自动控制原理课件:第二章 控制系统动态性能分析
- 格式:pdf
- 大小:664.32 KB
- 文档页数:121
自动控制原理实验二系统的动态性能与稳态研究系统的动态性能与稳态是自动控制原理中的重要概念,对于系统的分析和设计具有重要意义。
本实验将通过实际的控制系统,研究动态性能与稳态的相关特性。
实验目的:1.理解系统的动态性能和稳态的概念。
2.通过实验研究不同参数对系统动态性能和稳态的影响。
3.掌握如何调节参数以改善系统的动态性能和稳态。
实验器材:1.控制系统实验装置。
2.控制器。
3.传感器。
4.计算机及相关软件。
实验步骤:1.将控制系统实验装置连接好,包括传感器和执行器。
2.设置基本的控制系统参数,如比例增益、积分时间和微分时间。
3.对系统进行稳态分析,记录输出信号的稳定值。
4.通过改变控制器的参数,观察系统的动态响应特性。
例如,改变比例增益,观察系统的超调量和调节时间的变化。
5.改变积分时间和微分时间,观察系统的超调量和调节时间的变化。
6.对不同参数组合进行实验,总结参数与系统性能之间的关系。
实验结果:通过实验可以得到一些重要的结论:1.比例增益的增大可以减小超调量,但同时也可能引起系统的震荡。
2.积分时间的增大可以减小偏差,但也可能导致系统的不稳定。
3.微分时间的增大可以提高系统的稳定性,但也可能引起系统的震荡。
实验结论:本实验通过实际的控制系统,研究了动态性能和稳态的相关特性。
通过改变控制器的参数,可以调节系统的动态性能和稳态。
在实际应用中,需要根据具体的控制要求,选择合适的参数组合,以达到系统的稳定性和性能要求。
实验结果对于掌握自动控制原理中的动态性能和稳态概念,以及参数调节方法具有重要意义。
自动控制原理_卢京潮_二阶系统的时间响应及动态性能3.3 二阶系统的时间响应及动态性能3.3.1 二阶系统传递函数标准形式及分类常见二阶系统结构图如图3-,所示其中,为环节参数。
系统闭环传递函数为 KT K ,s, ()2Ts,s,K1化成标准形式2,n (首1型) (3-5) ,(s),22s,2,,s,,nn1,(s), (尾1型) (3-6) 22Ts,2T,s,111T1K1式中,,,。
,,,,,,Tn2KTTTK11、分别称为系统的阻尼比和无阻尼自然频率,是二阶系统重要的特征参数。
二阶系统的首,,n1标准型传递函数常用于时域分析中,频域分析时则常用尾1标准型。
二阶系统闭环特征方程为22 D(s),s,2,,s,,,0nn其特征特征根为2,,,,,,,,,1 nn1,2若系统阻尼比取值范围不同,则特征根形式不同,响应特性也不同,由此可将二阶系统分类,见,表3-3。
表3-3 二阶系统(按阻尼比)分类表 ,分类特征根特征根分布模态,t1e ,,12,,,,,,,,,1 nn 1,2,t2e过阻尼,,tn ,,1e,,,, 1,2n,,tnte临界阻尼,,t,2n,,esin1,t0,,,1 n2,,,,,,j,1,, nn1,2t,,,2necos1,,,t欠阻尼 n57,sint ,,0n ,,,j, 1,2ncos,tn零阻尼数学上,线性微分方程的解由特解和齐次微分方程的通解组成。
通解由微分方程的特征根决定,,t,t,tn12代表自由响应运动。
如果微分方程的特征根是,,且无重根,则把函数,,eee,,,?,?,12n称为该微分方程所描述运动的模态,也叫振型。
,t2,t,如果特征根中有多重根,则模态是具有,形式的函数。
tete,?(,,j,)t(,,j,)t如果特征根中有共轭复根,则其共轭复模态与可写成实函数模态ee,,,,j,,t,t与。
esin,tecos,t每一种模态可以看成是线性系统自由响应最基本的运动形态,线性系统自由响应则是其相应模态的线性组合。
7-6 离散系统的动态性能分析线性定常离散系统的动态性能分析方法:时域法 ,根轨迹法, 频域法本节主要内容(1)在时域中求取离散系统的时间响应,指出采样器和保持器对系统动态性能的影响。
(2)在z平面上离散系统闭环极点与其动态性能之间的关系。
(3)离散系统的根轨迹分析(讲义没有,增加的)一.离散系统的时间响应及性能指标● 分析系统动态性能时,通常假定外作用输入为单位阶跃函数)(1t 。
● 如果可以求出离散系统的闭环脉冲传递函数由)(/)()(z R z C z =φ, 输入为单位阶跃函数)1/()(-=z z z R ,则系统输出的z 变换函数)(1)(z z z z C φ-= ● 通过z 反变换,可以求出输出信号的脉冲序列)(*t c。
● )(*t c 代表线性定常离散系统在单位阶跃输入作用下的响应过程。
● 离散系统时域指标的定义与连续系统相同。
● 根据单位阶跃响应)(*t c 可以方便地分析离散系统的动态性能。
例7-28 设有零阶保持器的离散系统如图7-41所示,其中)(1)(t t r =,s T 1=,1=K 。
试分析该系统的动态性能。
(注Word 与PPT 中编号不同) 解 先求开环脉冲传递函数)(z G 。
因为)1()1(1)(2s e s s s G --+= 对上式z 变换,可得 ])1(1[)1()(21+-=-s s Z z Z G查z 变换表,求出 )368.0)(1(264.0368.0)(--+=z z z Z G 再求闭环脉冲传递函数632.0264.0368.0)(1)()(2+-+=+=z z z z G z G z φ 单位阶跃输入时:321632.0632.121264.0368.0)()()(----+-+==zz z z z R z z C φ 展开得:+++++++++=---------887654321868.0868.0802.0895.0147.14.14.1368.0)(z z z z zz z z z z C 由上式求得系统在单位阶跃作用下的输出序列)(nT c 为:单位阶跃响应曲线:根据,...)2,1,0)((=n nT c 数值,绘图所示。