非均相物系的分离
- 格式:ppt
- 大小:3.23 MB
- 文档页数:104
其他非均相物系分离方法非均相物系分离方法是物理化学中常用的分离技术,用于分离混合物中的各个组分。
除了常见的沉淀、过滤、蒸馏等方法外,还有许多其他非均相物系分离方法,本文将重点介绍一些常见的非均相物系分离方法。
1. 吸附分离法吸附分离法是利用吸附剂对混合物中的某些组分具有选择性吸附的特性进行分离的方法。
常见的吸附剂有活性炭、硅胶、膨润土等。
该方法适用于分离液体和气体中的溶质,通过控制吸附剂的选择和条件,可以实现不同组分的分离。
2. 萃取分离法萃取分离法是利用溶液中各组分在两种互不溶解的溶剂中的溶解度差异进行分离的方法。
通常,一种溶剂被称为萃取剂,用于选择性地溶解混合物中的某个组分。
常见的萃取剂有乙酸乙酯、苯、四氯化碳等。
萃取分离法广泛应用于有机合成、环境监测等领域。
3. 离心分离法离心分离法是利用离心力将混合物中的不同组分分离的方法。
由于不同组分的密度、尺寸等特性不同,它们在离心力的作用下会产生不同的沉降速度,从而实现分离。
离心分离法广泛应用于生物化学、生命科学等领域,可以分离细胞、细胞器、蛋白质等。
4. 气相色谱(GC)气相色谱是一种基于物质在固定相与流动相间分配平衡的方法,通过分离和定量混合物中的不同组分。
在气相色谱中,混合物中的组分首先通过装有吸附剂的柱子,然后通过加热柱子使组分逐个挥发,最后被流动相带出,通过检测器进行检测和定量。
气相色谱广泛应用于分析化学、环境检测、食品安全等领域。
5. 气液色谱(GLC)气液色谱是利用不同组分在液态固定相和气相间分配平衡的方法进行分离的。
在气液色谱中,混合物首先通过液态固定相,然后通过加热使其逐个挥发,最后被气相带出,通过检测器进行检测和定量。
气液色谱广泛应用于分析化学、食品安全、医药生物等领域。
6. 膜分离法膜分离法是利用特殊的分离膜对混合物中的组分进行分离的方法。
根据分离机理和应用需求的不同,膜分离可以分为微滤、超滤、纳滤、逆渗透等。
例如,超滤膜可以通过分子大小的差异来分离溶液中的大分子和小分子。
非均相物系的分离第一节概述非均相物系包括气固系统(空气中的尘埃)、液固系统(液体中的固体颗粒)、气液系统(气体中的液滴)、液液系统(乳浊液中的微滴)等。
其中尘埃、固体颗粒、气泡和微滴等统称为分散物质(或称分散相),而非均相物系中的气体、液体称为分散介质(或称连续相)。
非均相物系分离的依据是连续相与分散相具有不同的物理性质(两相的密度不同),故可用机械方法将两相分离。
利用两相密度差进行分离时,必须使分散相与连续相间产生相对运动,故分离非均相物系的单元操作遵循流体流动的基本规律。
非均相物系的分离主要用于:1 回收有用物质;2 净化分散介质;3 除去废液、废气中的有害物质,满足环境保护的要求。
第二节重力沉降一、沉降速度在重力场中,借连续相与分散相的密度差异使两相分离的过程,称为重力沉降。
1、球形颗粒的自由沉降若固体颗粒在沉降过程中,不因流体中其它颗粒的存在而受到干扰的沉降过程,称为自由沉降。
表面光滑的球形颗粒在静止流体中沉降时,由于颗粒的密度ρs大于流体的密度ρ,所以颗粒受重力作用向下沉降,即与颗粒与流体产生相对运动。
在沉降中,颗粒所受到的作用力有重力、浮力和阻力。
开始时,颗粒为加速运动,随着颗粒沉降速度的增大,阻力亦增大,当颗粒受力达平衡时,颗粒即开始作匀速沉降,对应的沉降速度为一定值,称该速度为沉降速度或终端速度,以u t表示,其计算式为ξρρρ34)(dg u s t -=2、阻力系数ζ阻力系数ζ是流体与颗粒相对运动时的雷诺数准Re t 的函数,即ζ=f(Re t )μρi t du Re =阻力系数ζ与Re t 的关系由实验测定,结果如图3-2所示。
图中曲线按Re t 值可分成四个区,即(1) 层流区,Re t ≤2(又称斯托克斯区) tRe 24=ξ (2) 过渡区,2< Re t <1036.0Re 5.18t =ξ(3) 湍流区,103< Re t <2×105 ζ=0.44 对应各区沉降速度u i 的计算公式如下: (1) 层流区μρρ18)(2g d u s i -=(2) 过渡区6.0)(27.0ts i Re gd u ρρρ-=(3) 湍流区ρρρgd u s i )(74.1-=3、沉降速度的计算计算沉降速度u i 时,为选用计算公式,应先判断流动类型,即先算出Re t 值,计算Re t 时需已知u i ,而u i 是待求量,故需用试差法求解。
常见非均相物系的分离非均相物系是指由两种或两种以上物质组成的混合物,不同物质之间具有明显的物理和/或化学性质差异。
在很多情况下,需要将非均相物系进行分离,以便单独利用或处理每种物质。
下面是常见的非均相物系分离方法。
1. 溶液蒸馏法溶液蒸馏法是将一个液体从另一个液体中分离出来的一种方法。
它利用了两种液体在不同温度下的沸点差异。
将混合液体加热到其中一种液体的沸点,这种液体汽化,经过冷凝后分离出来。
例如,水和酒精的混合物可以用溶液蒸馏法分离成单独的水和酒精。
2. 磁性分离法磁性分离法是一种利用物质磁性差异进行分离的方法。
这种方法通常适用于含有磁性物质和非磁性物质的混合物。
通过加磁场,磁性物质会被吸附到磁性物质收集器中,而非磁性物质则会保留在原始混合物中。
例如,铁粉可以用磁性分离法从混合物中分离出来。
3. 过滤法过滤法是将一个物质从另一个物质中分离出来的一种方法,适用于固体和液体的混合物。
该方法利用了物质间的粒度差异。
将混合物过滤,固体颗粒被滤出,而液体则通过筛网留在容器中。
例如,沉积在水中的泥土、砂和碎石可以通过过滤法分离。
4. 蒸发结晶法蒸发结晶法是将溶解在溶液中的固体物质分离出来的一种方法。
通过控制温度和压力来使溶液蒸发并结晶,溶解物会被分离出来。
例如,从海水中提取盐分就是利用蒸发结晶法实现的。
5. 萃取法萃取法是一种利用溶剂对混合物进行分离的方法。
尽管在分离混合物时溶剂的选择很重要,但萃取法的基本步骤是将萃取剂与混合物混合,使其中一种物质溶解在萃取剂中,另一种物质留在原混合物中。
例如,从生物体中提取化合物通常需要利用萃取法。
6. 离心法离心法是一种利用离心机对液体混合物进行分离的方法。
该方法依靠液体中不同物质之间的密度差异。
将混合物放入离心机中,并在高速旋转下,物质会向不同方向移动。
例如,从牛奶中分离脂肪可以使用离心法。
7. 气体吸附法气体吸附法是一种将气态物质从混合物中分离出来的方法。
这种方法利用了不同气体之间的吸附性差异。
常见非均相物系的分离
由于非均相物系中分散相和连续相具备不同的物理性质,故工业生产中多采用机械方法对两相进行分离。
其方法是设法造成分散相和连续相之间的相对运动其分离规律遵循流体力学基本规律。
常见有如下几种。
(1)沉降分离沉降分离是利用连续相与分散相的密度差异,借助某机械力
的作用,使颗粒和流体发生相对运动而得以分离。
根据机械力的不同,可分为重力沉降、离心沉降和惯性沉降。
(2)过滤分离过滤分离是利用两相对多孔介质穿透性的差异,在某种推进力的作用下,使非均相物系得以分离。
根据推进力的不同,可分为重力过滤、加压(或真空)过滤和离心过滤。
(3)静电分离静电分离是利用两相带电性的差异,借助于电场的作用,使两相得以分离。
属于此类的操作有电除尘、电除雾等。
(4)湿洗分离湿洗分离是使气固混合物穿过液体、固体颗粒粘附于液体而被分离出来。
工业上常用的此类分离设备有泡沫除尘器、湍球塔、文氏管洗涤器等。
此外,还有音波除尘和热除尘等方法。
音波除尘法是利用音波使含尘气流产生振动,细小的颗粒相互碰撞而团聚变大,再由离心分离等方法加以分离。
热除尘是使含尘气体处于一个温度场(其中存在温度差)中,颗粒在热致迁移力的作用下从高温处迁移至低温处而被分离。
在实验室内,应用此原理已制成热沉降器来采样分析,但尚未运用到工业生产中。
其他非均相物系分离方法非均相物系分离方法是指一种将混合物中的组分分离开来的方法,其中混合物的组分一般无法通过物理或化学性质的差异来实现分离。
以下是一些常见的非均相物系分离方法:1. 沉淀法沉淀法是通过添加一种特定的药剂,使混合物中的某些组分产生沉淀,从而实现分离。
常见的沉淀法包括乙酸纤维素沉淀法、硫酸亚铁沉淀法等。
2. 萃取法萃取法是利用溶液中不同溶剂的亲和度差异,将混合物中的组分分离出来。
常见的萃取法有液-液萃取法、固-液萃取法等。
3. 蒸馏法蒸馏法是通过控制混合物中各组分的沸点差异,将其分离出来。
常见的蒸馏法有常压蒸馏法、减压蒸馏法等。
4. 结晶法结晶法是通过控制混合物中不同组分的溶解度,使一部分组分结晶出来,从而实现分离。
常见的结晶法有溶剂结晶法、冷却结晶法等。
5. 绝热升华法绝热升华法是利用混合物中某些组分的升华性质,通过加热使其升华出来,从而实现分离。
常见的绝热升华法有淋滤干燥法、干燥剂吸附法等。
6. 离心法离心法是利用混合物中各组分的密度差异,通过离心操作使其分离出来。
常见的离心法有常规离心法、密度梯度离心法等。
7. 色谱法色谱法是利用混合物中各组分在固定相和流动相之间的分配系数差异,通过在固定相上移动的速度差异来实现分离。
常见的色谱法有气相色谱法、液相色谱法等。
8. 电泳法电泳法是利用混合物中各组分在电场下的迁移速度差异,通过在带电介质中的迁移来实现分离。
常见的电泳法有毛细管电泳法、凝胶电泳法等。
总结起来,非均相物系分离方法包括沉淀法、萃取法、蒸馏法、结晶法、绝热升华法、离心法、色谱法和电泳法等。
每种方法在不同的实际应用场景中都有其独特的优势和适用性,通过合理选择和组合这些方法,可以实现对混合物中组分的有效分离和提纯。