了潜热,又提高了热效率,生蒸汽的经济性相当于多效蒸发的30效,减少了对外部加热及冷却资源的需求,降低能耗,减少污染。
蒸发一吨水的大约在50度电左右。
(可能很多海友们对这个数字持怀疑态度,其实我们这个50度电是不包括循环泵和真空泵的,因为不管一效还是多效都有循环泵和真空泵,所以我们就没有算进去)
适用范围:机械式蒸汽再压缩(MVR)蒸发器,适用于牛奶、葡萄糖、淀粉、味精、木糖、制药、化工、生物工程、环保工程、废液回收、造纸、制盐等行业进行低温浓缩。
系统组成:由单效或双效蒸发器、分离器、压缩机、真空泵、循环泵、操作平台、电器仪表控制柜及阀门、管路等系统组成,结构非常简单。
主要特点:
01. MVR节能蒸发器技术是目前国际最为先进的蒸发器技术,仅需要极少量生蒸汽,极大地降低企业运行成本,减少环境污染。
02. 由于采用压缩机提供热源,和传统蒸发器相比,温差小得多,能够达到温和蒸发,极大地提高产品质量、降低结垢。
03.无需冷凝器,结构与流程非常简单,全自动操作,可连续运行,
安全可靠。
04.设备内配CIP清洗管路,可实现就地清洗,整套设备操作方便,无死角。
05. 该蒸发器是物料在低温、且不产生泡沫的状态下进行蒸发,料液均匀,不跑料,不易结焦。
M V R-机械式再压缩蒸发器知识汇总-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIANMVR——机械式蒸汽再压缩技术第一章 MVR概述MVR:(mechanical vapor recompression )的简称。
MVR是重新利用它自身产生的二次蒸汽的能量,从而减少对外界能源的需求的一项节能技术.1、原理利用高能效蒸汽压缩机压缩蒸发系统产生的二次蒸汽,提高二次蒸汽的焓,提高热焓的二次蒸汽进入蒸发系统作为热源循环使用,替代绝大部分生蒸汽,生蒸汽仅用于系统初启动用、补充热损失和补充进出料温差所需热焓,从而大幅度降低蒸发器的生蒸汽消耗,达到节能目的。
MVR的理论基础是波义耳定律推导而出,即PV/T = K,其含义是一定质量的气体的压强*体积/温度为常数,也就意味着当气体的体积减小,压强增大时,气体的温度也会随即升高;根据此原理,当稀薄的二次蒸汽在经体积压缩后其温度会随之升高,从而实现将低温、低压的蒸汽变成高温高压的蒸汽,进而可以作为热源再次加热需要被蒸发的原液,从而达到可以循环回收利用蒸汽的目的。
2、工艺流程图1 机械式蒸汽再压缩技术原理图 图2机械式蒸汽再压缩工艺流程图热损失物料浓缩液蒸汽电能原料压缩机二次蒸汽成品冷凝第二章压缩机详解一、压缩机用来压缩气体借以提高气体压力或输送气体的机械称为压缩机。
也有把压缩机称为“压气机”和“气泵”的。
提升的压力小于时,称为鼓风机。
提升压力小于时称为通风机。
1、压缩机分类按工作原理分类(1)容积式压缩机直接对一可变容积中的气体进行压缩,使该部分气体容积缩小、压力提高。
其特点是压缩机具有容积可周期变化的工作腔。
(2)动力式压缩机它首先使气体流动速度提高,即增加气体分子的动能;然后使气流速度有序降低,使动能转化为压力能,与此同时气体容积也相应减小。
其特点是压缩机具有驱使气体获得流动速度的叶轮。
动力式压缩机也称为速度式压缩机。
按排气压力分类按压缩级数分类按容积流量分类名称容积流量/(m3/min)微型压缩机<1小型压缩机1~10中型压缩机10~100大型压缩机≥100单级压缩机气体仅通过一次工作腔或叶轮压缩两级压缩机气体顺次通过两次工作腔或叶轮压缩多级压缩机气体顺次通过多次工作腔或叶轮压缩,相应通过几次便是几级压缩机活塞式转子式滑片式涡旋式单螺杆二、离心压缩机离心压缩机是产生压力的机械,是透平压缩机的一种。
给排水相关知识:机械蒸汽再压缩循环蒸发技术的基本原理所谓的机械蒸汽再压缩循环蒸发技术,是根据物理学的原理,等量的物质,从液态转变为气态的过程中,需要吸收定量的热能。
当物质再由气态转为液态时,会放出等量的热能。
根据这种原理,用这种蒸发器处理废水时,蒸发废水所需的热能,再蒸汽冷凝和冷凝水冷却时释放热能所提供。
在运作过程中,没有潜热的流失。
运作过程中所消耗的,仅是驱动蒸发器内废水、蒸汽、和冷凝水循环和流动的水泵、蒸汽泵和控制系统所消耗的电能。
为了抵抗废水对蒸发器的腐蚀,保证设备的使用寿命蒸发器的主体和内部的换热管,通常用高级钛合金制造。
其使用寿命30年或以上。
蒸发器单机废水处理量由27吨/天起至3800吨/天。
如果需要处理的废水量大于单机最大处理量,可以按装多台蒸发器处理。
蒸发器在用晶种法技术运行时,也称为卤水浓缩器(BrineConcentrator)。
机械式蒸汽再压缩技术一、技术名称:机械式蒸汽再压缩技术二、适用范围:生化和化工等行业料液和废水的浓缩三、与该节能技术相关生产环节的能耗现状:2009年,我国发酵行业总产量约1600万t ,汽耗约1.28亿t ,其中,浓缩工段能耗约占总能耗的40%,用于浓缩工艺的汽耗约5000万t ,折约500万tce ,通过采用机械式蒸汽再压缩技术,可有效降低吨产品汽耗,实现节能减排的目标。
四、技术内容:1.技术原理利用高能效蒸汽压缩机压缩蒸发系统产生的二次蒸汽,提高二次蒸汽的焓,提高热焓的二次蒸汽进入蒸发系统作为热源循环使用,替代绝大部分生蒸汽,生蒸汽仅用于补充热损失和补充进出料温差所需热焓,从而大幅度降低蒸发器的生蒸汽消耗,达到节能目的。
2.关键技术机械式蒸汽再压缩蒸发器的工艺和设备配套选型设计、系统的自控设计、压缩风机的设计等。
3.工艺流程原理和工艺流程分别见图1和图2所示。
图1 机械式蒸汽再压缩技术原理图 图2机械式蒸汽再压缩工艺流程图热损失 物料 浓缩液 蒸汽 电能 原料 压缩机 二次蒸汽 成品冷凝五、主要技术指标:以40t/h发酵液蒸发量机械再压缩式蒸发器为例,其主要技术指标如下:蒸发量:40t/h;耗汽量:1t/h;循环水量:45t/h;装机容量:900kW。
六、技术应用情况:目前,该技术已在部分化工厂及生化公司实施,节能效果显著,技术成熟可靠。
七、典型用户及投资效益:典型用户:XX生物化学股份有限公司下属32万t/a燃料乙醇有限公司、XX化工有限公司1)XX生物化学股份有限公司。
建设规模:年产32万吨燃料乙醇项目,新增蒸发浓缩系统为50t/h的机械再压缩式蒸发器。
主要技改内容:新增系统主要用来浓缩酒精塔釜水,主要设备包括压缩风机、加热器、分离器、配套循环泵和自控设备等。
节能技改投资额2000万元,建设期1年。
年节能1.4万tce,年节能经济效益1764万元,投资回收期1.14年。
2)XX化工有限公司。
MVR——机械式蒸汽再压缩技术第一章 MVR概述MVR:(mechanical vapor recompression )的简称。
MVR是重新利用它自身产生的二次蒸汽的能量,从而减少对外界能源的需求的一项节能技术.1、原理利用高能效蒸汽压缩机压缩蒸发系统产生的二次蒸汽,提高二次蒸汽的焓,提高热焓的二次蒸汽进入蒸发系统作为热源循环使用,替代绝大部分生蒸汽,生蒸汽仅用于系统初启动用、补充热损失和补充进出料温差所需热焓,从而大幅度降低蒸发器的生蒸汽消耗,达到节能目的。
MVR的理论基础是波义耳定律推导而出,即PV/T = K,其含义是一定质量的气体的压强*体积/温度为常数,也就意味着当气体的体积减小,压强增大时,气体的温度也会随即升高;根据此原理,当稀薄的二次蒸汽在经体积压缩后其温度会随之升高,从而实现将低温、低压的蒸汽变成高温高压的蒸汽,进而可以作为热源再次加热需要被蒸发的原液,从而达到可以循环回收利用蒸汽的目的。
2、工艺流程图1 机械式蒸汽再压缩技术原理图 图2机械式蒸汽再压缩工艺流程图浓缩液第二章压缩机详解一、压缩机用来压缩气体借以提高气体压力或输送气体的机械称为压缩机。
也有把压缩机称为“压气机”和“气泵”的。
提升的压力小于0.2MPa时,称为鼓风机。
提升压力小于0.02MPa时称为通风机。
1、压缩机分类1.1按工作原理分类(1)容积式压缩机直接对一可变容积中的气体进行压缩,使该部分气体容积缩小、压力提高。
其特点是压缩机具有容积可周期变化的工作腔。
(2)动力式压缩机它首先使气体流动速度提高,即增加气体分子的动能;然后使气流速度有序降低,使动能转化为压力能,与此同时气体容积也相应减小。
其特点是压缩机具有驱使气体获得流动速度的叶轮。
动力式压缩机也称为速度式压缩机。
1.2按排气压力分类1.3按压缩级数分类1.4按容积流量分类活塞式 转子式 滑片式涡旋式单螺杆二、离心压缩机离心压缩机是产生压力的机械,是透平压缩机的一种。
透平是英译音“TURBINE”,即旋转的叶轮。
离心压缩机:指气体在压缩机中的运动是沿垂直于压缩机轴的径向进行的。
所以也称径流压缩机。
2.1离心式压缩机工作原理具有叶片的工作轮在压缩机的轴上旋转,进入工作轮的气体被带着旋转,增加了动能(速度)和静压头(压力),然后出工作轮进入扩压器内,在扩压器内气体的速度转变为压力,进一步提高压力,经过压缩的气体再经弯道和回流器进入下一级叶轮进一步压缩至所需的压力。
气体在叶轮中提高压力的原因有两个:一是气体在叶轮叶片作用下,跟着叶轮做高速的旋转,而气体由于受旋转所产生的离心力的作用使气体的压力升高;二是叶轮是从里到外逐渐扩大的,气体在叶轮里扩压流动,使气体通过叶轮后压力提高。
2.2离心式压缩机分类几种特殊的压缩机(1)按轴的型式分:单轴多级式,一根轴上串联几个叶轮;双轴四级式,四个叶轮分别悬臂地装在两个小齿轮的两端,旋转靠电机通过大齿轮驱动小齿轮。
(2)按气缸的型式分:水平剖分式和垂直剖分式。
(3)按级间冷却形式分类:级外冷却,每段压缩后气体输出机外进入冷却器;机内冷却,冷却器和机壳铸为一体。
(4)按压缩介质分类:空气压缩机、氮气压缩机、氧气压缩机等。
2.3离心式压缩机的特点优点:(1)由于是连续旋转式机械,可以大大地提高进入其中的工质量,提高功率。
所以,离心式压缩机的第一个特点是:功率大。
(2)由于工质量可以提高,必然导致叶片转速的提高,所以第二个特点是高速性。
(3)无往复运动部件,动平衡特性好,振动小,基础要求简单;(4)易损部件少,故障少、工作可靠、寿命长;(5)机组单位功的重量、体积及安装面积小;(6)机组的运行自动化程度高,调节范围广,且可连续无级调节;(7)在多级压缩机中容易实现一机多种蒸发温度;(8)润滑油与介质基本上不接触,从而提高了冷凝器及蒸发器的传热性能;(9)对大型压缩机,可由蒸气动力机或燃气动力机直接带动,能源使用经济合理;缺点:(1)单机容量不能太小,否则会使气流流道太窄,影响流动效率;(2)因依靠速度能转化成压力能,速度又受到材料强度等因素的限制,故压缩机每级的压力比不大,在压力比较高时,需采用多级压缩;(3)特别情况下,机器会发生喘振而不能正常工作;2.4离心机压缩机的工作原理分析2.4.1常用名词解释:(1)级:每一级叶轮和与之相应配合的固定元件(如扩压器等)构成一个基本的单元,叫一个级。
(2)段:以中间冷却器隔开级的单元,叫段。
这样以冷却器的多少可以将压缩机分成很多段。
一段可以包括很多级。
也可仅有一个级。
(3)标态:0℃,1标准大气压。
(4)进气状态:一般指进口处气体当时的温度、压力。
(5)重量流量:一秒时间内流过气体的重量。
(6)容积流量:一秒时间内流过气体的体积。
(7)表压(G):以当地大气为基准所计量的压强。
(8)绝压(A):以完全真空为基准所计量的压强。
(9)真空度:与当地大气负差值。
(10)压比:出口压力与进口压力的比值。
(11)比容:单位质量的物质所占有的容积,符号V表示,数值为密度的倒数。
2.4.2离心式压缩机性能参数:离心压缩机的主要性能参数是流量、排气压力、有效功率、效率、轴功率、转速、压缩比和温度。
(1)流量:单位时间内流经压缩机流道任一截面的气体量,通常以体积流量和质量流量两种方法来表示。
体积流量——是指单位时间内流经压缩机流道任一截面的气体体积,其单位为m³/s。
因气体的体积随温度和压力的变化而变化,当流量以体积流量表示时,须注明温度和压力。
质量流量——是指单位时间内流经压缩机流道任一截面的气体质量,其单位为kg/s。
(2)排气压力:即指压缩机出口压力。
(3)有效功率:有效功率是指在气体的压缩过程中,叶轮对气体所作的功,绝大部分转变为气体的能量,另有一部分能量损失,该损失基本上包括流动损失、轮阻损失和漏气损失三部分,我们将被压缩气体的能量与叶轮对气体所作功的比值称为有效功率。
(4)轴功率:离心式压缩机的转子在为气体升压提供有用功率,以及在气体升压过程中产生的流动损失功率、轮阻损失功率和漏气损失功率外,其本身也产生机械损失,即轴承的摩擦损失,这部分功率消耗约占总功率的2%~3%。
如果有齿轮传动,则传动功率消耗同样存在,约占总功率的2%~3%。
以上六个方面的功率消耗,都是在转子对气体作功的过程中产生的,它们的总和即为离心式压缩机的轴功率。
轴功率是选择驱动机功率的依据(5)效率:效率主要用来说明传递给气体的机械能的利用程度。
由于气体的压缩有等温压缩、绝热压缩和多变压缩等三种过程,所以,压缩机的效率也有等温效率、绝热效率和多变效率之分。
A、等温效率是指气体在压缩过程中,等温压缩功和叶轮对气体所作功的比值。
B、绝热效率是指气体在压缩过程中,绝热压缩功和叶轮对气体所作功的比值。
C、多变效率是指气体在压缩过程中,多变压缩功和叶轮对气体所作功的比值。
(6)转速:转速是指压缩机转子旋转的速度。
其单位是r/min。
(7)压缩比:出口压力与进口压力的比值。
(8)温度:一般用t℃表示,工程上也用绝对温度TK来表示,两者换算关系为TK=t+273。
2.4.3压缩机“级”中的气体流动:叶轮被驱动机拖动而旋转,气体进入叶轮后,对气体作功。
那么气体既随叶轮转动,又在叶轮槽中流动。
反映出气体的压力升高、温度升高,比容降低。
叶轮转动的速度即气体的圆周速度,在不同的半径上有不同的数值,叶轮出口处的圆周速度最大。
气体在叶轮槽道内相对叶轮的流动速度为相对速度。
因叶片槽道截面积从进口到出口逐渐增大,因此相对速度逐渐减少。
气体的实际速度是圆周速度与相对速度的合成,又称之为绝对速度。
级是压缩机作功的最基本的单元,在级中叶片带动气体转动,把功传递给介质,使介质获得动能。
通过由隔板构成的扩压流道和扩压槽,介质的一部分动能转化为压力势能,并被导入下一级继续压缩。
中间级有叶轮、隔板、级间密封等,末级是由叶轮、隔板和蜗壳组成。
“级”内气体流动的能量损失分析:(1)、能的定义度量物质运动的一种物质量,一般解释为物质作功的能力。
能的基本类型有势能、动能、热能、电能、磁能、光能、化学能、原子能等。
一种能可以转化为另一种能。
能的单位和功的单位相同。
能也叫能量。
(2)、级内气体流动的能量损失分析压缩机组实际运行中,通过叶轮向气体传递能量,即叶轮通过叶片对气体作功消耗的功和功率外,还存在着叶轮的轮盘、轮盖的外侧面及轮缘与周围气体的摩擦产生的轮阻损失,还存在着工作轮出口气体通过轮盖气封漏回到工作轮进口低压低压端的漏气损失。
都要消耗功。
这些损失在级内都是不可避免的,只有在设计中精心选择参数,再制造中按要求加工,在操作中精心操作使其尽量达到设计工况,来减少这些损失。
另外,还存在流动损失以及动能损失以及在级内在非工况时产生冲击损失。
冲击损失增大将引起压缩机效率很快降低。
还有高压轴端,如果密封不好,向外界漏气,引起压出的有用流量减少。
故此,我们有必要研究这些损失的原因,以便在设计、安装、操作中尽量减少损失,维持压缩机在高效率区域运行,节省能耗。
①. 流动损失:定义:就是气流在叶轮内和级的固定元件中流动时的能量损失。
产生的原因:主要由于气体有粘性,在流动中引起摩擦损失,这些损失又变成热量使气体温度升高,在流动中产生旋涡,加剧摩擦损耗和流动能量损失,因旋涡的产生就要消耗能量;在工作轮中还有轴向涡流等第二次流动产生,引起流量损失。
在叶轮出口由于出口叶片厚度影响产生尾迹损失。
弯道和回流器的摩擦阻力和局部阻力损失等。
②. 冲击损失:定义:是一种在非设计工况下产生的流动损失。
产生原因:叶轮进口叶片安装角β1A(实际)一般是按照设计气流的进口角β1(设计)来决定的。
一般是β1=β1A,此时进气为无冲击进气。
但是当工况发生偏离设计工况时,气流进口角β1大于或小于β1A将发生气流冲击叶片的现象。
习惯把叶轮进口叶片安装角β1A(实际)与设计气流的进口角β1(设计)之差叫做冲击角,简称冲角。
用i表示。
β1A<β1 , i<0,叫负冲角。
β1A>β1 , i>0,叫正冲角。
在正负冲角的情况下,都将出现气流与叶片表面的脱离,形成旋涡区,使能量损失。
冲击损失的增加与流量偏离设计流量的绝对值的平方成正比。
③. 轮阻损失叶轮的不工作面与机壳之间的空间,是充满气体的,叶轮旋转时,由于气体有粘性,也会产生摩擦损失。
又由于旋转的叶轮产生离心力,靠轮的一边气体向上流,靠壳的一边气体向下流,形成涡流,引起损失。
④. 漏气损失:漏气损失包括内漏和外漏。
内漏气是指泄露的气体又漏回到压缩气体中。
包括两种情况:一种是从 叶轮出口的气体从叶轮与机壳的空间漏回到进口。
另一种是单轴的离心压缩机,由于轴与机壳之间也有间隙,气体从高压的一边经过间隙流入低压一边。
外漏是指压缩气体通过轴与机壳密封处间隙或机体的间隙直接漏到大气中。