Genero BDL
- 格式:ppt
- 大小:3.04 MB
- 文档页数:254
GNOMAD 的使用方法GNOMAD 是一个流行的基因组学数据库,提供各种基因组学数据和分析工具。
本文将介绍如何使用 GNOMAD 来获取和分析基因组数据。
下面是本店铺为大家精心编写的4篇《GNOMAD 的使用方法》,供大家借鉴与参考,希望对大家有所帮助。
《GNOMAD 的使用方法》篇1GNOMAD 是一个基因组学数据库,提供各种基因组学数据和分析工具,包括基因组参考序列、基因注释、变异数据、基因表达数据等等。
以下是使用 GNOMAD 的一些基本步骤:1. 访问 GNOMAD 网站GNOMAD 的官方网站是 https:///。
可以从这里访问 GNOMAD 数据库,并使用各种工具和资源。
2. 登录 GNOMAD需要登录才能使用 GNOMAD 的许多功能。
可以使用 NCBI 的账号登录 GNOMAD,也可以使用 Google 账号登录。
3. 搜索基因组数据一旦登录,就可以开始搜索基因组数据。
GNOMAD 提供了多种搜索选项,可以根据基因组参考序列、基因注释、变异数据、基因表达数据等进行搜索。
例如,如果要搜索人类基因组参考序列,可以在搜索框中输入“human genome reference”并按下“Search”按钮。
这将返回与人类基因组参考序列相关的所有记录。
4. 下载基因组数据一旦找到了感兴趣的基因组数据,可以下载它们。
GNOMAD 提供了多种下载选项,可以选择适合的下载方式。
例如,可以选择只下载基因组参考序列,或者下载基因注释、变异数据和基因表达数据等。
5. 分析基因组数据GNOMAD 还提供了各种基因组数据分析工具。
例如,可以使用GNOMAD 的基因注释工具来查找基因的注释信息,使用 GNOMAD 的变异分析工具来分析基因组中的变异,使用 GNOMAD 的基因表达分析工具来分析基因的表达水平等等。
《GNOMAD 的使用方法》篇2GNOMAD(Genetic NOvelty Mining and Analyses of DNA)是一个用于挖掘和分析基因组新颖性的生物信息学工具。
Genero Studio讲解Genero Studio是一款专业的软件开发工具,旨在为开发人员提供最佳的创作环境和最佳的用户体验。
在本文中,我们将深入探讨Genero Studio的特点、优点和使用方法,以及我个人对这个主题的观点和理解。
1. Genero Studio的特点Genero Studio是一款功能齐全的集成开发环境(IDE),集成了许多先进的开发工具和功能,包括代码编辑器、调试器、编译器等。
它支持多种开发语言和框架,如Java、C++、Python等,使开发者能够在一个环境中完成对各种项目的开发和维护。
2. Genero Studio的优点Genero Studio具有许多优点,其中最显著的是其简洁易用的界面和丰富的功能。
它提供了丰富的代码补全和自动完成功能,帮助开发者快速编写出高质量的代码。
Genero Studio还提供了强大的调试和性能分析工具,帮助开发者轻松地发现和解决代码中的问题。
3. Genero Studio的使用方法使用Genero Studio非常简单,开发者只需按照正常的开发流程,打开Genero Studio并创建一个新项目或打开一个已有的项目,然后就可以开始编写、调试和部署代码了。
Genero Studio还提供了丰富的文档和教程,帮助开发者快速上手并熟练掌握工具的各种功能。
4. 个人观点和理解个人而言,我对Genero Studio有着积极的态度。
我认为它是一款非常实用和高效的开发工具,能够帮助开发者快速完成高质量的代码编写和调试工作。
它的丰富功能和简洁界面使得开发工作变得更加轻松和愉快。
我相信Genero Studio将会成为越来越多开发者的首选工具。
总结和回顾在本文中,我们对Genero Studio进行了全面的介绍和评估,并提出了自己的观点和理解。
Genero Studio作为一款功能强大的集成开发环境,为开发者提供了许多便利和帮助,能够大大提升开发效率和代码质量。
Generac Mobile Products LLC l 800-926-9768 l 920-361-4442 l MLT6SKDSENGINE SYSTEM• Kubota® D1005 • Diesel fueled • EPA Final Tier 4 • 3 cylinder• 1.0 L displacement • Liquid cooled•Power @ 1,800 rpm – HP (kW): • Prime: 11.7 (8.7) • Standby: 13.1 (9.8)Fuel System• Polyethylene tank – 39.9 gal (151.04 L) capacity • Run time – hr:• Lights only: 138* • 100% load: 59*• Fuel consumption – gal/hr (L/hr): • Lights only: 0.29 (1.10)* • 100% load: 0.68 (2.57)*• Exterior fill port diameter: 3.5 in (89 mm) Cooling System• Air filter: Dry type cartridge Lubrication System• Oil filter: Full flow, spin-on type • 750-hr service interval*Data based on engine manufacturer and field test data after 100-hr engine break-in period. Actual results may vary, according to factors such as age and maintenance of equipment, environmental conditions, and fuel density. For fuel and maintenance recommendations, see owner's manual.GENERATOR• 60 Hz engine/generator• Marathon Electric® brushless • Up to 6 kW output • 120/240 VAC, 20/30 A•± 6% capacitor voltage regulationCONTROLS• External, illuminated control panel with sealed switches • 4-position key activated switch (off, run, glow, start) • Digital hour meter• Automatic shutdown for low oil pressure and high coolant temperature •One switch controls all light fixturesSPECIFICATIONSFLOODLIGHTS•Four 296 W LED fixtures•Aluminum and polymer housing•Efficiency: 145 LPW•Lm/fixture: 43,050•Total lm: 172,200•Coverage: 19,526 ft2 (1,814 m2) @ 0.5 ft-c•IP68 LED modules; IP65 rated drivers•Fixture-mounted driversELECTRICAL SYSTEM•30 A start trip breaker (ensures no-load condition exists at start-up)•Floodlight circuits with sealed 10 A breakers•Convenience receptacles with individual breakers:•One 120 VAC, 20 A, GFCI, duplex outlet (NEMA 5-20R type)•One 240 VAC, 30 A, twistlock outlet (NEMA L6-30R type)•Wiring is sized and fused to required amperage draw•440 CCA wet cell batteryMAST•Vertical operation and storage•Maximum height: 23 ft (7 m)•Five sections with polymer guides•Ground-adjustable light fixtures•Winch: Dual handle, manual crank•Distinctive angled fixture mount for common light distribution•Rotation: 359° range of motion, adjustable from ground during full extension •Industrial black powder-coat finish•Self-retracting, coiled mast cordENCLOSURE•Hood:•Injection-molded with UV protected colorant•Flip-up design for ease of service•Sound rating: 63 dB(A) at 23 ft (7 m) @ prime power•Lifting point and fork pockets•Multi-lingual operating and safety decals•Illuminated license plate holder•Document holder with owner’s manual – includes AC and DC wiring diagrams TRAILER•Tubular steel frame• 2 in (50.8 mm) ball hitch•Three 1,200 lb (544 kg) tube-and-sleeve leveling jacks – lockable into stowed positions •7,800 lb (3,538 kg) safety chains with spring loaded safety hooks•DOT approved LED lights: Tail, side, brake, and directionals•2,200 lb (998 kg) leaf spring axle•Molded polyethylene fenders•Tires: ST175/80D13, 6 ply•Track width: 47 in (119.4 cm)OPTIONS• Electric winch • Winch cover• Positive air shutdown• Tandem tow • Battery charger • Battery disconnect • PowerZone® controller • Telemetry• Lower radiator hose heater • Fuel filter heaterDIMENSIONSABC DE118 in (3 m)101 in (2.6 m)23 ft (7 m)10 ft (3.05 m)57 in (1.45 m)WEIGHT•Dry: 1,350 lb (612 kg)• Operating: 1,620 lb (735 kg)AMBIENT CLIMATE RATINGS•Maximum wind speed: 65 mph (105 kph)•Maximum air temperature – °F (°C):•Lights only: 120 (49)•100% load: 104 (40)WARRANTY•Tower: 1 year, unlimited hours/2 years, 2,000 hours•LED modules and drivers: 5 year limited warrantyCERTIFICATIONSCSA approved, listedFOR MORE INFORMATIONOwner’s manual is available at /resources-tools/manuals.Part No. 10000034742Rev A 08/16/2018。
To: file c:\hagen\wpfiles\bds4.wp6From: Jon HagenDate 8-26-99Subject: Description of the Kollmorgen AmplifierAttachments: "Test Limits and Modification" data sheets for compensation cards used with the motors in the Azimuth, Elevation, Tie down, and rotary floor drive systems.Reference: Kollmorgen manual: description of the BDS4 on page 1-4 and simplified schematic on page F-55.The BDS4 has three main blocks:1. Input signal conditioner: analog circuitry whose inputs are the command voltage and the measured velocity and whose output is a torque command voltage V T. This block implements the BDS4's velocity mode. It does very little when the BDS4 is configured for torque mode.2. Multiplier: a microprocessor with an A-to-D converter at its input and three D-to-A converters at its output. The input to this block is the torque command voltage V T and the shaft position θ and the outputs are three current command voltages, V I1, V I2, and V I3 which determine the currents, I1 , I2 , and I3 , in the three motor windings. These current command voltages are computed as follows from V T and θ:V I1 = α V T cos (θ); V I2 = αV T cos (θ+ 120 deg); V I3 = αV T cos (θ+ 240 deg).3. Power stage: three power amplifiers - one for each of the three motor windings. The current provided by each power amplifier is proportional to the respective current command voltage. Feedback around each power amplifier ensures that the currents exactly match the commanded values. The three currents are therefore given byI1 = βV T cos (θ); I2 = βV T cos (θ+ 120 deg); I3 = βV T cos (θ+ 240 deg).The torque provided by the motor is given byTorque = γ [ I1 cos (θ) + I2 cos (θ+ 120 deg) + I3 cos (θ+ 240 deg)].Putting the current values, we haveTorque = γβV T [cos2 (θ) + cos2 (θ+ 120 deg) + cos2 (θ+ 240 deg)] = 3 γβV T /2 .Note that the torque is independent of θ; with sinusoidal current control there is no "torque ripple". The power amplifiers are switching circuits that use a 10kHz pulse-width modulation to synthesize the sinusoidal currents. When power is being supplied to the motor, the PWM circuits operate as step-down (buck) converters. When power is being supplied from the motor (regeneration) they operate as a step-up (boost) converters. The transition from buck to boost happens automatically as the amplifier maintains the commanded current.1Kollmorgen rates their motor/amplifier combinations for torque and speed but they give no information about the dynamics of their velocity loop apart from what can be inferred from simplified schematic of the BDS4:DC GainThe most basic characteristic of the amplifier is the dc gain. The loop filter does not contain a perfect integrator, as the op amp is bridged with a resistor. At dc, therefore, the gain is finite.a. velocity modeWhen the amplifier is not in Torque Hold mode, the value of the bridging resistor is 10 Megohms. We can calculate the dc gain as follows: The differential voltage at the Command Input is first multiplied by a factor of 0.81 by the differential input amplifier. Referring to the schematic, 16.2k/(10k+10k) = 0.81. Note that this factor, 0.81, may be reduced by adjusting the Command Scale pot. The resulting voltage, 0.81Vdiff, is connected to the summing point of the op amp through a 20k resistor. At dc, the only feedback is provided by the 10M bridging resistor, so the gain of the op amp is 10M/20k = 500 and the gain from the Command Input to the output ⋅of the op amp is 0.81500 = 405. Suppose the motor is stopped and the velocity command is zero. A velocity command of only 20mV will produce 8 volts at the output of the op amp, i.e. full torque.b. torque modeIn Torque Hold mode, the value of the bridging resistor is 20k so the dc gain is simply .81, the gain of the differential input stage.Compensation boardThe BDS4 has an internal compensation board. Kollmorgen supplies the amplifier with a compensation board tailored for a given motor model. If a different motor is used, the appropriate compensation board must be installed in the amplifier. One might suspect that, to implement a velocity loop, the compensation would also depend on the nature of the load - inertia, friction, bias, etc. Indeed, in addition to the generic compensation board for each motor, Kollmorgen has furnished dozens or hundreds of custom boards. Our tie-down and rotary floor drive systems use generic compensation boards. The elevation and, and azimuth drive systems have compensation boards modified by Vertex. Vertex made two changes to the generic boards. First, they disconnected the velocity feedback by removing R4, R13, and C12. Second, instead of lowering the dc gain by simply grounding the "Torque Hold" input (pin 14 on connector C1) they permanently lowered the dc gain by shunting a 20k resistor across the op amp. They did this by installing a short (jumper) in place of C2, forcing R9 to bridge the op amp. On the B-604A comp card, R9 was already 20k. On the B-606A comp card, they changed R9 from 14k to 20k.2。
U9与TIPTOP的差异和优势TIPTOP是完全由台湾鼎新开发的一款大型ERP套件,自从2002年登陆大陆以来,由大陆程序人员针对总帐、票据等模块专门开发了大陆版,又经过海峡两地研发人员几次升级,现在提供电子、服装、标准行业三套V er 5.0 版本,大陆的客户至少在100家以上,覆盖了机械、电子、服装、食品等大部分行业,在国营企业、民营企业、台资企业都获得了较好的口碑,尤其最近两年,员工数量和客户数量每年都在成倍增长,大有势如破竹之势。
不过,作为已经有10年以上生命周期的产品,尽管在不断发展壮大,可是一些架构方面的硬伤越来越成为其发展的瓶颈,尤其面对U9这样一款全新架构、全新理念产品的挑战,可是说胜负已经摆在眼前,结果也只是时间问题。
之所有会有这样明显的差异,首先从技术上而言U9完全领先TIPTOP。
U9是完全SOA架构的,所有的开发设计都是建立在面向服务的基础上,而TIPTOP还是面向功能开发,依然是建表结构再写逻辑语言,另外U9是在微软的.Net的基础上开发的UAP平台的成果,完全B/S架构,客户端零安装、零维护,而TIPTOP的开发语言Genero BDL,该语言属于第四代语言,严格意义上TIPTOP仍属于C/S结构,客户必须安装软件才可以在浏览器上操作,所以U9在开发效率、兼容性、升级维护上与TIPTOP相比有着本质的区别,技术架构优势非常明显。
U9的开发过程为全程模型驱动开发(MDD),按需定制服务组件,实践领先的软件工厂模式,而TIPTOP依然是需求分析、数据和代码设计这种传统的开发模式,前者可以很容易实现产品在合作伙伴之间扩展和嵌入,而后者只能不断发展壮大自身的研发体系,当发展到一定程度,就会遭遇瓶颈,很明显不如前者在领先的开发模式下成长迅速。
另外U9采用很多尖端的软件技术,如Portal、智能客户端、企业信息搜索、OFFICE深度集成、WEB2.0等,而TIPTOP由于是10年前的架构,无法采用这些客户所需要的尖端技术。