小学六年级数学工程问题例题详解及练习(有答案)
- 格式:doc
- 大小:428.50 KB
- 文档页数:8
奥数思维拓展:工程问题(试题)一、选择题1.一项工程,甲独做10天完成,乙独做8天完成,甲、乙工作效率的最简比是()。
A.5∶4B.4∶5C.8∶10D.11: 1082.A、B、C、D四人一起完成一件工作,D做了一天就因病请假了,A结果做了6天,B 做了5天,C做了4天,D作为休息的代价,拿出48元给A、B、C三人作为报酬,算劳务费,则这48元中A应分()元。
A.18B.19.2C.20D.323.打印一份文稿,覃老师要用5分钟,韦老师要用4分钟,覃老师工作效率比韦老师工作效率低()。
A.125%B.25%C.120%D.20%4.一幢办公楼原有5台空调,现在又安装了1台,如果这6台空调全部打开就会烧断保险丝,因此最多只能同时使用5台空调.这样,在24小时内平均每台空调可使用()小时.A.24B.20C.18D.165.有一批工人完成某项工程,如果增加8个人,则10天就能完成;如果增加3个人,就要20天才能完成。
现在只能增加2个人,那么完成这项工程需要多少天?()A.25B.20C.30D.35二、填空题6.一项工程,甲队单独完成需40天。
若乙队先做10天,余下的工程由甲、乙两队合作,又需20天可完成。
如果乙队单独完成此工程,则需______天。
7.有一项工程,有三个工程队来争夺施工权利,已知甲乙丙三个工程队都是工作时间长短来付费的,甲、乙两队合作,10天可以全部完工,共需要支付18000元,由乙、丙两队合作,20天可以完工,共需要支付12000元,由甲、丙两队合作,12天可以完成,共需要支付15000,如果该工程只需要一个工程队承建,如果只能一个队伍单独施工,那么最快的比最慢的会早完工____天。
需要支付速度最快的队伍____元。
8.有一项工程,甲乙合作3天完成,乙丙合作5天完成,甲丙合作6天完成,三人合作需要______天完成。
9.放满一个水池,如果同时打开1,2号阀门,则12分钟可以完成;如果同时打开1,3号阀门,则15分钟可以完成;如果单独打开1号阀门,则20分钟可以完成;那么,如果同时打开1,2,3号阀门,( )分钟可以完成。
小学六年级数学工程问题例题详解及练习(有答案)顾名思义,工程问题指的是与工程建造有关的数学问题。
其实,这类题目的内容已不仅仅是工程方面的问题,也括行路、水管注水等许多内容。
在分析解答工程问题时,一般常用的数量关系式是:工作量=工作效率×工作时间,工作时间=工作量÷工作效率,工作效率=工作量÷工作时间。
工作量指的是工作的多少,它可以是全部工作量,一般用数1表示,也可工作效率指的是干工作的快慢,其意义是单位时间里所干的工作量。
单位时间的选取,根据题目需要,可以是天,也可以是时、分、秒等。
工作效率的单位是一个复合单位,表示成“工作量/天”,或“工作量/时”等。
但在不引起误会的情况下,一般不写工作效率的单位。
例1 单独干某项工程,甲队需100天完成,乙队需150天完成。
甲、乙两队合干50天后,剩下的工程乙队干还需多少天?分析与解:以全部工程量为单位1。
甲队单独干需100天,甲的工作效例2某项工程,甲单独做需36天完成,乙单独做需45天完成。
如果开工时甲、乙两队合做,中途甲队退出转做新的工程,那么乙队又做了18天才完成任务。
问:甲队干了多少天?分析:将题目的条件倒过来想,变为“乙队先干18天,后面的工作甲、乙两队合干需多少天?”这样一来,问题就简单多了。
答:甲队干了12天。
例3 单独完成某工程,甲队需10天,乙队需15天,丙队需20天。
开始三个队一起干,因工作需要甲队中途撤走了,结果一共用了6天完成这一工程。
问:甲队实际工作了几天?分析与解:乙、丙两队自始至终工作了6天,去掉乙、丙两队6天的工作量,剩下的是甲队干的,所以甲队实际工作了例4 一批零件,张师傅独做20时完成,王师傅独做30时完成。
如果两人同时做,那么完成任务时张师傅比王师傅多做60个零件。
这批零件共有多少个?分析与解:这道题可以分三步。
首先求出两人合作完成需要的时间,例5 一水池装有一个放水管和一个排水管,单开放水管5时可将空池灌满,单开排水管7时可将满池水排完。
【奥数专题】精编人教版小学数学6年级上册工程问题(试题)含答案与解析奥数专题:精编人教版小学数学6年级上册工程问题(试题)含答案与解析工程问题是小学数学中常见的题型之一,能够锻炼学生的逻辑思维和综合运算能力。
本文将为大家精编人教版小学数学6年级上册的工程问题试题,并附带详细的答案与解析,希望能够帮助到同学们更好地理解和掌握这一题型。
1. 小明修建了一个半径为3米的圆形花坛,请问这个花坛的周长是多少米?答案与解析:圆的周长公式为C = 2πr,其中r为半径,π取近似值3.14。
代入已知数据,得C = 2 × 3.14 × 3 = 18.84(米),所以这个花坛的周长为18.84米。
2. 小红家的房屋正前方有一个边长为6米的正方形草坪,现在要在这个草坪上种植鲜花,请问这个草坪的面积是多少平方米?答案与解析:正方形的面积公式为A = a^2,其中a为边长。
代入已知数据,得A = 6^2 = 36(平方米),所以这个草坪的面积为36平方米。
3. 丽丽要制作一个高度为2米的三角形旗帜,其中底边长为4米,请问这个旗帜的面积是多少平方米?答案与解析:三角形的面积公式为A = 0.5 ×底边长 ×高,代入已知数据,得A = 0.5 × 4 × 2 = 4(平方米),所以这个旗帜的面积为4平方米。
4. 小华要铺设一条长为5米的沟渠,他计划将沟渠分为相等的5段,请问每段的长度是多少米?答案与解析:将沟渠分为相等的5段,则每段的长度为总长度除以段数,即5 ÷ 5 = 1(米)。
所以每段的长度为1米。
5. 小明用了21个园木将一条长20米的小路两侧都种满,请问每个园木之间的距离是多少米?答案与解析:将小路分为21段,则每个园木之间的距离为总长度除以段数减1,即20 ÷ (21-1) = 1(米)。
所以每个园木之间的距离为1米。
6. 小红需要用12个石板铺满一个长为3米的小路,请问每块石板的长度是多少米?答案与解析:将小路分为12段,则每块石板的长度为总长度除以段数,即3 ÷ 12 = 0.25(米)。
将工程的总工作量看作单位“1”,充分利用 工作效率×工作时间=工作量 来求解问题。
例1 基本题型.1. 一项工程,甲队独做需要12天完成,那么4天可以完成这项工程的几分之几?要完成全部工程的16,需要做几天? 解答:甲工效:1÷12=112, 4×112=13;16÷112=2(天) 2. 一项工程,甲队单独做20天完成,乙队单独做30天完成。
现在他们两队一起做,其间甲队休息了3天,乙队休息了若干天。
从开始到完成共用了16天。
问乙队休息了多少天?解答:乙工作量=1-甲工作量:1-120×(16-3)=720, 16-720÷130=5.5(天) 3. 甲、乙两人同做一工程,需898天完工,若甲一人独做8天后,再由乙独做10天完工。
甲乙独做各需多少天?解答:甲、乙工效和:1÷889=980,合做89天的工作量:89×980=110,与乙2天的工作量相等。
乙工效:110÷2=120,甲工效:980-120=116。
则甲需1÷116=16天,乙需1÷120=20天。
4. 有一批资料要复印,甲机单独复印要11小时,乙机单独复印要13小时,当甲、乙两台复印同时复印时,由于相互干扰,每小时两台共少印28张,现在两机同时复印了6小时15分才印完,这批资料共有多少张? 解答:无干扰的工效和111+113=24143,实际工效和1÷614=425,28÷(24143-425)=3575(张)例2 复杂问题.5. 一项工程,甲、乙合做9天完成,甲、丙合做12天完成,乙、丙合做18天完成,由甲、乙、丙合做需几天完成?解答:三人工效和(11191218++)÷2=18,1÷18=8(天) 6. 五个人完成一项任务,如果第一、二、三人同时工作,需要7.5小时;第一、三、五人同时工作,需要5小时;第一、三、四人同时工作,需要6小时;第二、四、五人同时工作,需要4小时。
六年级数学上册《工程问题》例题及解析【含义】工程问题主要研究工作量、工作效率和工作时间三者之间的关系。
这类问题在已知条件中,常常不给出工作量的具体数量,只提出“一项工程”、“一块土地”、“一条水渠”、“一件工作”等,在解题时,常常用单位“1”表示工作总量。
【数量关系】解答工程问题的关键是把工作总量看作“1”,这样,工作效率就是工作时间的倒数(它表示单位时间内完成工作总量的几分之几),进而就可以根据工作量、工作效率、工作时间三者之间的关系列出算式。
工作量=工作效率×工作时间工作时间=工作量÷工作效率工作时间=总工作量÷(甲工作效率+乙工作效率)【解题思路和方法】变通后可以利用上述数量关系的公式。
01解题思路:设总工作量为1,则甲每小时完成1/6,乙每小时完成1/8,甲比乙每小时多完成(1/6-1/8),二人合做时每小时完成(1/6+1/8)。
因为二人合做需要[1÷(1/6+1/8)]小时,这个时间内,甲比乙多做24个零件,所以(1)每小时甲比乙多做多少零件?24÷[1÷(1/6+1/8)]=7(个)(2)这批零件共有多少个?7÷(1/6-1/8)=168(个)解二上面这道题还可以用另一种方法计算:两人合做,完成任务时甲乙的工作量之比为1/6∶1/8=4∶3由此可知,甲比乙多完成总工作量的4-3 / 4+3 =1/7所以,这批零件共有24÷1/7=168(个)02一件工作,甲独做12小时完成,乙独做10小时完成,丙独做15小时完成。
现在甲先做2小时,余下的由乙丙二人合做,还需几小时才能完成?解题思路:必须先求出各人每小时的工作效率。
如果能把效率用整数表示,就会给计算带来方便,因此,我们设总工作量为12、10、和15的某一公倍数,例如最小公倍数60,则甲乙丙三人的工作效率分别是60÷12=560÷10=6 60÷15=4因此余下的工作量由乙丙合做还需要(60-5×2)÷(6+4)=5(小时)也可以用(1-1/12*2)/(1/10+1/15)03一个水池,底部装有一个常开的排水管,上部装有若干个同样粗细的进水管。
第七讲工程问题一、知识要点在日常生活中,做某一件事,制造某种产品,完成某项任务,完成某项工程等等,都要涉及到工作总量、工作效率、工作时间这三个量,它们之间的基本数量关系是工作总量 =工作效率×工作时间 . 在小学数学中,探讨这三个数量之间关系的应用题,我们都叫做“工程问题” .举一个简单例子:一件工作,甲做 10 天可完成,乙做 15 天可完成 .问两人合作几天可以完成?一件工作看成 1 个整体,因此可以把工作量算作 1.所谓工作效率,就是单位时间内完成的工作量,我们用11的时间单位是“天” ,1 天就是一个单位,因此甲的工作效率是1,乙的工作效率是1,我们想求两人合10 1511作所需时间,就要先求两人合作的工作效率,再根据基本数量关系式,得到所需时间 =工作量÷工10 15作效率=6(天) .两人合作需要 6 天 .这是工程问题中最基本的问题,这一讲介绍的许多例子都是从这一问题发展产生的 . 为了计算整数化(尽可能用整数进行计算),可把工作量多设份额 .如上题, 10 与 15 的最小公倍数是30.设全部工作量为 30 份.那么甲每天完成 3份,乙每天完成 2 份.两人合作所需天数是30÷( 3+ 2)= 6(天)11实际上我们把1 ()这个算式,先用 30 乘了一下,都变成整数计算,就方便些.10 151110 天与 15 天,体现了甲、乙两人工作效率之间比例关系: 3: 2 .或者说“工作量固定,工作效10 15率与时间成反比例” .甲、乙工作效率的比是 15∶ 10=3∶ 2.当知道了两者工作效率之比,从比例角度考虑问3 3 3题,也是非常实用的 .根据3: 2 ,两人合作时,甲应完成全部工作的 3 3,所需时间是10 3 6(天)3 2 5 5因此,在下面例题的讲述中,我们可以采用“把工作量设为整体 1”的做法,也可以“整数化” 或“从比例角度出发” 、“列方程”等,这样会使我们的解题思路更灵活一些 .二、典型例题例 1. 一件工作,甲做 9 天可以完成,乙做 6 天可以完成 .现在甲先做了 3 天,余下的工作由乙继续完成 . 乙需要做几天可以完成全部工作?解析:甲的工效: 1 ÷9 = 1/9 乙的工效: 1÷6=1/6 甲三天做了的: 1/9 × 3=1/3余下的工作: 1 - 1/3 =2/3 乙需做的天数: 2/3 ÷ 1/6 = 4(天)例 2. 有一工程,甲队单独做 24 天完成,乙队单独做 30 天完成,甲、乙两队合做 8 天后,余下的由丙队做,又做了 6 天才完成。
小学六年级数学上册——工程问题1.用分数解决工程问题的解题方法与用整数解决工程问题的解题方法相同,所用数量关系相同,即工作总量=工作效率×工作时间,工作效率=工作总量÷工作时间,工作时间=工作总量÷工作效率。
2.在用分数解决工程问题时,通常没有具体的工作总量,解题时把工作总量看作单位“1”,用单位时间内完成工作总量的几分之一表示工作效率。
基础巩固例题1.修一段路,甲队单独修需要10天完成,乙队单独修需要15天完成。
如果两队同时修,几天能完成?练习1.录入一份稿件,陈老师单独录入要用18小时,李老师单独录入要用12小时。
两个人合作,几小时能完成这份稿件的一半?例题2.一项工作,甲单独做3天完成这项工作的101,乙单独做4天完成这项工作的51。
甲、乙合作12天,能完成全部工作吗?练习2.有一堆钢材,甲汽车运这堆钢材的61要2天,乙汽车运这堆钢材的52要10天。
乙汽车独运5天,剩下的钢材由甲、乙两汽车共同来运,这需几天运完?例题3.一项工程,甲、乙两队合作需要12天完成,乙、丙两队合作需要15天完成,甲、丙两队合作需要20天完成,甲、乙、丙三队合作需要几天完成?练习3.一项工作,甲、乙两人合作36天完成,乙、丙两人合作45天完成,甲、丙两人合作60天完成。
问甲单独做需要多少天完成?思维拓展例题1.一项工程,甲队单独做要10小时完成,乙队单独做要12小时完成,丙队单独做要15小时完成。
开始三队合作,中途丙队有事离开,剩下的由甲、乙两队完成。
从工程开始到结束共用了5小时。
问丙队实际做了几小时?练习1.有一批工艺品。
王大妈独自加工要20天完成,李大妈独自加工要30天完成,张大妈独自加工要40天完成。
现在三人合作,王大妈家中有事中间暂停几天,结果用了12天完成。
王大妈中间休息了几天?例题2.一辆客车和一辆货车同时从A 、B 两城相对开出,经过8小时相遇,相遇后两车各自按原来速度继续行驶。
六年级数学上册期末复习系列之工程问题专项练习(原卷版)1.一项工程,甲队单独做需要12小时,乙队单独做需要8小时,现由乙队先做2小时后,剩下的工程由甲、乙两队合做。
还需要多少小时才能全部完成?2.一项工程,甲独做需要10天完成,乙独做需要15天完成,两人合做几天后还剩这项工程的61?3.打一份文件,甲要30分钟完成,乙要45分钟完成,甲与乙工作效率的最简整数比( ),比值是( )。
4.一条72千米的公路,如果甲工程队单独修需要20天,乙工程队单独修 需要30天,现在甲乙两工程队合修需要多少天?5.一项工程,每天完成它的71,4天完成这项工程的( ),( )天可以完成这项工程。
6.某加工厂购进一批建材,如果单独用小卡车运需要30天,如果单独用大卡车运需要20天,大小卡车合运多少天可以运完这批建材的32?7.一项工程,甲队单独做需10天完成,乙队单独做需15天完成,两队合做需( )天完成。
8.甲、乙两个注水管,单开甲管12小时注满一个水池,单开乙管15小时注满一个水池。
如果两管齐开,同时注水,注满一个水池的43需要多少小时?9.某绿化工程,有3个工程队施工。
单独完成,甲队要10天,乙队要12天,丙队要15天。
若让甲、乙两队先合作2天,余下的由丙队单独做,丙队还要几天才能完工?10.一项工程,甲队单独做30天完成,乙队单独做20天完成,乙队先单独做5天,再由甲乙两队合做,还要多少天可以完成?11.甲、乙两个注水管,单开甲管12小时注满一个水池,单开乙管15小时注满一个水池。
如果两管齐开同时注水,注满一个水池的43需要多少小时?六年级数学上册期末复习系列之工程问题专项练习(解析版)1.一项工程,甲队单独做需要12小时,乙队单独做需要8小时,现由乙队先做2小时后,剩下的工程由甲、乙两队合做。
还需要多少小时才能全部完成? 解析:518 (1-81×2)÷(121+81)=518(小时) 2.一项工程,甲独做需要10天完成,乙独做需要15天完成,两人合做几天后还剩这项工程的61? 解析:(1-61)÷(101+151)=5(天) 3.打一份文件,甲要30分钟完成,乙要45分钟完成,甲与乙工作效率的最简整数比( ),比值是( )。
第七讲 工程问题一、知识要点在日常生活中,做某一件事,制造某种产品,完成某项任务,完成某项工程等等,都要涉及到工作总量、工作效率、工作时间这三个量,它们之间的基本数量关系是工作总量=工作效率×工作时间.在小学数学中,探讨这三个数量之间关系的应用题,我们都叫做“工程问题”.举一个简单例子:一件工作,甲做10天可完成,乙做15天可完成.问两人合作几天可以完成?一件工作看成1个整体,因此可以把工作量算作1.所谓工作效率,就是单位时间内完成的工作量,我们用的时间单位是“天”,1天就是一个单位,因此甲的工作效率是101,乙的工作效率是151,我们想求两人合作所需时间,就要先求两人合作的工作效率151101+,再根据基本数量关系式,得到所需时间=工作量÷工作效率=6(天).两人合作需要6天.这是工程问题中最基本的问题,这一讲介绍的许多例子都是从这一问题发展产生的.为了计算整数化(尽可能用整数进行计算),可把工作量多设份额.如上题,10与15的最小公倍数是30.设全部工作量为30份.那么甲每天完成3份,乙每天完成2份.两人合作所需天数是30÷(3+ 2)= 6(天) 实际上我们把111()1015÷+这个算式,先用30乘了一下,都变成整数计算,就方便些. 10天与15天,体现了甲、乙两人工作效率之间比例关系11:3:21015=.或者说“工作量固定,工作效率与时间成反比例”.甲、乙工作效率的比是15∶10=3∶2.当知道了两者工作效率之比,从比例角度考虑问题,也是非常实用的.根据3:2,两人合作时,甲应完成全部工作的33325=+,所需时间是31065⨯=(天). 因此,在下面例题的讲述中,我们可以采用 “把工作量设为整体1”的做法,也可以“整数化”或“从比例角度出发”、“列方程”等,这样会使我们的解题思路更灵活一些.二、典型例题例1. 一件工作,甲做9天可以完成,乙做6天可以完成.现在甲先做了3天,余下的工作由乙继续完成.乙需要做几天可以完成全部工作?解析:甲的工效:1÷9=1/9 乙的工效:1÷6=1/6 甲三天做了的:1/9 ×3=1/3余下的工作:1 -1/3 =2/3 乙需做的天数:2/3 ÷1/6=4(天)例2.有一工程,甲队单独做24天完成,乙队单独做30天完成,甲、乙两队合做8天后,余下的由丙队做,又做了6天才完成。
六年级数学上册《工程问题》专项练习题+答案解析1、甲、乙、丙三人生产一批玩具,甲生产的个数是乙、丙两人生产个数之和的1/2,乙生产的个数是甲、丙两人生产个数之和的1/3,丙生产了50个。
这批玩具共有_________个。
【答案】120【分析】甲生产的是总和的÷1/3,乙生产的是总和的1/4,那么丙生产的是总和的,由此得到这批玩具共有.2.要发一份资料,单用A传真机发送,要10分钟;单用B传真机发送。
要8分钟;若A、B同时发送,由于相互干扰,A、B每分钟共少发0.2页。
实际情况是由A、B同时发送,5分钟内传完了资料(对方可同时接收两份传真),则这份资料有__________页。
【答案】8【分析】没受干扰时传真机的合作工作效率为,而实际的工作效率为1/5,所以这份资料共有(页).3.甲、乙二人要从网上下载同一个100兆大小的软件,他们同时用各自家中的电脑开始下载,甲的网速较快。
下载速度是乙的5倍,但是当甲下载了半时。
由于网络故障出现断网的情况,而乙家的网络一直正常。
当甲的网络恢复正常后,继续下载到99兆时(已经下载的部分无须重新下载),乙已经下载完了,则甲断网期间乙下载了__________兆。
【答案】80.2【分析】在与甲下载的同时,乙下载了99÷5=l9.8(兆),则甲断网期间乙下载了100—19.8=80.2(兆).4、放满一个水池,如果同时打开1,2号阀门,则1 2分钟可以完成;如果同时打开1,3号阀门,则15分钟可以完成;如果单独打开l号阀门,则20分钟可以完成;那么,如果同时打开l,2,3号阀门,_____ 分钟可以完成。
【答案】10【分析】根据题意可知,1,2号阀门的效率之和为1/12,l,3号阀门的效率之和为1/15,1号阀门的效率为,所以1,2,3号阀门的效率之和为1/20,所以.如果同时打开1,2,3号阀门,10分钟可以完成5、修筑一条高速公路;若甲、乙、丙合作,90天可以完工;若甲、乙、丁合作,120天可以完工;若丙、丁合作,l80天可以完工;若甲、乙合作36天后,剩下的工作由甲、乙、丙、丁合作。
工程问题(一)
分析与解:以全部工程量为单位1。
甲队单独干需100天,甲的工作效
例2分析:将题目的条件倒过来想,变为“乙队先干18天,后面的工作甲、乙两队合干需多少天”这样一来,问题就简单多了。
答:甲队干了12天。
例3 分析与解:乙、丙两队自始至终工作了6天,去掉乙、丙两队6天的工作量,剩下的是甲队干的,所以甲队实际工作了
例4 分析与解:这道题可以分三步。
首先求出两人合作完成需要的时间,
例5
例6 分析:这道题看起来像行程问题,但是既没有路程又没有速度,所以不能用时间、路程、速度三者的关系来解答。
甲出发5分钟后返回,路上耽误10分钟,再加上取东西的5分钟,等于比乙晚出发15分钟。
我们将题目改述一下:完成一件工作,甲需60分钟,乙需40分钟,乙先干15分钟后,甲、乙合干还需多少时间由此看出,这道题应该用工程问题的解法来解答。
答:甲再出发后15分钟两人相遇。
答案与提示练习2
天。
天。
棵。
米。
时。
提示:甲管12时都开着,乙管开
千米。
工程问题(二)
分析与解:本题没有直接给出工作效率,为了求出甲、乙的工作效率,我们先画出示意图:
从上图可直观地看出:甲15天的工作量和乙12天的工作量相等,即甲5天的工作量等于乙4天的工作量。
于是可用“乙工作4天”等量替换题中“甲工作5天”这一条件,通过此替换可知乙单独做这一工程需用20+4=24(天)
甲、乙合做这一工程,需用的时间为
例2
分析与解:题中没有告诉甲、乙两队单独的工作效率,只知道他们合作
们把“乙先做7天,甲再做4天”的过程转化为“甲、乙合做4天,乙再单独
例3 分析与解:乙单独做要超过3天,甲、乙合做2天后乙继续做,刚好按时完成,说明甲做2天等于乙做3天,即完成这件工作,乙需要的时间是甲的
,乙需要10+5=15(天)。
甲、乙合作需要
例4 分析与解:同时打开1,2,3号阀门1分钟,再同时打开2,3,4号阀门1分钟,再同时打开1,3,4号阀门1分钟,再同时打开1,2,4号阀门1分钟,这时,1,2,3,4号阀门各打开了3分钟,放水量等于一
例5 分析与解:与例4类似,可求出一、二、三、四小队的工作效率之和是
例6
分析与解:把甲、乙、丙三人每人做一天称为一轮。
在一轮中,无论谁先谁后,完成的总工作量都相同。
所以三种顺序前面若干轮完成的工作量及用的天数都相同(见下图虚线左边),相差的就是最后一轮(见下图虚线右边)。
由最后一轮完成的工作量相同,得到
答案与提示练习2
个。
2.甲18天,乙12天。
时。
解:由下页图知,王干2时等于李干3时,所以单独干李需12+6÷2×3=21(时),王需21÷3×2=14(时)。
所求为
5.上午9时。
时15分。
天。
解:如果两人轮流做完的天数是偶数,那么不论甲先还是乙先,两种轮流做的方式完成的天数必定相同(见左下图)。
甲乙甲乙……甲乙甲乙甲乙……甲乙甲
现在乙先比甲先要多用半天,所以甲先时,完成的天数一定是奇数,于是得到右上图,其中虚线左边的工作量相同,右边的工作量也相同,说明乙做1天等于甲做半天,所以乙做17天等于甲做天。