Agilent 网络分析仪基本原理
- 格式:pdf
- 大小:693.65 KB
- 文档页数:24
网络分析仪原理图
网络分析仪原理图如下:
[插入网络分析仪原理图]
网络分析仪是一种用于测试和分析电路中频率响应的仪器。
它通常用于测量电路的传输特性、校准设备和分析电路中的故障。
网络分析仪基本上由两部分组成:生成器和接收器。
生成器是网络分析仪中的一个重要组成部分,它产生被测电路所需要的激励信号。
这个激励信号可以是单一频率的正弦波,也可以是多频率的信号。
生成器的输出信号送入被测电路,并通过接收器进行测量。
接收器是网络分析仪中的另一个重要组成部分,它用于测量被测电路中的响应信号。
接收器可以测量电路中的电压、电流或功率等参数,以获取被测电路的频率响应。
通过对激励信号和响应信号进行测量和分析,网络分析仪可以确定电路的传输特性,例如增益、相位和频率响应等。
网络分析仪原理图中的其他部分包括:输入接口、输出接口、显示屏和控制模块等。
输入接口用于将被测电路连接到网络分析仪,输出接口用于将测试结果输出到其他设备。
显示屏用于显示测试结果和参数,以便用户进行分析和判断。
控制模块用于设置和调整网络分析仪的工作模式、参数和功能。
总之,网络分析仪通过生成激励信号,测量响应信号,并进行
分析和判断,能够准确评估电路的频率响应和特性,为电路的测试和故障分析提供了重要的工具。
安捷伦的的网络分析仪安捷伦(Agilent)是一家知名的电子测试与测量仪器制造商,旗下的网络分析仪(Network Analyzer)是其产品线中的重要组成部分。
网络分析仪是一种可以用来测试和分析各种电子设备和电路的仪器,包括高速数字电路、射频和微波电路等。
安捷伦的网络分析仪以其高性能、稳定性和可靠性而受到业界的广泛认可和好评。
它主要用于测量和分析滤波器、放大器、天线、传输线、无线通信设备和通信系统等各种电子设备和电路的性能参数。
网络分析仪可以对电路中的功率、幅度、相位、传输特性、频率响应等进行测量和分析,帮助工程师们更好地了解电路的工作状态,对其进行优化和调整,提高产品的性能和可靠性。
安捷伦的网络分析仪具有多种功能和特点,如高精度、宽带、高速度、低噪声等。
它能够覆盖从直流到高频率范围内的信号测量和分析,支持多种不同的测试模式和测量参数。
同时,安捷伦的网络分析仪还具备友好的用户界面和易于操作的功能,使得工程师们可以方便地进行各种测试和分析,提高工作效率和测试准确性。
安捷伦的网络分析仪还具有强大的数据处理和分析能力。
它提供了多种数据显示和分析工具,包括频谱显示、时间域显示、功率谱显示、相位谱显示等,帮助用户更直观地了解电路的性能特性。
此外,它还支持数据的存储和导出,可以将测试数据保存为文件,方便用户进行后续的数据处理和分析。
此外,安捷伦的网络分析仪还具备良好的扩展性和兼容性。
它可以通过各种接口和插件来扩展其功能和应用范围,如信号发生器、频率计、电源等。
同时,它还支持多种通信接口和协议,如GPIB、LAN、USB等,可以与其他设备和系统进行互联互通,方便用户进行综合性能测试和系统集成。
在实际应用中,安捷伦的网络分析仪已广泛应用于各个领域,如电子制造、通信、无线电、航空航天等。
它可以用于产品研发、生产测试、维修和故障排除等各个环节,为工程师们提供了一个强大而可靠的工具,帮助他们更好地完成工作任务。
总之,安捷伦的网络分析仪作为一种高性能的测试与测量仪器,具有多种功能和特点,广泛应用于各个领域。
网络分析仪原理
网络分析仪主要通过发送探测信号并测量信号的特征来分析和评估网络的性能和状态。
其原理可以分为以下几个方面:
1. 频谱分析原理:网络分析仪能分析信号在频域上的特性,通过将信号转换成频谱图并对其进行解读。
频谱图展示了信号中不同频率成分的能量分布情况,可以帮助判断信号存在的频率偏移、干扰等问题。
2. 时域分析原理:网络分析仪能分析信号在时间域上的特性,通过观察信号的波形和脉冲响应来判断信号的传输质量和故障情况。
时域分析可以检测信号的时延、失真、抖动等问题,有助于确定网络中的传输问题。
3. 调制解调原理:网络分析仪可以对不同的调制方式进行解调和分析。
通过解调信号,可以还原出原始信号并进行分析,帮助判断调制方式选择是否正确和信号传输是否完整。
4. 数据采样原理:网络分析仪通过对信号进行快速高精度的数据采样,获取信号的采样值,并将采样数据传输给计算机进行分析和显示。
数据采样精度和速度对准确定位和分析信号的特征至关重要。
5. 数据处理原理:网络分析仪对采样数据进行处理和分析,可以计算出一系列指标和参数,如频谱功率、频谱带宽、时延、串扰等,用于评估网络的性能和问题。
6. 数据显示原理:网络分析仪将分析处理后的数据通过显示器进行展示,以图形、数字等形式呈现给用户。
用户可以直观地观察数据并进行判断和分析,从而对网络进行优化和故障排除。
通过以上原理,网络分析仪可以帮助用户对网络的性能进行全面评估和分析,提供有力的技术支持和帮助。
8712ET简介8712E是Agilent公司生产的系列经济型射频网络分析仪,其中ET型是传输/反射分析仪。
1.18712ET基本原理8712ET是在一台射频网络分析仪的基础上增加了若干硬件、软件构成。
图1是射频网络分析仪的原理方框图,它由扫频信号发生器(通常内置)、用于分离前向和后向测试信号的测试部分、一个多波段相位相干高灵敏度的接收器、信号处理和显示等部分组成。
图1原理方框图在进行测量时,仪器发出扫频信号,信号通过输出口送到待测设备,信号通过设备后送回网络分析仪。
由于待测设备接口的输入阻抗与网络分析仪输出阻抗不可能理想匹配,必然会反射一部分信号。
网络分析仪对输出和输入信号进行比较可得出待测设备的传输指标,如增益、插入损失、分配损失等;对输出和反射信号进行比较可得出待测设备的反射指标,如反射损耗等。
1.28712ET主要参数和特点8712ET的频率范围是300kHz~1.3GHz,频率分辨率是1Hz,频率精度<5×10-6;不配置衰减器输出功率范围为0~+16dBm,配置衰减器后可达-60~+15dBm;系统阻抗有50Ω和75Ω两种,在CATV系统中使用阻抗为75Ω的;既可进行窄带检测,又可进行宽带检测,100dB的动态范围,扫描速度快(50ms完成一次扫描);具有各种接口,通过标准LAN(局域网)接口数据能直接通过网络共享,用PC应用软件分析、处理或发送到联网打印机上。
1.38712ET仪器面板8712ET的面板左边是显示屏,其用于显示测量图形和数值。
屏幕右边有8个软键,分别对应屏幕右边排列的菜单。
右上是软盘驱动器,它下面左下框的数字键、旋钮、上下键等用于数字输入和修改。
软盘驱动器右下框的4个按键是系统键,用于存储、调用系统配置或测量数据等操作。
再下面的3个框分别是测量曲线选择部分(对曲线1和2进行选择)、信号源设置部分(包括频率特性、扫频特性、输出功率和菜单,用于对选择信号源各种参数进行设置)、配置部分(包括刻度键、显示键、校正键、光标键、格式键和平均键,用于选择各种配置进行设置)。
用过网络分析仪吗,图解一下它的原理!网络分析仪组成框图图1所示为网络分析仪内部组成框图。
为完成被测件传输/反射特性测试,网络分析仪包含:1.激励信号源;提供被测件激励输入信号2.信号分离装置,含功分器和定向耦合器件,分别提取被测试件输入和反射信号3.接收机;对被测件的反射,传输,输入信号进行测试。
4.处理显示单元;对测试结果进行处理和显示。
图1 网络分析仪组成框图传输特性是被测件输出与输入激励的相对比值,网络分析仪要完成该项测试,需分别得到被测件输入激励信号和输出信号信息。
网络分析仪内部信号源负责产生满足测试频率和功率要求的激励信号,信号源输出通过功分器均分为两路信号,一路直接进入R接收机,另一路通过开关输入到被测件相应测试口,所以,R 接收机测试得到被测输入信号信息。
被测件输出信号进入网络分析仪B接收机,所以,B接收机测试得到被测件输出信号信息。
B/R为被测试件正向传输特性。
当完成反向测试测试时,需要网络分析仪内部开关控制信号流程。
图2 网络分析仪传输测试信号流程反射特性是被测件反射与输入激励的相对比值,网络分析仪要完成该项测试,需分别得到被测件输入激励信号和测试端口反射信号。
网络分析仪内部信号源负责产生满足测试频率和功率要求的激励信号,信号源输出通过功分器均分为两路信号,一路直接进入R接收机,另一路通过开关输入到被测件相应测试口,所以,R 接收机测试得到被测输入信号信息。
激励信号输入到被测件后会发射反射,被测件端口反射信号与输入激励信号在相同物理路径上传播,定向耦合器负责把同个物理路径上相反方向传播的信号进行分离,提取反射信号信息,进入A接收机。
A/R 为被测试件端口反射特性。
当需要测试另外端口反射特性时,需网络分析仪内部开关将激励信号转换到相应测试端口。
图3 网络分析仪反射测试信号流程1、信号源信号源提供被测件激励信号,由于网络分析仪要测试被测件传输/反射特性与工作频率和功率的关系。
所以,网络分析仪内信号源需具备频率扫描和功率扫描功能。
Agilent 5800 ICP-OES(电感耦合等离子体发射光谱仪)的原理是基于原子和离子在受到能量激发后,会从基态跃迁到激发态,然后在返回低能级时发射出特定波长的光。
这种能量的来源是在高温下(通常达到6000~8000K)工作的氩等离子体的热量。
不同元素的原子在激发或电离时,会发射出不同波长的特征光谱,因此可以根据这些特征光的波长进行元素的定性分析。
同时,元素的含量不同时,发射特征光的强弱也不同,据此可以实现元素的定量测定。
在ICP-OES中,样品首先被引入到等离子体焰炬中,然后被氩载气带入焰炬。
在这个过程中,样品中的组分被原子化、电离、激发,然后以光的形式发射出能量。
这些光通过分光系统被分辨成不同的波长,最终在光感检测器上获得信号。
这些信号被转化为数字数据,并进行处理和分析,从而得出样品中各种元素的含量。
需要注意的是,ICP-OES只能用于测定总元素含量,不能区分化合物。
此外,由于元素会有多条发射谱线,可能会与其他元素产生干扰或重叠,因此需要进行干扰校正以提高分析的准确性。
总的来说,Agilent 5800 ICP-OES通过利用氩气的等离子体激发元素并获得元素特征谱线,然后通过分光系统和检测器对这些特征谱线进行分辨和测量,从而实现样品中多种元素的定性和定量分析。
网络分析仪的原理介绍网络分析仪(Network Analyzer)是一种高性能、高精度的电子测试仪器,用于测量和分析电路的电参数和传输特性。
它可以测量电路的传输损耗、反射系数、输入输出阻抗以及频率响应等,是测试和分析电路特性的重要工具。
基本原理网络分析仪基于S参数测量原理进行工作。
S参数是指散射系数(Scattering Parameters),用于描述线性恒定、无耗电路的传输特性。
S参数有四个参数:S11、S12、S21、S22,它们分别表示反射系数、传输系数和互反射系数。
网络分析仪通过向待测电路输入信号并测量电路的反射和透射信号,计算出电路的S参数。
具体来说,网络分析仪工作时,首先会向被测电路的端口输入信号,然后独立地测量相应端口上的反射信号和透射信号,再根据测量结果计算出被测电路的S参数。
工作原理网络分析仪的工作过程可以分为两部分:向电路输入信号和测量电路响应。
其中,向电路输入信号可以使用多种方式实现,例如向设备输出微波信号或者利用负载电路激励器向管件输入信号。
电路响应的测量则可以通过如反射法、传输法等多种方法实现。
其中,反射法是一种较为常见的测量方法。
在反射法中,指向设备的微波信号被分为两部分,一部分沿着电路传输,一部分被反射回来。
通过测量这两部分信号的幅度和相位,就可以计算出反射系数,进而反向计算出电路的S参数。
传输法则是另一种常用的测量方法。
在传输法中,电路的输入和输出之间的信号被测量。
传输法测量电路的传输系数,它是指从输入到输出的信号传输比例和相位关系。
通过测量输入和输出信号的幅度和相位,就可以计算出电路的传输系数,进而反向计算出电路的S参数。
应用场景网络分析仪在电路分析中的应用非常广泛,常见的应用场景包括:1.传输参数测量:用于测量和确定电路的传输损耗、传输相位等传输参数,进而分析电路性能。
2.反射参数测量:用于测量和分析电路的反射损耗、反射系数等反射参数。
3.阻抗测量:用于测量电路的输入输出阻抗,进而评估电路性能和匹配性。
网络分析仪工作原理網絡分析儀工作原理矢量网络分析仪,它本身自带了一个信号发生器,可以对一个频段进行频率扫描. 如果是单端口测量的话,将激励信号加在端口上,通过测量反射回来信号的幅度和相位,就可以判断出阻抗或者反射情况。
而对于双端口测量,则还可以测量传输参数。
由于受分布参数等影响明显,所以网络分析仪使用之前必须进行校准。
校准是为了消除系统误差在双端口校准中总共12项误差常用OSLT或TRL校准方法網絡分析儀常見問題:网络分析仪在使用中遇到的几个问题:我刚接触网络分析仪,手上又没有什么资料,只能摸索着使用!在使用中遇到一些扰人的问题,总结如下:1。
网络分析仪的校准还是不清楚!校准中通常所说的是选定基准平面,比如我我从port口接一跟电缆线,用电缆线测试产品的性能,电缆线与产品接头的一段就是所谓的基准面!第一:比如我选择750mm与选择1000mm 的电缆线,对测试产品到底有没有影响,按照校准原则,只要校准平面我选贼与产品的接口处,前面的不管是什么,都能校准好的!问:电缆线的指标,VSWR与插损的大小对产品指标到底有没有影响!比如我的电缆线的VSWR是1。
2,但是我的产品的VSWR是1.15,这样的线对指标有没有影响?还有线的插损对指标有没影响!?第二:一般情况下我是用两端口的,在两端口的时候,校准直通时要用到机械校准件中的一个直通(因为我的电缆线都是SMA接头的),但是直通是有一定的插损的。
为了比较,我用电子校准校准件校准再测量产品,发现机械校准的直通确实对产品的插损有影响的!测试同一个产品,我用电子校准的测的比用机械的插损要大0.08—0,15个dB的!问:电子校准件与机械校准件是有区别的吗?我用安捷伦的电子校准件能否给安立的仪器校准呢?还有一个问题,我想用网分仪测试电缆线的好坏,想了几个办法如下,感觉都不是完美!1.电缆线一端接port口,一端接匹配负载(负载假设是新的,能做到完全匹配),然后用网分仪分析VSWR,这样的问题是网分仪port口我没校准,这样的结果能做为电缆线好坏的参考么`?2。