天津市滨海新区2020年中考数学二模试题有答案精析
- 格式:doc
- 大小:87.50 KB
- 文档页数:22
2020年天津市滨海新区中考数学二模试卷参考答案与试题解析一、选择题:本大题共12小题,每小题3分,共36分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)计算(﹣6)÷(﹣3)的结果是( )A .12B .2C .﹣2D .3【分析】直接利用有理数除法运算法则求出答案.【解答】解:(﹣6)÷(﹣3)=2.故选:B .2.(3分)12tan60°的值等于( )A .3B .√3C .√33D .√32【分析】直接利用特殊角的三角函数值代入求出答案.【解答】解:12tan60°=12×√3=√32.故选:D .3.(3分)下列图形中既是轴对称图形又是中心对称图形的是() A . B . C . D .【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A 、既是轴对称图形,又是中心对称图形,故A 正确;B 、不是轴对称图形,是中心对称图形,故B 错误;C 、是轴对称图形,不是中心对称图形,故C 错误;D 、是轴对称图形,不是中心对称图形,故D 错误.故选:A .4.(3分)过度包装既浪费资源又污染环境.据测算,如果全国每年减少10%的过度包装纸用量,那么可减排二氧化碳3120000吨,把数3120000用科学记数法表示为()A.3.12×105B.3.12×106C.31.2×105D.0.312×107【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:将3120000用科学记数法表示为:3.12×106.故选:B.5.(3分)用3个完全相同的小正方体组合成如图所示的立体图形,它的俯视图为()A.B.C.D.【分析】根据从上边看得到的图形是俯视图,可得答案.【解答】解:从上边看第一列是一个小正方形,第二列是一个小正方形,故选:B.6.(3分)估计√7+1的值()A.在1和2之间B.在2和3之间C.在3和4之间D.在4和5之间【分析】直接利用已知无理数得出√7的取值范围,进而得出答案.【解答】解:∵2<√7<3,∴3<√7+1<4,∴√7+1在3和4之间.故选:C.7.(3分)化简x 2x−1+x 1−x的结果是( ) A .x +2 B .x ﹣1 C .﹣x D .x【分析】先把异分母转化成同分母,再把分子相减即可.【解答】解:x 2x−1+x 1−x =x 2x−1﹣x x−1=x 2−x x−1=x(x−1)x−1=x ; 故选D .8.(3分)一元二次方程x 2﹣4x +3=0的根是( )A .﹣1B .﹣3C .1和3D .﹣1和﹣3【分析】先分解因式,即可得出两个一元一次方程,求出方程的解即可.【解答】解:x 2﹣4x +3=0,(x ﹣3)(x ﹣1)=0,x ﹣3=0,x ﹣1=0,x=3或1,故选C .9.(3分)有理数a 、b 在数轴上的对应的位置如图所示,则下列各式中正确的是( )A .a +b <0B .a +b >0C .a ﹣b=0D .a ﹣b >0【分析】首先根据数轴确定a ,b 的符号和大小,再根据有理数的运算法则进行分析判断.【解答】解:由数轴,得a <0<b ,|a |>|b |.A 、根据异号两数相加,取绝对值较大的数的符号,则a +b <0,符合题意;B 、根据异号两数相加,取绝对值较大的数的符号,则a +b <0,不符合题意;C 、较小的数减去较大的数,则差一定小于0,则a ﹣b <0,不符合题意;D 、较小的数减去较大的数,则差一定小于0,则a ﹣b <0,不符合题意. 故选A .10.(3分)函数y=k x 的图象经过点(﹣12,2),则函数y=kx ﹣2的图象不经过第几象限( )A .一B .二C .三D .四【分析】首先把点(﹣12,2)代入y=k x中可得k 的值,然后再确定y=kx ﹣2的图象不经过第几象限.【解答】解:∵函数y=k x 的图象经过点(﹣12,2), ∴2=k −12, 解得:k=﹣1,∴函数y=kx ﹣2=﹣x ﹣2,∴图象经过第二三四象限,不经过第一象限.故选:A .11.(3分)如图,将矩形ABCD 绕点A 旋转至矩形AB′C′D′位置.此时AC′的中点恰好与点D 重合,AB′交CD 于点E ,若AB=3,则△AEC 的面积为( )A .3B .32C .2√3D .√3【分析】根据旋转后AC 的中点恰好与D 点重合,利用旋转的性质得到直角三角形ACD 中,∠ACD=30°,再由旋转后矩形与已知矩形全等及矩形的性质得到∠DAE 为30°,进而得到∠EAC=∠ECA ,利用等角对等边得到AE=CE ,设AE=CE=x ,表示出AD 与DE ,利用勾股定理列出关于x 的方程,求出方程的解得到x 的值,确定出EC 的长,即可求出三角形AEC 面积.【解答】解:∵旋转后AC 的中点恰好与D 点重合,即AD=12AC′=12AC , ∴在Rt △ACD 中,∠ACD=30°,即∠DAC=60°,∴∠DAD′=60°,∴∠DAE=30°,∴∠EAC=∠ACD=30°,∴AE=CE ,在Rt △ADE 中,设AE=EC=x ,则有DE=DC ﹣EC=AB ﹣EC=3﹣x ,AD=√33×3=√3, 根据勾股定理得:x 2=(3﹣x )2+(√3)2,解得:x=2,∴EC=2,则S △AEC =12EC•AD=√3, 故选:D .12.(3分)二次函数y=ax 2+bx +c (a 、b 、c 为常数,且a ≠0)中x 与y 的部分对应值如表:x﹣1 0 1 3 y ﹣13 5 3①ac <0;②当x >1时,y 的值随x 值的增大而减小;③x=3是方程ax 2+(b ﹣1)x +c=0的一个根;④当﹣1<x <3时,ax 2+(b ﹣1)x +c >0.上述结论中正确的个数是( )A .4B .3C .2D .1 【分析】利用待定系数法求出二次函数解析式为y=﹣x 2+3x +3,然后判断出①正确,②错误,再根据一元二次方程的解法和二次函数与不等式的关系判定③④正确,问题得解.【解答】解:∵x=﹣1时y=﹣1,x=0时,y=3,x=1时,y=5,∴{a −b +c =−1c =3a +b +c =5,解得{a=−1 b=3c=3,∴y=﹣x2+3x+3,∴ac=﹣1×3=﹣3<0,故①正确;对称轴为直线x=﹣32×(−1)=32,所以,当x>32时,y的值随x值的增大而减小,故②错误;方程为﹣x2+2x+3=0,整理得,x2﹣2x﹣3=0,解得x1=﹣1,x2=3,所以,3是方程ax2+(b﹣1)x+c=0的一个根,正确,故③正确;﹣1<x<3时,ax2+(b﹣1)x+c>0正确,故④正确;综上所述,结论正确的是①③④.故选B.二、填空题:本大题共6小题,每小题3分,共18分.13.(3分)计算(﹣2y3)2的结果等于4y6.【分析】根据幂的乘方和积的乘方的运算法则求解即可.【解答】解:(﹣2y3)2=(﹣2y3)•(﹣2y3)=4y6.故答案为:4y6.14.(3分)计算(4√2﹣√8)÷2√2的结果是1.【分析】先把√8化简,然后把括号内合并后进行二次根式的除法运算.【解答】解:原式=(4√2﹣2√2)÷2√2=2√2÷2√2=1.故答案为1.15.(3分)一个均匀的正六面体的六个面上,有一个面写1,两个面写2,三个面写3,任意投掷一次该六面体,则朝上的一面是3的可能性是 12. 【分析】先找出任意投掷一次该六面体所能出现的情况及出现3的情况,再由概率公式即可得出结论.【解答】解:∵一个均匀的正六面体的六个面上,有一个面写1,两个面写2,三个面写3,∴任意投掷一次该六面体可能出现6种情况,其中写有3的面有3种,∴朝上的一面是3的可能性=36=12. 故答案为:12.16.(3分)一次函数y=(k ﹣3)x +2,若y 随x 的增大而增大,则k 的取值范围是 k >3 .【分析】根据图象的增减性来确定(k ﹣3)的取值范围,从而求解.【解答】解:∵一次函数y=(k ﹣3)x +2,若y 随x 的增大而增大,∴k ﹣3>0,解得k >3,故答案为:k >317.(3分)如图,设△ABC 和△CDE 都是等边三角形,且∠EBD=62°,则∠AEB 的度数是 122° .【分析】由已知条件推导出△ACE ≌△BCD ,从而∠DBC=∠CAE ,再通过角之间的转化,利用三角形内角和定理能求出∠AEB 的度数.【解答】解:∵△ABC 和△CDE 都是等边三角形,且∠EBD=62°,∴AC=BC ,CE=CD ,∠ACB=∠ECD=60°,又∵∠ACB=∠ACE+∠BCE,∠ECD=∠BCE+∠BCD,∴∠BCD=∠ACE,△ACE≌△BCD,∴∠DBC=∠CAE,∴62°﹣∠EBC=60°﹣∠BAE,∴62°﹣(60°﹣∠ABE)=60°﹣∠BAE,∴∠AEB=180°﹣(∠ABE+∠BAE)=180°﹣58°=122°.故答案为:122°.18.(3分)如图,将放在每个小正方形的边长为1的网格中,点A、B、C均落在格点上.(Ⅰ)计算AB边的长等于√5;(Ⅱ)在如图所示的网格中,用无刻度的直尺,画出一个以AB为一边的矩形,使矩形的面积等于△ABC的面积,并简要说明画图的方法(不要求证明).【分析】(1)正确寻找直角三角形,利用勾股定理计算即可;(2))①取格点E、F,连接AF、BE,使得∠FAB=∠ABE=90°.②过格点O、G作直线交AF于M,交BE于N,四边形AMNB即为矩形,面积等于△ABC的面积;【解答】解:(1)AB=√12+22=√5.故答案为√5.(2)①取格点E 、F ,连接AF 、BE ,使得∠FAB=∠ABE=90°.②过格点O 、G 作直线交AF 于M ,交BE 于N ,四边形AMNB 即为矩形,面积等于△ABC 的面积.三、解答题:本大题共7小题,共66分,解答应写出文字说明、演算步骤或推理过程.19.(8分)解不等式组{3x −2<2x①1+x 2−1≤x②请结合题意填空,完成本题的解答. (Ⅰ)解不等式①,得 x <2 ;(Ⅱ)解不等式②,得 x ≥﹣1 ;(Ⅲ)把不等式①和②的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为 ﹣1≤x <2 .【分析】分别求出每一个不等式的解集,将不等式的解集表示在数轴上,即可确定不等式组的解集.【解答】解:解不等式①,得:x <2,解不等式②,得:x ≥﹣1,把不等式①和②的解集表示在数轴上如下:故不等式组的解集为:﹣1≤x <2,故答案为:(Ⅰ)x <2;(Ⅱ)x ≥﹣1;(Ⅳ)﹣1≤x <2.20.(8分)某高校学生会向全校2900名学生发起了“爱心一日捐”捐款活动,为了解捐款情况,学生会随机调查了部分学生的捐款金额,并用得到的数据绘制了如下统计图①和图②,请根据相关信息,解答下列问题:(Ⅰ)本次接受随机抽样调查的学生人数为 50 ,图①中m 的值是 32 ; (Ⅱ)求本次你调查获取的样本数据的平均数、众数和中位数;(Ⅲ)根据样本数据,估计该校本次活动捐款金额为10元的学生人数.【分析】(1)根据捐款数是5元的,所占的百分比是8%,即可求得总人数,然后根据百分比的意义求得m 的值;(2)根据平均数、众数、中位数的定义即可求解;(3)利用总人数2900乘以对应的百分比即可求解.【解答】解:(1)调查的学生数是:4÷8%=50(人),m=1650×100=32. 故答案是:50,32;(2)平均数是:4×5+16×10+12×15+10×20+8×3050=16(元),众数是:10元,中位数是:15元;(3)该校本次活动捐款金额为10元的学生人数是:2900×32%=928(人).21.(10分)如图,AB 是⊙O 的直径,PA 切⊙O 于A ,OP 交⊙O 于C ,连接BC . (Ⅰ)如图①,若∠P=20°,求∠BCO 的度数;(Ⅱ)如图②,过A 作弦AD ⊥OP 于E ,连接DC ,若OE=12CD ,求∠P 的度数.【分析】(1)由PA是⊙O的切线,推出OA⊥AP,推出∠AOC=90°﹣20°=70°,由∠B=12∠AOC=35°,OB=OC,即可推出∠B=∠OCB=35°;(2)如图2中,连接BD、OD.只要证明AĈ=CD̂=DB̂,即可推出∠AOC=∠COD=∠BOD=60°,由PA是⊙O的切线,推出∠PAO=90°,推出∠P=30°;【解答】解:(1)如图1中,∵PA是⊙O的切线,∴OA⊥AP,∴∠PAO=90°,∵∠P=20°,∴∠AOC=90°﹣20°=70°,∴∠B=12∠AOC=35°,∵OB=OC,∴∠B=∠OCB=35°,∴∠BCO=35°.(2)如图2中,连接BD、OD.∵AD⊥OP于E,∴AE=ED,AĈ=CD̂,∵AE=ED,OA=OB,∴OE=12 DB,∵OE=12 CD,∴CD=DB,∴CD̂=BD̂,∴AĈ=CD̂=DB̂,∴∠AOC=∠COD=∠BOD=60°,∵PA是⊙O的切线,∴∠PAO=90°,∴∠P=30°.22.(10分)如图,利用热气球探测器测量大楼AB的高度,从热气球P处测得大楼B的俯角为37°,大楼底部A的俯角为60°,此时热气球P离底面的高度为120m.试求大楼AB的高度(结果保留整数).(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,√3≈1.73)【分析】过点P 作PC ⊥AB ,垂足为点C ,根据锐角三角函数的定义求出PC 及BC 的长,再由AB=AC ﹣BC 即可得出结论.【解答】解:如图,过点P 作PC ⊥AB ,垂足为点C ,∵热气球P 离底面的高度为120m ,∴AC=120m .由题意知,∠APC=60°,∠BPC=37°,∵tan ∠APC=AC PC ,即tan60°=120PC ,PC=√3=40√3; 在Rt △BPC 中,由tan ∠BPC=BC PC得,BC=PC•tan37°=40√3×tan37°, ∴AB=AC ﹣BC=120﹣40√3•tan37°≈120﹣40×1.73×0.75=68.1≈68(m ). 答:大楼AB 的高度为68米.23.(10分)某旅行团计划今年暑假组织一个老年人团去昆明旅游,预定宾馆住宿时,有住宿条件一样的甲、乙两家宾馆供选择,其收费标准为某人每天120元,并且各自推出不同的优惠方案:甲家是35人(含35人)以内的按标准收费,超过35人的,超出部分按九折收费;乙家是45人(含45人)以内的按标准收费,超过45人的,超出部分按八折收费.设老年人团的人数为x(Ⅰ)根据题意,用含x 的式子填写下表:x ≤3535<x <45 x=45 x >45 甲宾馆120 105281收费/元 x 8x +420 8x +420 乙宾馆收费/元 120x 120x 5400 96x +108(Ⅱ)当老年人团的人数为何值时,在甲、乙两家宾馆的花费相同?如果老年人团的人数超过60人,在哪家宾馆住宿比较省钱?【分析】(1)根据收费标准,可得解析式;(2)根据都不优惠时,可得实际花费相同,根据优惠时的实际花费相同的等量关系,可得一元一次方程,根据解一元一次方程,可得答案.【解答】解:(1)108x +420,108x +420,96x +1080;故答案为:108x +420,108x +420,96x +1080;(2)当x ≤35时,旅行团在甲、乙两家宾馆的实际花费相同,当35<x ≤45时,选择甲宾馆便宜,当x >45时,甲宾馆的收费是:y 甲=35×120+0.9×120(x ﹣35),即y 甲=108x +420, 乙宾馆的收费是:y 乙=45×120+0.8×120(x ﹣45)=96x +1080,当y 甲=y 乙时,108x +420=96x +1080,解得x=55.∴当x >35时,y 甲是关于人数x 的一次函数,当x >45时,y 乙是关于人数x 的一次函数,且y甲、y乙都随人数x的增大而增大;又35<x≤45时,甲宾馆花费<乙宾馆花费,综上所述,当x>55时,有y甲>y乙总之,当x≤35或x=55时,旅行团在甲、乙两家宾馆的实际花费相同.如果老年人团的人数超过60人,在乙家宾馆住宿比较省钱.24.(10分)将一矩形纸片OABC放在直角坐标系中,O为原点,C在x轴上,OA=6,OC=10.(Ⅰ)如图①,在OA上取一点E,将△EOC沿EC折叠,使点O落在AB边上的D点,求E点的坐标;(Ⅱ)如图②,在OA、OC边上选取适当的点E′、F,将△E′OF沿E′F折叠,使O 点落在AB边上D′点,过D′作D′G∥OA交E′F于T点,交OC于G点,设T的坐标为(x,y),求y与x之间的函数关系式,并直接写出自变量x的取值范围;(Ⅲ)在(Ⅱ)的条件下,若OG=2√3,求△D′TF的面积.(直接写出结果即可)【分析】(1)先根据折叠的性质得出DC=OC=10,在Rt△BCD中,运用矩形的性质及勾股定理得出BD=8,然后在Rt△AED中,由勾股定理得OE2=22+(6﹣OE)2,解方程求出OE的长,进而求出点E的坐标;(2)先由折叠的性质得出∠D′E′F=∠OE′F,由平行线的性质得出∠OE′F=∠D′TE′,则∠D′E′F=∠D′TE′,根据等角对等边得到D′T=D′E′=OE′,则TG=AE′;得出AD′=x,TG=AE′=y,D′T=D′E′=OE′=6﹣y,在Rt△AD′E′中,根据勾股定理得出AD′2+AE′2=D′E′2,即x2+y2=(6﹣y)2,整理可求出y与x的函数关系式;根据AD的长求出x的最小值,当x取最大值时,E′F平分∠OAB,即E′与A重合,四边形AOFD′为正方形,求出此时x的值,有了x的最大和最小取值即可求出x的取值范围.(3)求出GT=y=2,得出AD'=OG=2√3,DT=4,作FM⊥AB于M,则FM=BC=6,证明△D'MF∽△EAD',得出对应边成比例求出D′FED′=2√3=√3,设E'O=ED'=x,则AE'=6﹣x,在Rt△AD'E'中,由勾股定理得出方程,解方程求出x=4,得出OF=D'F=4√3,求出GF=OF﹣OG=2√3,即可求出△D′TF的面积.【解答】解:(1)∵将△EOC沿EC折叠,使O点落在AB边上的D点,∴DC=OC=10.在Rt△BCD中,∵∠B=90°,BC=OA=6,DC=10,∴BD=√DC2−BC2=8.在Rt△AED中,∵∠DAE=90°,AD=2,DE=OE,AE=6﹣OE,∴DE2=AD2+AE2,即OE2=22+(6﹣OE)2,解得OE=10 3,∴E点的坐标为(0,103);(2)∵将△E′OF沿E′F折叠,使O点落在AB边上D′点,∴∠D′E′F=∠OE′F,D′E′=OE′,∵D′G∥AO,∴∠OE′F=∠D′TE′,∴∠D′E′F=∠D′TE′,∴D′T=D′E′=OE′,∴TG=AE′;∵T(x,y),∴AD′=x,TG=AE′=y,D′T=D′E′=OE′=6﹣y.在Rt△AD′E′中,∵∠D′AE′=90°,∴AD′2+AE′2=D′E′2,即x2+y2=(6﹣y)2,整理,得y=﹣112x2+3;由(1)可得AD′=OG=2时,x最小,从而x≥2,当E′F恰好平分∠OAB时,AD′最大即x最大,此时G点与F点重合,四边形AOFD′为正方形,即x最大为6,从而x≤6,故变量x的取值范围是2≤x≤6.(3)∵T 的坐标为(x ,y ),y=﹣112x 2+3,OG=2√3, ∴GT=y=﹣112×12+3=2,AD'=OG=2√3, ∴DT=6﹣2=4,作FM ⊥AB 于M ,则FM=BC=6,∠FMD'=90°=∠A ,∴∠1+∠2=90°,由折叠的性质得:∠ED'F=∠AOC=90°,∴∠1+∠3=90°,∴∠2=∠3,∴△D'MF ∽△EAD',∴D′F E′D′=FM AD′,即D′F ED′=2√3=√3, 设E'O=ED'=x ,则AE'=6﹣x ,在Rt △AD'E'中,由勾股定理得:(2√3)2+(6﹣x )2=x 2,解得:x=4,∴OF=D'F=4√3, ∴GF=OF ﹣OG=2√3, ∴△D′TF 的面积=12D'T•GF=12×4×2√3=4√3.25.(10分)已知直线l :y=kx 和抛物线C :y=ax 2+bx +1.(Ⅰ)当k=1,b=1时,抛物线C :y=ax 2+bx +1的顶点在直线l :y=kx 上,求a 的值;(Ⅱ)若把直线l 向上平移k 2+1个单位长度得到直线r ,则无论非零实数k 取何值,直线r 与抛物线C 都只有一个交点;(i )求此抛物线的解析式;(ii )若P 是此抛物线上任一点,过点P 作PQ ∥y 轴且与直线y=2交于点Q ,O 为原点,求证:OP=PQ .【分析】(Ⅰ)将k=1,b=1代入代入得:抛物线的解析式为y=ax 2+x +1,直线的解析式为y=x ,然后利用配方法求得抛物线的顶点坐标,然后将抛物线的横纵坐标代入直线的解析式求得a 的值即可;(Ⅱ)(i )平移后直线的解析式为y=kx +k 2+1,由直线与抛物线都只有一个交点,可知方程ax 2+(b ﹣k )x ﹣k 2=0有两个相等的实数根,故此△=0,即(4a +1)k 2﹣2bk +b 2=0恒成立,故此4a +1=0且b=0,于是得到抛物线的解析式;(ii )设点P的坐标为(x ,﹣14x 2+1)则点Q 的坐标为(x ,2),D (x ,0),则PD=|﹣14x 2+1|,OD=|x |,QP=14x 2+1.在Rt △OPD 中,依据勾股定理可求得OP=14x 2+1,故此可得到OP=PQ .【解答】解:(Ⅰ)将k=1,b=1代入代入得:抛物线的解析式为y=ax 2+x +1,直线的解析式为y=x .∵y=ax 2+x +1=a (x +12a )2+1﹣14a , ∴抛物线的顶点为(﹣12a ,1﹣14a ).∵抛物线的顶点在直线y=x 上,∴﹣12a =1﹣14a ,解得:a=﹣14. (Ⅱ)(i )将直线y=kx 向上平移k 2+1个单位,所得直线的解析式为y=kx +k 2+1. ∵无论非零实数k 取何值,直线与抛物线都只有一个交点,∴方程kx +k 2+1=ax 2+bx +1有两个相等的实数根,即ax 2+(b ﹣k )x ﹣k 2=0有两个相等的实数根,∴△=(b ﹣k )2+4ak 2=(4a +1)k 2﹣2bk +b 2=0.∵无论非零实数k 取何值时,(4a +1)k 2﹣2bk +b 2=0恒成立,∴4a +1=0且b=0,∴a=﹣14,b=0.∴抛物线的解析式为y=﹣14x 2+1.(ii )证明:根据题意,画出图象如图所示:设点P 的坐标为(x ,﹣14x 2+1)则点Q 的坐标为(x ,2),D (x ,0). ∴PD=|﹣14x 2+1|,OD=|x |,QP=2﹣(﹣14x 2+1)=14x 2+1. 在Rt △OPD 中,依据勾股定理得:OP=√x 2+(−14x 2+1)2=√116x 4+12x 2+1=14x 2+1. ∴OP=PQ .。
2020年天津市滨海新区中考数学模拟试卷(4月)一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.的相反数是()A .B .C .D .2.如图是由四个相同的小正方体堆成的物体,它的正视图是()A .B .C .D .3.中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划,“一带一路”地区覆盖总人口约为440000万人,将440000用科学记数法表示为()A.4.4×106B.4.4×105C.44×104D.0.44×1054.如图图形不是轴对称图形的是()A .B .C .D .5.某车间20名工人每天加工零件数如表所示:4 5 6 7 8每天加工零件数人数 3 6 5 4 2这些工人每天加工零件数的众数、中位数分别是()A.5,5 B.5,6 C.6,6 D.6,56.不等式组的解集在数轴上表示正确的是()A.B.C.D.7.下面是小明同学做的四道题:①3m+2m=5m;②5x﹣4x=1;③﹣p2﹣2p2=﹣3p2;④3+x=3x.你认为他做正确了()A.1道B.2道C.3道D.4道8.已知∠A是锐角,且sin A=,则tan A的值是()A.B.C.D.9.已知4是关于x的方程x2﹣5mx+12m=0的一个根,且这个方程的两个根恰好是等腰三角形ABC 的两条边长,则△ABC的周长为()A.14 B.16 C.12或14 D.14或1610.某人承包1125平方米的铺地砖任务,计划在一定的时间内完成,按计划工作3天后,提高了工作效率,使每天铺地砖的面积为原计划1.5倍,结果提前4天完成了任务,则原计划每天铺()A.70平方米B.65平方米C.75平方米D.85平方米11.如图,在Rt△AOB中,∠AOB=90°,OA=3,OB=2,将Rt△AOB绕点O顺时针旋转90°后得Rt△FOE,将线段EF绕点E逆时针旋转90°后得线段ED,分别以O,E为圆心,OA、ED长为半径画弧AF和弧DF,连接AD,则图中阴影部分面积是()A.8﹣πB.C.3+πD.π12.如图,一条抛物线与x轴相交于M、N两点(点M在点N的左侧),其顶点P在线段AB上移动.若点A、B的坐标分别为(﹣2,3)、(1,3),点N的横坐标的最大值为4,则点M的横坐标的最小值为()A.﹣1 B.﹣3 C.﹣5 D.﹣7二、填空题(本大题共6小题,每小题3分,共18分)13.计算2x4•x3的结果等于.14.计算(﹣)2的结果等于.15.不透明袋子中装有6个球,其中有1个红球、2个绿球和3个黑球,这些球除颜色外无其他差别,从袋子中随机取出1个球,则它是绿球的概率是.16.若一次函数y=﹣2x+b(b为常数)的图象经过第二、三、四象限,则b的值可以是(写出一个即可).17.如图,在正方形ABCD中,点E,N,P,G分别在边AB,BC,CD,DA上,点M,F,Q都在对角线BD上,且四边形MNPQ和AEFG均为正方形,则的值等于.18.如图,在每个小正方形的边长为1的网格中,A,E为格点,B,F为小正方形边的中点,C为AE,BF的延长线的交点.(Ⅰ)AE的长等于;(Ⅱ)若点P在线段AC上,点Q在线段BC上,且满足AP=PQ=QB,请在如图所示的网格中,用无刻度的直尺,画出线段PQ,并简要说明点P,Q的位置是如何找到的(不要求证明).三、综合题:本大题共7小题,共66分19.(8分)解不等式,请结合题意填空,完成本题的解答.(Ⅰ)解不等式①,得;(Ⅱ)解不等式②,得;(Ⅲ)把不等式①和②的解集在数轴上表示出来;(Ⅳ)原不等式组的解集为.20.(8分)在一次中学生田径运动会上,根据参加男子跳高初赛的运动员的成绩(单位:m),绘制出如下的统计图①和图②,请根据相关信息,解答下列问题:(Ⅰ)图1中a的值为;(Ⅱ)求统计的这组初赛成绩数据的平均数、众数和中位数;(Ⅲ)根据这组初赛成绩,由高到低确定9人进入复赛,请直接写出初赛成绩为1.65m的运动员能否进入复赛.21.(10分)如图1,AB为半圆O的直径,D为BA的延长线上一点,DC为半圆O的切线,切点为C.(1)求证:∠ACD=∠B;(2)如图2,∠BDC的平分线分别交AC,BC于点E,F;①求tan∠CFE的值;②若AC=3,BC=4,求CE的长.22.(10分)南海是我国的南大门,如图所示,某天我国一艘海监执法船在南海海域正在进行常态化巡航,在A处测得北偏东30°方向上,距离为20海里的B处有一艘不明身份的船只正在向正东方向航行,便迅速沿北偏东75°的方向前往监视巡查,经过一段时间后,在C处成功拦截不明船只,问我海监执法船在前往监视巡查的过程中行驶了多少海里(最后结果保留整数)?(参考数据:cos75°=0.2588,sin75°=0.9659,tan75°=3.732,=1.732,=1.414)23.(10分)小明和小强为了买同一种火车模型,决定从春节开始攒钱,小明原有200元,以后每月存50元;小强原有150元,以后每月存60元.设两人攒钱的月数为x(个)(x为整数).(Ⅰ)根据题意,填写下表:攒钱的月数/个 3 6 (x)小明攒钱的总数/元350…小强攒钱的总数/元510 …(Ⅱ)在几个月后小明与小强攒钱的总数相同?此时他们各有多少钱?(Ⅲ)若这种火车模型的价格为780元,他们谁能够先买到该模型?24.(10分)在平面直角坐标系中,点A(4,0),B为第一象限内一点,且OB⊥AB,OB=2.(Ⅰ)如图①,求点B的坐标;(Ⅱ)如图②,将△OAB沿x轴向右平移得到△O′A′B′,设OO′=m,其中0<m<4,连接BO′,AB与O′B′交于点C.①试用含m的式子表示△BCO′的面积S,并求出S的最大值;②当△BCO′为等腰三角形时,求点C的坐标(直接写出结果即可).25.(10分)如图,抛物线y=﹣x2+2x+3与x轴相交于A、B两点(点A在点B的左侧),与y轴相交于点C,顶点为D.(1)直接写出A、B、C三点的坐标和抛物线的对称轴;(2)连接BC,与抛物线的对称轴交于点E,点P为线段BC上的一个动点,过点P作PF∥DE交抛物线于点F,设点P的横坐标为m;①用含m的代数式表示线段PF的长,并求出当m为何值时,四边形PEDF为平行四边形?②设△BCF的面积为S,求S与m的函数关系式.2020年天津市滨海新区中考数学模拟试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.解:的相反数是,故选:C.2.解:从正面看可得从左往右2列正方形的个数依次为2,1,故选:A.3.解:440000=4.4×105.故选:B.4.解:A、不是轴对称图形,故本选项符合题意;B、是轴对称图形,故本选项不符合题意;C、是轴对称图形,故本选项不符合题意;D、是轴对称图形,故本选项不符合题意.故选:A.5.解:由表知数据5出现次数最多,所以众数为5;因为共有20个数据,所以中位数为第10、11个数据的平均数,即中位数为=6,故选:B.6.解:∵解不等式①得:x≥3,解不等式②得:x>﹣2,∴不等式组的解集为x≥3,在数轴上表示为:,故选:A.7.解:①3m+2m=5m,正确;②5x﹣4x=x,错误;③﹣p2﹣2p2=﹣3p2,正确;④3+x不能合并,错误;故选:B.8.解:由∠A是锐角,且sin A=,得∠A=30°.则tan A=tan30°=,故选:D.9.解:把x=4代入方程x2﹣5mx+12m=0得16﹣20m+12m=0,解得m=2,则方程为x2﹣10x+24=0,(x﹣4)(x﹣6)=0,所以x1=4,x2=6,因为这个方程的两个根恰好是等腰三角形ABC的两条边长,所以这个等腰三角形三边分别为4、4、6;4、6、6,所以△ABC的周长为14或16.故选:D.10.解:设原计划每天铺x米,=3++4x=75.经检验x=75是方程的解.故原计划铺75平方米.故选:C.11.解:作DH⊥AE于H,∵∠AOB=90°,OA=3,OB=2,∴AB==,由旋转的性质可知,OE=OB=2,DE=EF=AB=,∵∠OFE+∠FEO=∠OED+∠FEO=90°,∴∠OFE=∠OED∴△DHE≌△BOA,∴DH=OB=2,阴影部分面积=△ADE的面积+△EOF的面积+扇形AOF的面积﹣扇形DEF的面积=×5×2+×2×3+﹣=8﹣π,故选:A.12.解:根据题意知,点N的横坐标的最大值为4,此时对称轴过B点,点N的横坐标最大,此时的M点坐标为(﹣2,0),当对称轴过A点时,点M的横坐标最小,此时的N点坐标为(1,0),M点的坐标为(﹣5,0),故点M的横坐标的最小值为﹣5,故选:C.二、填空题(本大题共6小题,每小题3分,共18分)13.【分析】单项式与单项式相乘,把他们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.依此即可求解.【解答】解:2x4•x3=2x7.故答案为:2x7.【点评】考查了单项式乘单项式,注意:①在计算时,应先进行符号运算,积的系数等于各因式系数的积;②注意按顺序运算;③不要丢掉只在一个单项式里含有的字母因式;④此性质对于多个单项式相乘仍然成立.14.【分析】利用完全平方公式计算.【解答】解:原式=5﹣2+3=8﹣2.故答案为8﹣2.【点评】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.15.【分析】由题意可得,共有6种等可能的结果,其中从口袋中任意摸出一个球是绿球的有2种情况,利用概率公式即可求得答案.【解答】解:∵在一个不透明的口袋中有6个除颜色外其余都相同的小球,其中1个红球、2个绿球和3个黑球,∴从口袋中任意摸出一个球是绿球的概率是=,故答案为:.【点评】本题考查了概率公式,明确概率的意义是解答问题的关键,用到的知识点为:概率=所求情况数与总情况数之比.16.【分析】根据一次函数的图象经过第二、三、四象限,可以得出k<0,b<0,随便写出一个小于0的b值即可.【解答】解:∵一次函数y=﹣2x+b(b为常数)的图象经过第二、三、四象限,∴k<0,b<0.故答案为:﹣1.【点评】本题考查了一次函数图象与系数的关系,解题的关键是根据函数图象所过的象限找出它的系数的正负.本题属于基础题,难度不大,解决该题型题目时,能够熟练的运用一次函数图象与系数的关系是关键.17.【分析】根据辅助线的性质得到∠ABD=∠CBD=45°,四边形MNPQ和AEFG均为正方形,推出△BEF与△BMN是等腰直角三角形,于是得到FE=BE=AE=AB,BM=MN=QM,同理DQ=MQ,即可得到结论.【解答】解:在正方形ABCD中,∵∠ABD=∠CBD=45°,∵四边形MNPQ和AEFG均为正方形,∴∠BEF=∠AEF=90°,∠BMN=∠QMN=90°,∴△BEF与△BMN是等腰直角三角形,∴FE=BE=AE=AB,BM=MN=QM,同理DQ=MQ,∴MN=BD=AB,∴==,故答案为:.【点评】本题考查了正方形的性质,等腰直角三角形的性质,正方形的面积的计算,熟练掌握等腰直角三角形的性质是解题的关键.18.【分析】(Ⅰ)根据勾股定理即可得到结论;(Ⅱ)取格点M,连接AM,并延长与BC交于Q,连接PQ,则线段PQ即为所求.【解答】解:(Ⅰ)AE==;故答案为:;(Ⅱ)如图,AC与网格线相交,得到P,取格点M,连接AM,并延长与BC交于Q,连接PQ,则线段PQ即为所求.故答案为:AC与网格线相交,得到P,取格点M,连接AM,并延长与BC交于Q,连接PQ,则线段PQ即为所求.证明:以A为原点建立平面直角坐标系,则A(0,0),B(6,1.5),E(1,2),F(5,),∴直线AE的解析式y AE=2x,直线BF的解析式为y BF=﹣2x+,设p(m,2m),Q(n,﹣2n+)(0<m<n<6),∴AP2=m+2(2m)2=5m2,PQ2=(m﹣n)2+(2m+2n﹣)2BQ2=(n﹣602+(﹣2n+12)2=5(n﹣6)2,∵AP=PQ=BQ,∴5m2=5(n﹣6)2=5n2﹣54m﹣54n,由5m2=5(n﹣6)2得m=6﹣n,m=n﹣6(舍去),把m=6﹣n代入得n=4.5,n=(舍去),∴P(1.5,3),Q(4.5,4.5).【点评】本题考查了作图﹣应用与设计作图,勾股定理,正确的作出图形是解题的关键.三、综合题:本大题共7小题,共66分19.【分析】分别求出各不等式的解集,再在数轴上表示出来即可.【解答】解:(I)解不等式①,得x≤4.故答案为:x≤4;(II)解不等式②,得x≥2.故答案为:x≥2.(III)把不等式①和②的解集在数轴上表示为:;(IV)原不等式组的解集为:.故答案为:2≤x≤4.【点评】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.20.【分析】(Ⅰ)用整体1减去其它所占的百分比,即可求出a的值;(Ⅱ)根据平均数、众数和中位数的定义分别进行解答即可;(Ⅲ)根据中位数的意义可直接判断出能否进入复赛.【解答】解:(Ⅰ)根据题意得:1﹣20%﹣10%﹣15%﹣30%=25%;则a的值是25;故答案为:25;(Ⅱ)观察条形统计图得:==1.61;∵在这组数据中,1.65出现了6次,出现的次数最多,∴这组数据的众数是1.65;将这组数据从小到大排列,其中处于中间的两个数都是1.60,则这组数据的中位数是1.60.(Ⅲ)能;∵共有20个人,中位数是第10、11个数的平均数,∴根据中位数可以判断出能否进入前9名;∵1.65m>1.60m,∴能进入复赛.【点评】本题考查了众数、平均数和中位数的定义.用到的知识点:一组数据中出现次数最多的数据叫做这组数据的众数.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.平均数是指在一组数据中所有数据之和再除以数据的个数.21.【分析】(1)利用等角的余角相等即可证明.(2)①只要证明∠CEF=∠CFE即可.②由△DCA∽△DBC,得===,再由△DCE∽△DBF,得=,设EC=CF=x,列出方程即可解决问题.【解答】(1)证明:如图1中,连接OC.∵OA=OC,∴∠1=∠2,∵CD是⊙O切线,∴OC⊥CD,∴∠DCO=90°,∴∠3+∠2=90°,∵AB是直径,∴∠1+∠B=90°,∴∠3=∠B.(2)解:①∵∠CEF=∠ECD+∠CDE,∠CFE=∠B+∠FDB,∵∠CDE=∠FDB,∠ECD=∠B,∴∠CEF=∠CFE,∵∠ECF=90°,∴∠CEF=∠CFE=45°,∴tan∠CFE=tan45°=1.②在RT△ABC中,∵AC=3,BC=4,∴AB==5,∵∠CDA=∠BDC,∠DCA=∠B,∴△DCA∽△DBC,∴===,∵∠CDE=∠BDF,∠DCE=∠B,∴△DCE∽△DBF,∴==,设EC=CF=x,∴=,∴x=.∴CE=.【点评】本题考查切线的性质、相似三角形的判定和性质、勾股定理等知识,解题的关键是正确寻找相似三角形,利用相似三角形的性质解决问题,学会用方程的思想思考问题,属于中考常考题型.22.【分析】过B作BD⊥AC,在直角三角形ABD中,利用勾股定理求出BD与AD的长,在直角三角形BCD中,求出CD的长,由AD+DC求出AC的长即可.【解答】解:过B作BD⊥AC,∵∠BAC=75°﹣30°=45°,∴在Rt△ABD中,∠BAD=∠ABD=45°,∠ADB=90°,由勾股定理得:BD=AD=×20=10(海里),在Rt△BCD中,∠C=15°,∠CBD=75°,∴tan∠CBD=,即CD=10×3.732=52.77048,则AC=AD+DC=10+10×3.732=66.91048≈67(海里),即我海监执法船在前往监视巡查的过程中行驶了67海里.【点评】此题考查了解直角三角形的应用﹣方向角问题,熟练掌握直角三角形的性质是解本题的关键.23.【分析】(1)根据总钱数=原有钱数+每月攒钱数×攒钱的月数,即可得出每个空中的结论,此题得解;(2)令200+50x=150+60x,解之可求出x值,将其代入150+6x中即可得出结论;(3)分别求出200+50x≥780和150+60x≥780的x的取值范围,比较后即可得出结论.【解答】解:(I)6个月时,小明攒钱的总数为:200+50×6=500(元);x个月时,小明攒钱的总数为:200+50x;3个月时,小强攒钱的总数为:150+60×3=330(元);x个月时,小强攒钱的总数为:150+60x.故答案为:500;200+50x;330;150+60x.(II)根据题意,得:200+50x=150+60x,解得:x=5.∴150+60x=450.答:在5个月后小明与小强攒钱的总数相同,此时每人有450元钱.(III)由200+50x≥780,解得:x≥11.6,∴小明在12个月后攒钱的总数不低于780元;由150+60x≥780,解得:x≥10.5,∴小强在11个月后攒钱的总数不低于780元.∵12>11,∴小强能够先买到该模型.【点评】本题考查了一元一次方程的应用以及列代数式,根据数量关系列出关于x的一元一次方程(或一元一次不等式)是解题的关键.24.【分析】(Ⅰ)由OB⊥AB,0A=4,OB=2得出△AOB是有一个角为30°的直角三角形,简单计算即可;(Ⅱ)①由平移用m表示出BC,O′C,建立S= [﹣(m﹣2)2+4],即可;②利用△BCO′为等腰三角形,则有CB=CO′确定出m,再利用相似求出CD,AD即可.【解答】解:(Ⅰ)∵OB⊥AB,0A=4,OB=2,∴∠AOB=60°,∠OAB=30°,AB=2,过点B作BD⊥OA,∴OD=1,BD=,∴B(1,).(Ⅱ)①∵△A′O′B′是△OAB平移得到,∴∠A′O′B′=∠AOB=60°,O′B′⊥AB,∵OO′=m,∴AO′=4﹣m,∴O′C=AO′=(4﹣m),AC=AO′=(4﹣m),∴BC=AB﹣AC=m,∴S=BC×O′C=m(4﹣m)= [﹣(m﹣2)2+4],当m=2时,S最大=.②如下图,作BE⊥OA,CD⊥OA,由①有,AO′=4﹣m,O′C=(4﹣m),AC=(4﹣m),∴CB=AB﹣AC=2﹣(4﹣m)=m,由平移得,∠ACO′=∠ABO=90°,∵△BCO′为等腰三角形,∴CB=O′C,∴m=(4﹣m),∴m=2(﹣1).∵BE×OA=OB×AB,∴BE==,∴AE=BE=3,∵△ACO′∽△ABO,∴,∴CD=×BE=×=×=,∵BE⊥OA,CD⊥OA,∴BE∥CD,∴,∴AD=×AE=,∴OD=OA﹣AD=4﹣=,∴C(,).【点评】此题是几何变换综合题,考查了平移得性质,一个角为30°的直角三角形,相似三角形的判定和性质,用m表示出有关线段如(AO′=4﹣m,O′C=(4﹣m),AC=(4﹣m),CB=m)是解本题的关键.25.【分析】方法一:(1)已知了抛物线的解析式,当y=0时可求出A,B两点的坐标,当x=0时,可求出C点的坐标.根据对称轴x=﹣可得出对称轴的解析式.(2)PF的长就是当x=m时,抛物线的值与直线BC所在一次函数的值的差.可先根据B,C的坐标求出BC所在直线的解析式,然后将m分别代入直线BC和抛物线的解析式中,求得出两函数的值的差就是PF的长.根据直线BC的解析式,可得出E点的坐标,根据抛物线的解析式可求出D点的坐标,然后根据坐标系中两点的距离公式,可求出DE的长,然后让PF=DE,即可求出此时m的值.(3)可将三角形BCF分成两部分来求:一部分是三角形PFC,以PF为底边,以P的横坐标为高即可得出三角形PFC的面积.一部分是三角形PFB,以PF为底边,以P、B两点的横坐标差的绝对值为高,即可求出三角形PFB 的面积.然后根据三角形BCF的面积=三角形PFC的面积+三角形PFB的面积,可求出关于S、m的函数关系式.【解答】解:(1)A(﹣1,0),B(3,0),C(0,3).抛物线的对称轴是:直线x=1.(2)①设直线BC的函数关系式为:y=kx+b.把B(3,0),C(0,3)分别代入得:解得:.所以直线BC的函数关系式为:y=﹣x+3.当x=1时,y=﹣1+3=2,∴E(1,2).当x=m时,y=﹣m+3,∴P(m,﹣m+3).在y=﹣x2+2x+3中,当x=1时,y=4.∴D(1,4)当x=m时,y=﹣m2+2m+3,∴F(m,﹣m2+2m+3)∴线段DE=4﹣2=2,线段PF=﹣m2+2m+3﹣(﹣m+3)=﹣m2+3m∵PF∥DE,∴当PF=ED时,四边形PEDF为平行四边形.由﹣m2+3m=2,解得:m1=2,m2=1(不合题意,舍去).因此,当m=2时,四边形PEDF为平行四边形.②设直线PF与x轴交于点M,由B(3,0),O(0,0),可得:OB=OM+MB=3.∵S=S△BPF+S△CPF即S=PF•BM+PF•OM=PF•(BM+OM)=PF•OB.∴S=×3(﹣m2+3m)=﹣m2+m(0≤m≤3).【点评】本题主要考查了二次函数的综合应用,根据二次函数得出相关点的坐标和对称轴的解析式是解题的基础.。
天津市中考数学模拟试卷(二)一、选择题(本大题共8小题,共24分)1.(-12)2=()A. 14B. −14C. −4D. 42.下列运算结果正确的是()A. a6÷a3=a2B. (a2)3=a5C. (ab)2=ab2D. a2⋅a3=a53.国家主席习近平在2018年新年贺词中说道:“安得广厦千万间,大庇天下寒士俱欢颜!2017年我国3400000贫困人口实现易地扶贫搬迁、有了温暖的新家.”其中3400000用科学记数法表示为()A. 0.34×107B. 3.4×106C. 3.4×105D. 34×1054.如图几何体的左视图是()A.B.C.D.5.如图,AB是半圆的直径,点D是弧AC的中点,∠ABC=50°,则∠DAB等于()A.60∘B. 65∘C. 70∘D. 75∘6.已知x1,x2是x2-4x+1=0的两个根,则x1+x2是()A. −1B. 1C. −4D. 47.若二次函数y=x2+bx的图象的对称轴是经过点(2,0)且平行于y轴的直线,则关于x的方程x2+bx=5的解为()A. x1=0,x2=4B. x1=1,x2=5C. x1=1,x2=−5D. x1=−1,x2=58.如图,△ABC三个顶点分别在反比例函数y=1x ,y=kx的图象上,若∠C=90°,AC∥y轴,BC∥x轴,S△ABC=8,则k的值为()A. 3B. 4C. 5D. 6二、填空题(本大题共8小题,共24.0分)9.函数y=5xx−4中,自变量x的取值范围是______.10.把多项式4ax2-9ay2分解因式的结果是______.11.甲、乙两人进行射击比赛,每人10次射击的平均成绩都是8.5环,方差分别是s甲2=3,s乙2=2.5,则射击成绩较稳定的是______.12.如图,AB∥CD,FE⊥DB,垂足为点E,∠2=40°,则∠1的度数是______.13.已知扇形的圆心角为150°,它所对应的弧长20πcm,则此扇形的半径是______cm.14.如图,已知△ABC中,∠A=70°,根据作图痕迹推断∠BOC的度数为______°.15.如图,点A、B、C、D都在方格纸的格点上,若△AOB绕点O按逆时针方向旋转到△COD的位置,则旋转角为______.16.如图,等腰直角三角形ABC中,AB=AC,∠BAC=90°,D是AB上一点,连接CD,过点A作AE⊥CD于F交BC于E,G在是CF上一点,过点G作GH⊥BC于H,延长GH到K连接KC,使∠K+2∠BAE=90°,若HG:HK=2:3,AD=10,则线段CF的长度为______.三、计算题(本大题共2小题,共14.0分)17. 解不等式组{x+32≥x +13+4(x −1)>−9,并把解集在数轴上表示出来.18. 如图,在▱ABCD 中,AC 与BD 交于点O ,AC ⊥BC 于点C ,将△ABC 沿AC 翻折得到△AEC ,连接DE .(1)求证:四边形ACED 是矩形;(2)若AC =4,BC =3,求sin ∠ABD 的值.四、解答题(本大题共9小题,共88.0分)19. 2cos30°+(π-1)0-√27+|-2√3|20. 先化简,再求代数式的值:(1−1m+2)÷m 2+2m+1m 2−4,其中m =1.21. 某学校以随机抽样的方式开展了“中学生喜欢数学的程度”的问卷调查,调查的结果分为A (不喜欢)、B (一般)、C (比较喜欢)、D (非常喜欢)四个等级,图1、图2是根据采集的数据绘制的两幅不完整的统计图.(1)C 等级所占的圆心角为______°;(2)请直接在图2中补全条形统计图;(3)若该校有学生1000人,请根据调查结果,估计“比较喜欢”的学生人数为多少人.22. 如图,方格纸中的每个小方格都是边长为1的正方形,我们把以格点间连线为边的三角形称为“格点三角形”,图中的△ABC 就是格点三角形,建立如图所示的平面直角坐标系,点C 的坐标为(0,-1).(1)在如图的方格纸中把△ABC 以点O 为位似中心扩大,使放大前后的位似比为1:2,画出△A 1B 1C 1(△ABC 与△A 1B 1C 1在位似中心O 点的两侧,A ,B ,C 的对应点分别是A 1,B 1,C 1).(2)利用方格纸标出△A 1B 1C 1外接圆的圆心P ,P 点坐标是______,⊙P 的半径=______.(保留根号)23.甲、乙、丙三位同学玩抢座位游戏,在老师的指令下围绕A、B两张凳子转圈(每张仅可坐1人),当老师喊停时即可抢座位.(1)甲抢不到座位的概率是多少?(2)用树状图或列表法表示出所有抢到座位的结果,并求出恰好甲坐A凳、丙坐B凳的概率.24.“五一”假期,某校团委组织500团员前往烈士陵园,开展“缅怀革命先烈,立志为国成才”的活动,由甲、乙两家旅行社来承担此次活动的出行事宜.由于接待能力受限,两家旅行社每家最多只能接待300人,甲旅行社的费用是每人4元,乙旅行社的费用是每人6元,如果设甲旅行社安排x人,乙旅行社安排y人,所学费用为w元,则:(1)试求w与x的函数关系,并求当x为何值时出行费用w最低?(2)经协商,两家旅行社均同意对写生施行优惠政策,其优惠政策如表:人数甲旅行社乙旅行社少于250人一律八折优惠七折优惠不少于250人五折优惠如何安排人数,可使出行费用最低?25.如图,在△ABC中,AB=AC,以AB为直径作圆O,分别交BC于点D,交CA的延长线于点E,过点D作DH⊥AC于点H,连接DE交线段OA于点F.(1)求证:DH是圆O的切线;(2)若FDEF =32,求证;A为EH的中点.(3)若EA=EF=1,求圆O的半径.26.我们知道,锐角三角函数可以揭示三角形的边与角之间的关系.为了解决有关锐角三角函数的问题,我们往往需要构造直角三角形.例如,已知tanα=13(0°<α<90°),tanβ=12(0°<β<90°),求α+β的度数,我们就可以在图①的方格纸中构造Rt△ABC和Rt△AED来解决.(1)利用图①可得α+β=______°;(2)若tan2α=34(0°<α<45°),请在图②的方格纸中构造直角三角形,求tanα;(3)在矩形ABCD中,AC与BD交于点O,设∠CAB=α(0°<α<45°),请利用图③探究sin2α、cosα和sinα的数量关系.27、如图,二次函数y=x2+bx-3的图象与x轴分别相交于A、B两点,点B的坐标为(3,0),与y轴的交点为C,动点T在射线AB上运动,在抛物线的对称轴l上有一定点D,其纵坐标为2√3,l与x轴的交点为E,经过A、T、D三点作⊙M.(1)求二次函数的表达式;(2)在点T的运动过程中,①∠DMT的度数是否为定值?若是,请求出该定值:若不是,请说明理由;AD,求点M的坐标;②若MT=12(3)当动点T在射线EB上运动时,过点M作MH⊥x轴于点H,设HT=a,当OH≤x≤OT 时,求y的最大值与最小值(用含a的式子表示).中考数学模拟试卷(二)参考答案与试题解析1.【答案】A【解析】解:(-)2=,故选:A.根据有理数的乘方的定义解答.本题考查了有理数的乘方,主要考查学生的计算能力和辨析能力,题目比较好.2.【答案】D【解析】解:∵a6÷a3=a3,∴选项A不符合题意;∵(a2)3=a6,∴选项B不符合题意;∵(ab)2=a2b2,∴选项C不符合题意;∵a2•a3=a5,∴选项D符合题意.故选:D.根据同底数幂的除法的运算方法,同底数幂的乘法的运算方法,以及幂的乘方与积的乘方的运算方法,逐项判断即可.此题主要考查了同底数幂的除法的运算方法,同底数幂的乘法的运算方法,以及幂的乘方与积的乘方的运算方法,要熟练掌握.3.【答案】B【解析】解:3400000用科学记数法表示为3.4×106,故选:B.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.【答案】D【解析】解:从左边看去,左边是两个正方形,右边是一个正方形.故选:D.细心观察图中几何体中正方体摆放的位置,根据左视图是从左面看到的图形判定则可.本题考查了由三视图判断几何体和简单组合体的三视图,关键是掌握几何体的三视图及空间想象能力.5.【答案】B【解析】解:连接BD,如图所示.∵点D是弧AC的中点,∴∠ABD=∠CBD.∵∠ABC=50°,AB是半圆的直径,∴∠ABD=∠ABC=25°,∠ADB=90°,∴∠DAB=180°-∠ABD-∠ADB=65°.故选:B.连接BD,由点D是弧AC的中点结合∠ABC的度数即可得出∠ABD的度数,根据AB是半圆的直径即可得出∠ADB=90°,再利用三角形内角和定理即可求出∠DAB 的度数.本题考查了圆周角定理以及三角形的内角和定理,根据圆周角定理结合∠ABC的度数找出∠ABD的度数是解题的关键.6.【答案】D【解析】解:x1+x2=4.故选:D.直接利用根与系数的关系求解.本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=-,x1x2=.7.【答案】D【解析】解:∵对称轴是经过点(2,0)且平行于y轴的直线,∴-=2,解得:b=-4,解方程x2-4x=5,解得x1=-1,x2=5,故选:D.根据对称轴方程-=2,得b=-4,解x2-4x=5即可.本题主要考查二次函数的对称轴和二次函数与一元二次方程的关系,难度不大.8.【答案】C【解析】解:设点C的坐标为(m,),则点A的坐标为(m,),点B的坐标为(km,),∴AC=-=,BC=km-m=(k-1)m,∵S△ABC=AC•BC=(k-1)2=8,∴k=5或k=-3.∵反比例函数y=在第一象限有图象,∴k=5.故选:C.设点C的坐标为(m,),则点A的坐标为(m,),点B的坐标为(km,),由此即可得出AC、BC的长度,再根据三角形的面积结合S△ABC=8,即可求出k值,取其正值即可.本题考查了反比例函数图象上点的坐标特征以及三角形的面积,设出点C的坐标,表示出点A、B的坐标是解题的关键.9.【答案】x≠4【解析】解:由题意得,x-4≠0,解得,x≠4,故答案为:x≠4.根据分式分母不为0列出不等式,解不等式即可.本题考查的是函数自变量的取值范围,掌握分式分母不为0是解题的关键.10.【答案】a(2x+3y)(2x-3y)【解析】解:原式=a(4x2-9y2)=a(2x+3y)(2x-3y),故答案为:a(2x+3y)(2x-3y)原式提取公因式,再利用平方差公式分解即可.此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.11.【答案】乙【解析】解:∵s甲2=3,s乙2=2.5,∴s甲2>s乙2,∴则射击成绩较稳定的是乙,故答案为:乙.根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定,比较出甲和乙的方差大小即可.本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.12.【答案】50°【解析】解:∵AB∥CD,∠2=40°,∴∠EDF=∠2=40°,∵FE⊥DB,∴∠FED=90°,∠1=180°-∠FED-∠EDF=180°-90°-40°=50°,故答案为:50°.根据平行线的性质求出∠EDF=∠2=40°,根据垂直求出∠FED=90°,根据三角形内角和定理求出即可.本题考查了三角形内角和定理,垂直定义,平行线的性质等知识点,能根据平行线的性质求出∠EDF的度数是解此题的关键.13.【答案】24【解析】解:设扇形的半径是r,则=20π解得:R=24.故答案为:24.根据弧长公式即可得到关于扇形半径的方程即可求解.本题主要考查了扇形的面积和弧长,正确理解公式是解题的关键.14.【答案】125【解析】解:由作法得OB平分∠ABC,OC平分∠ACB,∴∠OBC=∠ABC,∠OCB=∠ACB,∵∠BOC=180°-∠OBC-∠OCB=180°-(∠ABC+∠ACB)=180°-(180°-∠A)=90°+∠A,而∠A=70°,∴∠BOC=90°+×70°=125°.故答案为125.利用基本作图得到OB平分∠ABC,OC平分∠ACB,根据三角形内角和得到∠BOC=90°+∠A,然后把∠A=70°代入计算即可.本题考查了作图-基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).15.【答案】90°【解析】解:∵△AOB绕点O按逆时针方向旋转到△COD的位置,∴对应边OB、OD的夹角∠BOD即为旋转角,∴旋转的角度为90°.故答案为:90°.根据旋转的性质,对应边的夹角∠BOD即为旋转角.本题考查了旋转的性质,熟记性质以及旋转角的确定是解题的关键.16.【答案】9√10【解析】解:过点A作AM⊥BC于点M,交CD于点N,∴∠AMB=∠AMC=90°,∵AB=AC,∠BAC=90°,∴∠B=∠ACB=45°,AM=BM=CM,∠BAM=∠CAM=45°,设∠BAE=α,则∠EAM=45°-α,∠AEC=∠B+∠BAE=45°+α,∵AE⊥CD于点F,∴∠AFD=∠AFC=∠EFC=90°,∴∠ACF=90°-∠CAF=∠BAE=α,∴∠ECF=∠ACB-∠ACF=45°-α=∠EAM,∵GH⊥BC于H,∴∠CHG=∠CHK=90°,∴∠CGH=90°-∠ECF=90°-(45°-α)=45°+α,∠K+∠KCH=90°,∵∠K+2∠BAE=90°,∴∠KCH=2∠BAE=2α,∴∠KCG=∠KCH+∠ECF=2α+(45°-α)=45°+α,∴∠CGH=∠KCG,∴KG=KC,∵HG:HK=2:3,设HG=2a,HK=3a,∴KC=KG=5a,∴Rt△CHK中,CH=,∴Rt△CHG中,tan∠ECF=,∴Rt△CMN中,tan∠ECF=,∴MN=CM=AM=AN,∵∠ECF=∠EAM=45°-α,∴Rt△ANF中,tan∠EAM=,设FN=b,则AF=2b,∴MN=AN=,∴AM=CM=2AN=b,∴Rt△CMN中,CN=,∴CF=FN+CN=6b,∴Rt△ACF中,tan∠ACF=,∵∠ACF=∠DAF=α,∴Rt△ADF中,tan∠DAF=,∴DF=AF=,∵AD2=AF2+DF2,AD=10,∴102=(2a)2+(b)2,解得:b1=,b2=-(舍去),∴CF=6×,故答案为:9.作高线AM,根据等腰直角三角形和三线合一得:∠BAM=∠CAM=45°,设∠BAE=α,表示各角的度数,证明KG=KC,由HG:HK=2:3,设HG=2a,HK=3a计算KC、KG和CH的长,根据等角三角函数得tan∠EAM=,设FN=b,则AF=2b,由勾股定理列方程得:AD2=AF2+DF2,得102=(2a)2+(b)2,解出b的值可得结论.本题考查了解直角三角形,勾股定理,直角三角形斜边中线定理,等腰直角三角形的性质等知识,解题的关键是学会利用参数表示角的度数和线段的长,构造方程解决问题.17.【答案】解:解不等式x+32≥x+1,得:x≤1,解不等式3+4(x-1)>-9,得:x>-2,将解集表示在数轴上如下:则不等式组的解集为-2<x ≤1.【解析】分别求出不等式组中两不等式的解集,表示在数轴上找出解集的公共部分确定出不等式组的解集即可.此题考查了解一元一次不等式组,以及在数轴上表示不等式的解集,熟练掌握运算法则是解本题的关键.18.【答案】(1)证明:∵将△ABC 沿AC 翻折得到△AEC ,∴BC =CE ,AC ⊥CE ,∵四边形ABCD 是平行四边形,∴AD ∥BC ,AD =BC ,∴AD =CE ,AD ∥CE ,∴四边形ACED 是平行四边形,∵AC ⊥CE ,∴四边形ACED 是矩形.(2)解:方法一、如图1所示,过点A 作AF ⊥BD 于点F ,∵BE =2BC =2×3=6,DE =AC =4, ∴在Rt △BDE 中, BD =√BE 2+DE 2=√62+42=2√13, ∵S △BDA =12×DE •AD =12AF •BD ,∴AF =2√13=6√1313, ∵Rt △ABC 中,AB =√32+42=5,∴Rt △ABF 中,sin ∠ABF =sin ∠ABD =AF AB =6√13135=6√1365. 方法二、如图2所示,过点O 作OF ⊥AB 于点F ,同理可得,OB =12BD =√13,∵S △AOB =12OF •AB =12OA •BC ,∴OF =2×35=65,∵在Rt △BOF 中, sin ∠FBO =OF OB =65√13=6√1365, ∴sin ∠ABD =6√1365.【解析】(1)根据▱ABCD 中,AC ⊥BC ,而△ABC ≌△AEC ,不难证明;(2)依据已知条件,在△ABD 或△AOC 作垂线AF 或OF ,求出相应边的长度,即可求出∠ABD 的正弦值.本题考查直角三角形翻折变化后所得图形的性质,矩形的判定和性质,平行四边形的性质和解直角三角形求线段的长度,关键是正确添加辅助线和三角形面积的计算公式求出sin ∠ABD .19.【答案】解:原式=2×√32+1-3√3+2√3 =√3+1-3√3+2√3=1.【解析】直接利用特殊角的三角函数值以及零指数幂的性质和二次根式的性质、绝对值的性质分别化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.20.【答案】解:原式=m+1m+2•(m+2)(m−2)(m+1)2=m−2m+1,当m =1时,原式=1−21+1=-12.【解析】先根据分式混合运算的法则把原式进行化简,再把m 的值代入进行计算即可. 本题考查的是分式的混合运算,熟知分式混合运算的法则是解答此题的关键. 21.【答案】126【解析】解:(1)C 等级所占的圆心角为360°×(1-10%-23%-32%)=126°,故答案为:126;(2)∵本次调查的总人数为20÷10%=200(人),∴C 等级的人数为:200-(20+46+64)=70(人),补全统计图如下:(3)1000×=350(人),答:估计“比较喜欢”的学生人数为350人.(1)用360°乘以C等级百分比可得;(2)根据A等级人数及其百分比求得总人数,由各等级人数之和等于总人数求得C等级人数即可补全统计图;(3)用总人数1000乘以样本中C等级所占百分比可得.本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22.【答案】(3,1)√10【解析】解:(1)如图,△A1B1C1为所作;(2)点P的坐标为(3,1),PA1==,即⊙P的半径为,故答案为:(3,1)、.(1)延长BO到B1,使B1O=2BO,则点B1为点B的对应点,同样方法作出点A和C的对应点A1、C1,则△A1B1C1满足条件;(2)利用网格特点,作A1C1和C1B1的垂值平分线得到△A1B1C1外接圆的圆心P,然后写出P点坐标和计算PA1.本题考查了作图-位似变换:①确定位似中心;②分别连接并延长位似中心和能代表原图的关键点;③根据位似比,确定能代表所作的位似图形的关键点;④顺次连接上述各点,得到放大或缩小的图形.也考查了三角形的外心.23.【答案】解:(1)∵甲、乙、丙三位同学抢2张凳子,没有抢到凳子的同学有3种等可能结果,∴甲抢不到座位的概率是1;3(2)画树状图如下:由树状图知共有6种等可能结果,其中甲坐A凳、丙坐B凳的只有1种结果,.∴甲坐A凳、丙坐B凳的概率为16【解析】(1)由甲、乙、丙三位同学抢2张凳子,没有抢到凳子的同学有3种等可能结果,利用概率公式计算可得;(2)画树状图得出所有等可能结果,从中找到符合条件的结果数,再利用概率公式计算可得.本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率.24.【答案】解:(1)由题意可知:x+y=500,w=4x+6y=4x+6(500-x)=-2x+3000,∵k=-2<0,∴y随x的增大而减小,∵甲旅行社最多只能接待300人,∴当x=300时,w最小=-2×300+3000=2400(元);(2)当y<250时,x+y=500,y=500-x<250,得x>250,w=4×0.8x+6×0.7y=3.2x+4.2(500-x)=-x+2100,∵k=-1<0,∴当x越大时,w越小,∴当x=300时,w最小=-300+2100=1800(元)当y≥250时,x+y=500,y=500-x≥250,得x≤250,w=4×0.8x+6×0.5y=3.2x+3(500-x)=0.2x+1500,∵k=0.2>0,∴当x越小时,w越小,因为乙旅行社最多只能接待300人,所以当x=200时,w最小=0.2×200+1500=1540(元)∵1800>1540∴甲旅行社安排200人,乙旅行社安排300人,所需出行费用最低,最低为1540元.【解析】(1)根据题意得,w=4x+6y=4x+6(500-x)=-2x+3000,利用一次函数的性质:k=-2<0,y随x的增大而减小,再根据甲旅行社最多只能接待300人,所以当=-2×300+3000=2400(元);x=300时,w最小(2)当y<250时,x+y=500,y=500-x<250,得x>250,w=4×0.8x+6×0.7y=3.2x+4.2(500-x)=-x+2100;当y≥250时,x+y=500,y=500-x≥250,得x≤250,w=4×0.8x+6×0.5y=3.2x+3(500-x)=0.2x+1500,利用一次函数的性质,即可解答.本题考查了一次函数的性质,解决本题的关键是根据题意列出函数解析式,在(2)中要注意分类讨论.25.【答案】证明:(1)连接OD,如图1,∵OB=OD,∴△ODB是等腰三角形,∠OBD=∠ODB①,在△ABC中,∵AB=AC,∴∠ABC=∠ACB②,由①②得:∠ODB=∠OBD=∠ACB,∴OD∥AC,∵DH⊥AC,∴DH⊥OD,∴DH是圆O的切线;(2)如图1,在⊙O中,∵∠E=∠B,∴由(1)可知:∠E=∠B=∠C,∴△EDC是等腰三角形,∵FDEF =3 2,∵AE∥OD,∴△AEF∽△ODF,∴FDEF =ODAE=32,设OD=3x,AE=2x,∵AO=BO,OD∥AC,∴BD=CD,∴AC=2OD=6x,∴EC=AE+AC=2x+6x=8x,∵ED=DC,DH⊥EC,∴EH=CH=4x,∴AH=EH-AE=4x-2x=2x,∴AE=AH,∴A是EH的中点;(3)如图1,设⊙O的半径为r,即OD=OB=r,∵EF=EA,∴∠EFA=∠EAF,∵OD∥EC,∴∠FOD=∠EAF,则∠FOD=∠EAF=∠EFA=∠OFD,∴DF =OD =r ,∴DE =DF +EF =r +1,∴BD =CD =DE =r +1,在⊙O 中,∵∠BDE =∠EAB ,∴∠BFD =∠EFA =∠EAB =∠BDE ,∴BF =BD ,△BDF 是等腰三角形,∴BF =BD =r +1,∴AF =AB -BF =2OB -BF =2r -(1+r )=r -1,∵∠BFD =∠EFA ,∠B =∠E ,∴△BFD ∽△EFA ,∴EF FA =BF FD ,∴1r−1=r+1r ,解得:r 1=1+√52,r 2=1−√52(舍),综上所述,⊙O 的半径为1+√52.【解析】(1)根据同圆的半径相等和等边对等角证明:∠ODB=∠OBD=∠ACB ,则DH ⊥OD ,DH 是圆O 的切线;(2)如图2,先证明∠E=∠B=∠C ,得△EDC 是等腰三角形,证明△AEF ∽△ODF ,则==,设OD=3x ,AE=2x ,可得EC=8x ,根据等腰三角形三线合一得:EH=CH=4x ,从而得结论;(3)如图2,设⊙O 的半径为r ,即OD=OB=r ,证明DF=OD=r ,则DE=DF+EF=r+1,BD=CD=DE=r+1,证明△BFD ∽△EFA ,列比例式为:,则列方程可求出r 的值.本题是圆的综合题,考查了等腰三角形的性质和判定、切线的性质和判定、三角形的中位线、三角形相似的性质和判定、圆周角定理,第三问设圆的半径为r ,根据等边对等角表示其它边长,利用比例列方程解决问题.26.【答案】45【解析】解:(1)如图①,连接CD ,∵AC 2=12+32=10,CD 2=12+22=5,AD 2=12+22=5,∴CD2+AD2=AC2,且CD=AD,∴△ACD是等腰直角三角形,∴∠CAD=45°,即α+β=45°,故答案为:45.(2)构造如图②所示Rt△ABC,AC=3,CB=4,AB=5,设∠ABC=2α,在Rt△ABC中,∠C=90°,tan2α=tan∠ABC=,延长CN到D,使BD=AB,∵AB=BD=5,∴∠BAD=∠D,∴∠ABC=2∠D,∴∠D=α,在Rt△ADC中,∠C=90°,∴tanα=tan∠D===;(3)如图③,过点C作CE⊥BD于E,∵四边形ABCD是矩形,∴AO=CO=AC,BO=DO=BD,AC=BD,∴OA=OB,∴∠OAB=∠OBA=α,∠COB=2α,在Rt△OCE中,∠ABC=90°,则sin2α==,在Rt△ACB中,∠ACB=90°,则sinα=,cosα=,∵OC=OB,∴∠CBE=∠ACB,∵∠CEB=∠ABC=90°,∴△CEB∽△ABC,∴=,∴CE=,∴==2•,即sin2α=2sinα•cosα.(1)连接CD,利用勾股定理逆定理证明△ACD是等腰直角三角形即可得;(2)构造如图②所示Rt△ABC,AC=3,CB=4,AB=5,延长CN到D,使BD=AB,据此可得tan2α=tan∠ABC=,tanα=tan∠D=;(3)作CE⊥BD于E,利用矩形的性质知∠OAB=∠OBA=α,∠COB=2α,由三角函数定义知sin2α==,sinα=,cosα=,证△CEB∽△ABC得=,即CE=,据此可知==2•,从而得出答案.本题是四边形的综合问题,解题的关键是掌握勾股定理及其逆定理、三角函数的定义、矩形的性质、相似三角形的判定与性质等知识点.27.【答案】解:(1)把点B(3,0)代入y=x2+bx-3,得32+3b-3=0,解得b=-2,则该二次函数的解析式为:y=x2-2x-3;(2)①∠DMT的度数是定值.理由如下:如图1,连接AD.∵抛物线y=x2-2x-3=(x-1)2-4.∴抛物线的对称轴是直线x=1.又∵点D的纵坐标为2√3,∴D(1,2√3).由y=x2-2x-3得到:y=(x-3)(x+1),∴A(-1,0),B(3,0).在Rt△AED中,tan∠DAE=DEAE =2√32=√3.∴∠DAE=60°.∴∠DMT=2∠DAE=120°.∴在点T 的运动过程中,∠DMT 的度数是定值;②如图2,∵MT =12AD .又MT =MD ,∴MD =12AD .∵△ADT 的外接圆圆心M 在AD 的中垂线上,∴点M 是线段AD 的中点时,此时AD 为⊙M 的直径时,MD =12AD .∵A (-1,0),D (1,2√3),∴点M 的坐标是(0,√3).(3)如图3,作MH ⊥x 于点H ,则AH =HT =12AT .又HT =a ,∴H (a -1,0),T (2a -1,0).∵OH ≤x ≤OT ,又动点T 在射线EB 上运动,∴0≤a -1≤x ≤2a -1.∴0≤a -1≤2a -1.∴a ≥1,∴2a -1≥1.(i )当{2a −1≥11−(a −1)≥2a −1−1,即1≤a ≤43时,当x =a -1时,y 最大值=(a -1)2-2(a -1)-3=a 2-4a ;当x =1时,y 最小值=-4.(ii )当{0<a −1≤12a −1>11−(a −1)<2a −1−1,即43<a ≤2时,当x =2a -1时,y 最大值=(2a -1)2-2(2a -1)-3=4a 2-8a .当x =1时,y 最小值=-4.(iii )当a -1>1,即a >2时,当x =2a -1时,y 最大值=(2a -1)2-2(2a -1)-3=4a 2-8a .当x =a -1时,y 最小值=(a -1)2-2(a -1)-3=a 2-4a .【解析】(1)把点B 的坐标代入抛物线解析式求得系数b 的值即可;(2)①如图1,连接AD .构造Rt △AED ,由锐角三角函数的定义知,tan ∠DAE=.即∠DAE=60°,由圆周角定理推知∠DMT=2∠DAE=120°;②如图2,由已知条件MT=AD,MT=MD,推知MD=AD,根据△ADT的外接圆圆心M在AD的中垂线上,得到:点M是线段AD的中点时,此时AD为⊙M的直径时,MD=AD.根据点A、D的坐标求得点M的坐标即可;(3)如图3,作MH⊥x于点H,则AH=HT=AT.易得H(a-1,0),T(2a-1,0).由限制性条件OH≤x≤OT、动点T在射线EB上运动可以得到:0≤a-1≤x≤2a-1.需要分类讨论:(i)当,即1,根据抛物线的增减性求得y的极值.(ii)当,即<a≤2时,根据抛物线的增减性求得y的极值.(iii)当a-1>1,即a>2时,根据抛物线的增减性求得y的极值.主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系。
天津市中考数学试卷一、选择题:本大题共12小题,每小题3分,共36分1.计算(﹣2)﹣5的结果等于()A.﹣7 B.﹣3 C.3 D.72.sin60°的值等于()A.B.C.D.3.下列图形中,可以看作是中心对称图形的是()A.B.C. D.4.2016年5月24日《天津日报》报道,2015年天津外环线内新栽植树木6120000株,将6120000用科学记数法表示应为()A.0.612×107B.6.12×106 C.61.2×105 D.612×1045.如图是一个由4个相同的正方体组成的立体图形,它的主视图是()A.B. C.D.6.估计的值在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间7.计算﹣的结果为()A.1 B.x C.D.8.方程x2+x﹣12=0的两个根为()A.x1=﹣2,x2=6 B.x1=﹣6,x2=2 C.x1=﹣3,x2=4 D.x1=﹣4,x2=39.实数a,b在数轴上的对应点的位置如图所示,把﹣a,﹣b,0按照从小到大的顺序排列,正确的是()A.﹣a<0<﹣b B.0<﹣a<﹣b C.﹣b<0<﹣a D.0<﹣b<﹣a10.如图,把一张矩形纸片ABCD沿对角线AC折叠,点B的对应点为B′,AB′与DC相交于点E,则下列结论一定正确的是()A.∠DAB′=∠CAB′B.∠ACD=∠B′CD C.AD=AE D.AE=CE11.若点A(﹣5,y1),B(﹣3,y2),C(2,y3)在反比例函数y=的图象上,则y1,y2,y3的大小关系是()A.y1<y3<y2B.y1<y2<y3C.y3<y2<y1D.y2<y1<y312.已知二次函数y=(x﹣h)2+1(h为常数),在自变量x的值满足1≤x≤3的情况下,与其对应的函数值y的最小值为5,则h的值为()A.1或﹣5 B.﹣1或5 C.1或﹣3 D.1或3二、填空题:本大题共6小题,每小题3分,共18分13.计算(2a)3的结果等于.14.计算(+)(﹣)的结果等于.15.不透明袋子中装有6个球,其中有1个红球、2个绿球和3个黑球,这些球除颜色外无其他差别,从袋子中随机取出1个球,则它是绿球的概率是.16.若一次函数y=﹣2x+b(b为常数)的图象经过第二、三、四象限,则b的值可以是(写出一个即可).17.如图,在正方形ABCD中,点E,N,P,G分别在边AB,BC,CD,DA上,点M,F,Q都在对角线BD上,且四边形MNPQ和AEFG均为正方形,则的值等于.18.如图,在每个小正方形的边长为1的网格中,A,E为格点,B,F为小正方形边的中点,C为AE,BF 的延长线的交点.(Ⅰ)AE的长等于;(Ⅱ)若点P在线段AC上,点Q在线段BC上,且满足AP=PQ=QB,请在如图所示的网格中,用无刻度的直尺,画出线段PQ,并简要说明点P,Q的位置是如何找到的(不要求证明).三、综合题:本大题共7小题,共66分19.解不等式,请结合题意填空,完成本题的解答.(Ⅰ)解不等式①,得;(Ⅱ)解不等式②,得;(Ⅲ)把不等式①和②的解集在数轴上表示出来;(Ⅳ)原不等式组的解集为.20.在一次中学生田径运动会上,根据参加男子跳高初赛的运动员的成绩(单位:m),绘制出如下的统计图①和图②,请根据相关信息,解答下列问题:(Ⅰ)图1中a的值为;(Ⅱ)求统计的这组初赛成绩数据的平均数、众数和中位数;(Ⅲ)根据这组初赛成绩,由高到低确定9人进入复赛,请直接写出初赛成绩为1.65m的运动员能否进入复赛.21.在⊙O中,AB为直径,C为⊙O上一点.(Ⅰ)如图1.过点C作⊙O的切线,与AB的延长线相交于点P,若∠CAB=27°,求∠P的大小;(Ⅱ)如图2,D为上一点,且OD经过AC的中点E,连接DC并延长,与AB的延长线相交于点P,若∠CAB=10°,求∠P的大小.22.小明上学途中要经过A,B两地,由于A,B两地之间有一片草坪,所以需要走路线AC,CB,如图,在△ABC中,AB=63m,∠A=45°,∠B=37°,求AC,CB的长.(结果保留小数点后一位)参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,取1.414.23.公司有330台机器需要一次性运送到某地,计划租用甲、乙两种货车共8辆,已知每辆甲种货车一次最多运送机器45台、租车费用为400元,每辆乙种货车一次最多运送机器30台、租车费用为280元(Ⅰ)设租用甲种货车x辆(x为非负整数),试填写表格.表一:租用甲种货车的数量/辆 3 7 x租用的甲种货车最多运送机器的数量/台135租用的乙种货车最多运送机器的数量/台150表二:租用甲种货车的数量/辆 3 7 x租用甲种货车的费用/元2800租用乙种货车的费用/元280(Ⅱ)给出能完成此项运送任务的最节省费用的租车方案,并说明理由.24.在平面直角坐标系中,O为原点,点A(4,0),点B(0,3),把△ABO绕点B逆时针旋转,得△A′BO′,点A,O旋转后的对应点为A′,O′,记旋转角为α.(Ⅰ)如图①,若α=90°,求AA′的长;(Ⅱ)如图②,若α=120°,求点O′的坐标;(Ⅲ)在(Ⅱ)的条件下,边OA上的一点P旋转后的对应点为P′,当O′P+BP′取得最小值时,求点P′的坐标(直接写出结果即可)25.已知抛物线C:y=x2﹣2x+1的顶点为P,与y轴的交点为Q,点F(1,).(Ⅰ)求点P,Q的坐标;(Ⅱ)将抛物线C向上平移得到抛物线C′,点Q平移后的对应点为Q′,且FQ′=OQ′.①求抛物线C′的解析式;②若点P关于直线Q′F的对称点为K,射线FK与抛物线C′相交于点A,求点A的坐标.天津市中考数学试卷参考答案与试题解析一、选择题:本大题共12小题,每小题3分,共36分1.计算(﹣2)﹣5的结果等于()A.﹣7 B.﹣3 C.3 D.7【考点】有理数的减法.【分析】根据减去一个数等于加上这个数的相反数进行计算即可得解.【解答】解:(﹣2)﹣5=(﹣2)+(﹣5)=﹣(2+5)=﹣7,故选:A.2.sin60°的值等于()A.B.C.D.【考点】特殊角的三角函数值.【分析】直接利用特殊角的三角函数值求出答案.【解答】解:sin60°=.故选:C.3.下列图形中,可以看作是中心对称图形的是()A.B.C. D.【考点】中心对称图形.【分析】根据中心对称图形的概念求解.【解答】解:A、不是中心对称图形,因为找不到任何这样的一点,旋转180度后它的两部分能够重合;即不满足中心对称图形的定义,故此选项错误;B、是中心对称图形,故此选项正确;C、不是中心对称图形,因为找不到任何这样的一点,旋转180度后它的两部分能够重合;即不满足中心对称图形的定义,故此选项错误;D、不是中心对称图形,因为找不到任何这样的一点,旋转180度后它的两部分能够重合;即不满足中心对称图形的定义,故此选项错误.故选:B.4.2016年5月24日《天津日报》报道,2015年天津外环线内新栽植树木6120000株,将6120000用科学记数法表示应为()A.0.612×107B.6.12×106 C.61.2×105 D.612×104【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:6120000=6.12×106,故选:B.5.如图是一个由4个相同的正方体组成的立体图形,它的主视图是()A.B. C.D.【考点】简单组合体的三视图.【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【解答】解:从正面看易得第一层有2个正方形,第二层左边有一个正方形,第三层左边有一个正方形.故选A.6.估计的值在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间【考点】估算无理数的大小.【分析】直接利用二次根式的性质得出的取值范围.【解答】解:∵<<,∴的值在4和5之间.故选:C.7.计算﹣的结果为()A.1 B.x C.D.【考点】分式的加减法.【分析】根据同分母分式相加减,分母不变,分子相加减计算即可得解.【解答】解:﹣==1.故选A.8.方程x2+x﹣12=0的两个根为()A.x1=﹣2,x2=6 B.x1=﹣6,x2=2 C.x1=﹣3,x2=4 D.x1=﹣4,x2=3【考点】解一元二次方程-因式分解法.【分析】将x2+x﹣12分解因式成(x+4)(x﹣3),解x+4=0或x﹣3=0即可得出结论.【解答】解:x2+x﹣12=(x+4)(x﹣3)=0,则x+4=0,或x﹣3=0,解得:x1=﹣4,x2=3.故选D.9.实数a,b在数轴上的对应点的位置如图所示,把﹣a,﹣b,0按照从小到大的顺序排列,正确的是()A.﹣a<0<﹣b B.0<﹣a<﹣b C.﹣b<0<﹣a D.0<﹣b<﹣a【考点】实数大小比较;实数与数轴.【分析】根据数轴得出a<0<b,求出﹣a>﹣b,﹣b<0,﹣a>0,即可得出答案.【解答】解:∵从数轴可知:a<0<b,∴﹣a>﹣b,﹣b<0,﹣a>0,∴﹣b<0<﹣a,故选C.10.如图,把一张矩形纸片ABCD沿对角线AC折叠,点B的对应点为B′,AB′与DC相交于点E,则下列结论一定正确的是()A.∠DAB′=∠CAB′B.∠ACD=∠B′CD C.AD=AE D.AE=CE【考点】翻折变换(折叠问题).【分析】根据翻折变换的性质可得∠BAC=∠CAB′,根据两直线平行,内错角相等可得∠BAC=∠ACD,从而得到∠ACD=∠CAB′,然后根据等角对等边可得AE=CE,从而得解.【解答】解:∵矩形纸片ABCD沿对角线AC折叠,点B的对应点为B′,∴∠BAC=∠CAB′,∵AB∥CD,∴∠BAC=∠ACD,∴∠ACD=∠CAB′,∴AE=CE,所以,结论正确的是D选项.故选D.11.若点A(﹣5,y1),B(﹣3,y2),C(2,y3)在反比例函数y=的图象上,则y1,y2,y3的大小关系是()A.y1<y3<y2B.y1<y2<y3C.y3<y2<y1D.y2<y1<y3【考点】反比例函数图象上点的坐标特征.【分析】直接利用反比例函数图象的分布,结合增减性得出答案.【解答】解:∵点A(﹣5,y1),B(﹣3,y2),C(2,y3)在反比例函数y=的图象上,∴A,B点在第三象限,C点在第一象限,每个图象上y随x的增大减小,∴y3一定最大,y1>y2,∴y2<y1<y3.故选:D.12.已知二次函数y=(x﹣h)2+1(h为常数),在自变量x的值满足1≤x≤3的情况下,与其对应的函数值y的最小值为5,则h的值为()A.1或﹣5 B.﹣1或5 C.1或﹣3 D.1或3【考点】二次函数的最值.【分析】由解析式可知该函数在x=h时取得最小值1、x>h时,y随x的增大而增大、当x<h时,y随x 的增大而减小,根据1≤x≤3时,函数的最小值为5可分如下两种情况:①若h<1≤x≤3,x=1时,y取得最小值5;②若1≤x≤3<h,当x=3时,y取得最小值5,分别列出关于h的方程求解即可.【解答】解:∵当x>h时,y随x的增大而增大,当x<h时,y随x的增大而减小,∴①若h<1≤x≤3,x=1时,y取得最小值5,可得:(1﹣h)2+1=5,解得:h=﹣1或h=3(舍);②若1≤x≤3<h,当x=3时,y取得最小值5,可得:(3﹣h)2+1=5,解得:h=5或h=1(舍).综上,h的值为﹣1或5,故选:B.二、填空题:本大题共6小题,每小题3分,共18分13.计算(2a)3的结果等于8a3.【考点】幂的乘方与积的乘方.【分析】根据幂的乘方与积的乘方运算法则进行计算即可.【解答】解:(2a)3=8a3.故答案为:8a3.14.计算(+)(﹣)的结果等于2.【考点】二次根式的混合运算.【分析】先套用平方差公式,再根据二次根式的性质计算可得.【解答】解:原式=()2﹣()2=5﹣3=2,故答案为:2.15.不透明袋子中装有6个球,其中有1个红球、2个绿球和3个黑球,这些球除颜色外无其他差别,从袋子中随机取出1个球,则它是绿球的概率是.【考点】概率公式.【分析】由题意可得,共有6种等可能的结果,其中从口袋中任意摸出一个球是绿球的有2种情况,利用概率公式即可求得答案.【解答】解:∵在一个不透明的口袋中有6个除颜色外其余都相同的小球,其中1个红球、2个绿球和3个黑球,∴从口袋中任意摸出一个球是绿球的概率是=,故答案为:.16.若一次函数y=﹣2x+b(b为常数)的图象经过第二、三、四象限,则b的值可以是﹣1(写出一个即可).【考点】一次函数图象与系数的关系.【分析】根据一次函数的图象经过第二、三、四象限,可以得出k<0,b<0,随便写出一个小于0的b值即可.【解答】解:∵一次函数y=﹣2x+b(b为常数)的图象经过第二、三、四象限,∴k<0,b<0.故答案为:﹣1.17.如图,在正方形ABCD中,点E,N,P,G分别在边AB,BC,CD,DA上,点M,F,Q都在对角线BD上,且四边形MNPQ和AEFG均为正方形,则的值等于.【考点】正方形的性质.【分析】根据辅助线的性质得到∠ABD=∠CBD=45°,四边形MNPQ和AEFG均为正方形,推出△BEF与△BMN是等腰直角三角形,于是得到FE=BE=AE=AB,BM=MN=QM,同理DQ=MQ,即可得到结论.【解答】解:在正方形ABCD中,∵∠ABD=∠CBD=45°,∵四边形MNPQ和AEFG均为正方形,∴∠BEF=∠AEF=90°,∠BMN=∠QMN=90°,∴△BEF与△BMN是等腰直角三角形,∴FE=BE=AE=AB,BM=MN=QM,同理DQ=MQ,∴MN=BD=AB,∴==,故答案为:.18.如图,在每个小正方形的边长为1的网格中,A,E为格点,B,F为小正方形边的中点,C为AE,BF 的延长线的交点.(Ⅰ)AE的长等于;(Ⅱ)若点P在线段AC上,点Q在线段BC上,且满足AP=PQ=QB,请在如图所示的网格中,用无刻度的直尺,画出线段PQ,并简要说明点P,Q的位置是如何找到的(不要求证明)AC与网格线相交,得到P,取格点M,连接AM,并延长与BC交予Q,连接PQ,则线段PQ即为所求.【考点】作图—应用与设计作图;勾股定理.【分析】(Ⅰ)根据勾股定理即可得到结论;(Ⅱ)取格点M,连接AM,并延长与BC交予Q,连接PQ,则线段PQ即为所求.【解答】解:(Ⅰ)AE==;故答案为:;(Ⅱ)如图,AC与网格线相交,得到P,取格点M,连接AM,并延长与BC交予Q,连接PQ,则线段PQ即为所求.故答案为:AC与网格线相交,得到P,取格点M,连接AM,并延长与BC交予Q,连接PQ,则线段PQ 即为所求.三、综合题:本大题共7小题,共66分19.解不等式,请结合题意填空,完成本题的解答.(Ⅰ)解不等式①,得x≤4;(Ⅱ)解不等式②,得x≥2;(Ⅲ)把不等式①和②的解集在数轴上表示出来;(Ⅳ)原不等式组的解集为2≤x≤4.【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】分别求出各不等式的解集,再在数轴上表示出来即可.【解答】解:(I)解不等式①,得x≤4.故答案为:x≤4;(II)解不等式②,得x≥2.故答案为:x≥2.(III)把不等式①和②的解集在数轴上表示为:;(IV)原不等式组的解集为:.故答案为:2≤x≤4.20.在一次中学生田径运动会上,根据参加男子跳高初赛的运动员的成绩(单位:m),绘制出如下的统计图①和图②,请根据相关信息,解答下列问题:(Ⅰ)图1中a的值为25;(Ⅱ)求统计的这组初赛成绩数据的平均数、众数和中位数;(Ⅲ)根据这组初赛成绩,由高到低确定9人进入复赛,请直接写出初赛成绩为1.65m的运动员能否进入复赛.【考点】众数;扇形统计图;条形统计图;加权平均数;中位数.【分析】(Ⅰ)用整体1减去其它所占的百分比,即可求出a的值;(Ⅱ)根据平均数、众数和中位数的定义分别进行解答即可;(Ⅲ)根据中位数的意义可直接判断出能否进入复赛.【解答】解:(Ⅰ)根据题意得:1﹣20%﹣10%﹣15%﹣30%=25%;则a的值是25;故答案为:25;(Ⅱ)观察条形统计图得:==1.61;∵在这组数据中,1.65出现了6次,出现的次数最多,∴这组数据的众数是1.65;将这组数据从小到大排列为,其中处于中间的两个数都是1.60,则这组数据的中位数是1.60.(Ⅲ)能;∵共有20个人,中位数是第10、11个数的平均数,∴根据中位数可以判断出能否进入前9名;∵1.65m>1.60m,∴能进入复赛.21.在⊙O中,AB为直径,C为⊙O上一点.(Ⅰ)如图1.过点C作⊙O的切线,与AB的延长线相交于点P,若∠CAB=27°,求∠P的大小;(Ⅱ)如图2,D为上一点,且OD经过AC的中点E,连接DC并延长,与AB的延长线相交于点P,若∠CAB=10°,求∠P的大小.【考点】切线的性质.【分析】(Ⅰ)连接OC,首先根据切线的性质得到∠OCP=90°,利用∠CAB=27°得到∠COB=2∠CAB=54°,然后利用直角三角形两锐角互余即可求得答案;(Ⅱ)根据E为AC的中点得到OD⊥AC,从而求得∠AOE=90°﹣∠EAO=80°,然后利用圆周角定理求得∠ACD=∠AOD=40°,最后利用三角形的外角的性质求解即可.【解答】解:(Ⅰ)如图,连接OC,∵⊙O与PC相切于点C,∴OC⊥PC,即∠OCP=90°,∵∠CAB=27°,∴∠COB=2∠CAB=54°,在Rt△AOE中,∠P+∠COP=90°,∴∠P=90°﹣∠COP=36°;(Ⅱ)∵E为AC的中点,∴OD⊥AC,即∠AEO=90°,在Rt△AOE中,由∠EAO=10°,得∠AOE=90°﹣∠EAO=80°,∴∠ACD=∠AOD=40°,∵∠ACD是△ACP的一个外角,∴∠P=∠ACD﹣∠A=40°﹣10°=30°.22.小明上学途中要经过A,B两地,由于A,B两地之间有一片草坪,所以需要走路线AC,CB,如图,在△ABC中,AB=63m,∠A=45°,∠B=37°,求AC,CB的长.(结果保留小数点后一位)参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,取1.414.【考点】解直角三角形的应用.【分析】根据锐角三角函数,可用CD表示AD,BD,AC,BC,根据线段的和差,可得关于CD的方程,根据解方程,可得CD的长,根据AC=CD,CB=,可得答案.【解答】解:过点C作CD⊥AB垂足为D,在Rt△ACD中,tanA=tan45°==1,CD=AD,sinA=sin45°==,AC=CD.在Rt△BCD中,tanB=tan37°=≈0.75,BD=;sinB=sin37°=≈0.60,CB=.∵AD+BD=AB=63,∴CD+=63,解得CD≈27,AC=CD≈1.414×27=38.178≈38.2,CB=≈=45.0,答:AC的长约为38.2cm,CB的长约等于45.0m.23.公司有330台机器需要一次性运送到某地,计划租用甲、乙两种货车共8辆,已知每辆甲种货车一次最多运送机器45台、租车费用为400元,每辆乙种货车一次最多运送机器30台、租车费用为280元(Ⅰ)设租用甲种货车x辆(x为非负整数),试填写表格.表一:租用甲种货车的数量/辆 3 7 x租用的甲种货车最多运送机器的数量/台135 31545x租用的乙种货车最多运送机器的数量/台150 30﹣30x+240表二:租用甲种货车的数量/辆 3 7 x租用甲种货车的费用/元12002800 400x租用乙种货车的费用/元1400280 ﹣280x+2240(Ⅱ)给出能完成此项运送任务的最节省费用的租车方案,并说明理由.【考点】一次函数的应用.【分析】(Ⅰ)根据计划租用甲、乙两种货车共8辆,已知每辆甲种货车一次最多运送机器45台、租车费用为400元,每辆乙种货车一次最多运送机器30台、租车费用为280元,可以分别把表一和表二补充完整;(Ⅱ)由(Ⅰ)中的数据和公司有330台机器需要一次性运送到某地,可以解答本题.【解答】解:(Ⅰ)由题意可得,在表一中,当甲车7辆时,运送的机器数量为:45×7=315(台),则乙车8﹣7=1辆,运送的机器数量为:30×1=30(台),当甲车x辆时,运送的机器数量为:45×x=45x(台),则乙车(8﹣x)辆,运送的机器数量为:30×(8﹣x)=﹣30x+240(台),在表二中,当租用甲货车3辆时,租用甲种货车的费用为:400×3=1200(元),则租用乙种货车8﹣3=5辆,租用乙种货车的费用为:280×5=1400(元),当租用甲货车x辆时,租用甲种货车的费用为:400×x=400x(元),则租用乙种货车(8﹣x)辆,租用乙种货车的费用为:280×(8﹣x)=﹣280x+2240(元),故答案为:表一:315,45x,30,﹣30x+240;表二:1200,400x,1400,﹣280x+2240;(Ⅱ)能完成此项运送任务的最节省费用的租车方案是甲车6辆,乙车2辆,理由:当租用甲种货车x辆时,设两种货车的总费用为y元,则两种货车的总费用为:y=400x+(﹣280x+2240)=120x+2240,又∵45x+(﹣30x+240)≥330,解得x≥6,∵120>0,∴在函数y=120x+2240中,y随x的增大而增大,∴当x=6时,y取得最小值,即能完成此项运送任务的最节省费用的租车方案是甲种货车6辆,乙种货车2辆.24.在平面直角坐标系中,O为原点,点A(4,0),点B(0,3),把△ABO绕点B逆时针旋转,得△A′BO′,点A,O旋转后的对应点为A′,O′,记旋转角为α.(Ⅰ)如图①,若α=90°,求AA′的长;(Ⅱ)如图②,若α=120°,求点O′的坐标;(Ⅲ)在(Ⅱ)的条件下,边OA上的一点P旋转后的对应点为P′,当O′P+BP′取得最小值时,求点P′的坐标(直接写出结果即可)【考点】几何变换综合题.【分析】(1)如图①,先利用勾股定理计算出AB=5,再根据旋转的性质得BA=BA′,∠ABA′=90°,则可判定△ABA′为等腰直角三角形,然后根据等腰直角三角形的性质求AA′的长;(2)作O′H⊥y轴于H,如图②,利用旋转的性质得BO=BO′=3,∠OBO′=120°,则∠HBO′=60°,再在Rt △BHO′中利用含30度的直角三角形三边的关系可计算出BH和O′H的长,然后利用坐标的表示方法写出O′点的坐标;(3)由旋转的性质得BP=BP′,则O′P+BP′=O′P+BP,作B点关于x轴的对称点C,连结O′C交x轴于P点,如图②,易得O′P+BP=O′C,利用两点之间线段最短可判断此时O′P+BP的值最小,接着利用待定系数法求出直线O′C的解析式为y=x﹣3,从而得到P(,0),则O′P′=OP=,作P′D⊥O′H于D,然后确定∠DP′O′=30°后利用含30度的直角三角形三边的关系可计算出P′D和DO′的长,从而可得到P′点的坐标.【解答】解:(1)如图①,∵点A(4,0),点B(0,3),∴OA=4,OB=3,∴AB==5,∵△ABO绕点B逆时针旋转90°,得△A′BO′,∴BA=BA′,∠ABA′=90°,∴△ABA′为等腰直角三角形,∴AA′=BA=5;(2)作O′H⊥y轴于H,如图②,∵△ABO绕点B逆时针旋转120°,得△A′BO′,∴BO=BO′=3,∠OBO′=120°,∴∠HBO′=60°,在Rt△BHO′中,∵∠BO′H=90°﹣∠HBO′=30°,∴BH=BO′=,O′H=BH=,∴OH=OB+BH=3+=,∴O′点的坐标为(,);(3)∵△ABO绕点B逆时针旋转120°,得△A′BO′,点P的对应点为P′,∴BP=BP′,∴O′P+BP′=O′P+BP,作B点关于x轴的对称点C,连结O′C交x轴于P点,如图②,则O′P+BP=O′P+PC=O′C,此时O′P+BP的值最小,∵点C与点B关于x轴对称,∴C(0,﹣3),设直线O′C的解析式为y=kx+b,把O′(,),C(0,﹣3)代入得,解得,∴直线O′C的解析式为y=x﹣3,当y=0时,x﹣3=0,解得x=,则P(,0),∴OP=,∴O′P′=OP=,作P′D⊥O′H于D,∵∠BO′A=∠BOA=90°,∠BO′H=30°,∴∠DP′O′=30°,∴O′D=O′P′=,P′D=O′D=,∴DH=O′H﹣O′D=﹣=,∴P′点的坐标为(,).25.已知抛物线C:y=x2﹣2x+1的顶点为P,与y轴的交点为Q,点F(1,).(Ⅰ)求点P,Q的坐标;(Ⅱ)将抛物线C向上平移得到抛物线C′,点Q平移后的对应点为Q′,且FQ′=OQ′.①求抛物线C′的解析式;②若点P关于直线Q′F的对称点为K,射线FK与抛物线C′相交于点A,求点A的坐标.【考点】二次函数综合题.【分析】(1)令x=0,求出抛物线与y轴的交点,抛物线解析式化为顶点式,求出点P坐标;(2)①设出Q′(0,m),表示出Q′H,根据FQ′=OQ′,用勾股定理建立方程求出m,即可.②根据AF=AN,用勾股定理,(x﹣1)2+(y﹣)2=(x2﹣2x+)+y2﹣y=y2,求出AF=y,再求出直线Q′F的解析式,即可.【解答】解:(Ⅰ)∵y=x2﹣2x+1=(x﹣1)2∴顶点P(1,0),∵当x=0时,y=1,∴Q(0,1),(Ⅱ)①设抛物线C′的解析式为y=x2﹣2x+m,∴Q′(0,m)其中m>1,∴OQ′=m,∵F(1,),过F作FH⊥OQ′,如图:∴FH=1,Q′H=m﹣,在Rt△FQ′H中,FQ′2=(m﹣)2+1=m2﹣m+,∵FQ′=OQ′,∴m2﹣m+=m2,∴m=,∴抛物线C′的解析式为y=x2﹣2x+,②设点A(x0,y0),则y0=x02﹣2x0+,过点A作x轴的垂线,与直线Q′F相交于点N,则可设N(x0,n),∴AN=y0﹣n,其中y0>n,连接FP,∵F(1,),P(1,0),∴FP⊥x轴,∴FP∥AN,∴∠ANF=∠PFN,连接PK,则直线Q′F是线段PK的垂直平分线,∴FP=FK,有∠PFN=∠AFN,∴∠ANF=∠AFN,则AF=AN,根据勾股定理,得,AF2=(x0﹣1)2+(y0﹣)2,∴(x0﹣1)2+(y0﹣)2=(x﹣2x0+)+y﹣y0=y,∴AF=y0,∴y0=y0﹣n,∴n=0,∴N(x0,0),设直线Q′F的解析式为y=kx+b,则,解得,∴y=﹣x+,由点N在直线Q′F上,得,0=﹣x0+,∴x0=,将x0=代入y0=x﹣2x0+,∴y0=,∴A(,)。
天津市滨海新区2019-2020学年中考数学二月模拟试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.如图,A 、B 、C 是⊙O 上的三点,∠B=75°,则∠AOC 的度数是( )A .150°B .140°C .130°D .120°2.对于不等式组1561333(1)51x xx x ⎧-≤-⎪⎨⎪-<-⎩,下列说法正确的是( )A .此不等式组的正整数解为1,2,3B .此不等式组的解集为716x -<≤ C .此不等式组有5个整数解 D .此不等式组无解3.下列运算正确的是( ) A .a 12÷a 4=a 3B .a 4•a 2=a 8C .(﹣a 2)3=a 6D .a•(a 3)2=a 74.已知一个等腰三角形的两边长分别是2和4,则该等腰三角形的周长为( ) A .8或10B .8C .10D .6或125.某校九年级共有1、2、3、4四个班,现从这四个班中随机抽取两个班进行一场篮球比赛,则恰好抽到1班和2班的概率是( ) A .B .C .D .6.已知A 、B 两地之间铁路长为450千米,动车比火车每小时多行驶50千米,从A 市到B 市乘动车比乘火车少用40分钟,设动车速度为每小时x 千米,则可列方程为( )A .4504504050x x -=- B .4504504050x x -=- C .4504502503x x -=+ D .4504502503x x -=- 7.如图,已知两个全等的直角三角形纸片的直角边分别为a 、b ()a b ≠,将这两个三角形的一组等边重合,拼合成一个无重叠的几何图形,其中轴对称图形有( )A .3个;B .4个;C .5个;D .6个.8.为丰富学生课外活动,某校积极开展社团活动,开设的体育社团有:A :篮球,B :排球,C :足球,D :羽毛球,E :乒乓球.学生可根据自己的爱好选择一项,李老师对八年级同学选择体育社团情况进行调查统计,制成了两幅不完整的统计图(如图),则以下结论不正确的是( )A .选科目E 的有5人B .选科目A 的扇形圆心角是120°C .选科目D 的人数占体育社团人数的15D .据此估计全校1000名八年级同学,选择科目B 的有140人 9.下列关于x 的方程一定有实数解的是( ) A .2x mx 10--= B .ax 3= C .x 64x 0-⋅-=D .1x x 1x 1=-- 10.如图,△ABC 是⊙O 的内接三角形,∠BOC =120°,则∠A 等于( )A .50°B .60°C .55°D .65°11.随着我国综合国力的提升,中华文化影响日益增强,学中文的外国人越来越多,中文已成为美国居民的第二外语,美国常讲中文的人口约有210万,请将“210万”用科学记数法表示为( ) A .70.2110⨯B .62.110⨯C .52110⨯D .72.110⨯12.如图,分别以等边三角形ABC 的三个顶点为圆心,以边长为半径画弧,得到的封闭图形是莱洛三角形,若AB=2,则莱洛三角形的面积(即阴影部分面积)为( )A .3π+B .3π-C .23π-D .223π-二、填空题:(本大题共6个小题,每小题4分,共24分.)13.对于实数x ,我们规定[x]表示不大于x 的最大整数,例如[1.1]=1,[3]=3,[﹣2.2]=﹣3,若[43x +]=5,则x 的取值范围是_____.14.若一个反比例函数的图象经过点A(m ,m)和B(2m ,-1),则这个反比例函数的表达式为______ 15.如图,⊙O 在△ABC 三边上截得的弦长相等,∠A=70°,则∠BOC=_____度.16.某中学数学教研组有25名教师,将他们分成三组,在38~45(岁)组内有8名教师,那么这个小组的频率是_______。
天津市滨海新区2019-2020学年中考第二次模拟数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,已知AE垂直于ABC∠的平分线于点D,交BC于点E,13CE BC=,若ABC∆的面积为1,则CDE∆的面积是()A.14B.16C.18D.1102.方程5x+2y=-9与下列方程构成的方程组的解为212xy=-⎧⎪⎨=⎪⎩的是()A.x+2y=1 B.3x+2y=-8C.5x+4y=-3 D.3x-4y=-83.-4的相反数是()A.14B.14-C.4 D.-44.已知:如图,在正方形ABCD外取一点E,连接AE、BE、DE,过点A作AE的垂线交DE于点P,若AE=AP=1,PB=5.下列结论:①△APD≌△AEB;②点B到直线AE的距离为2;③EB⊥ED;④S△APD+S△APB=1+6;⑤S正方形ABCD=4+6.其中正确结论的序号是()A.①③④B.①②⑤C.③④⑤D.①③⑤5.下表是某校合唱团成员的年龄分布,对于不同的x,下列关于年龄的统计量不会发生改变的是()年龄/岁13 14 15 16频数 5 15 x 10- xA.平均数、中位数B.众数、方差C.平均数、方差D.众数、中位数6.小明解方程121xx x--=的过程如下,他的解答过程中从第()步开始出现错误.解:去分母,得1﹣(x﹣2)=1①去括号,得1﹣x+2=1②合并同类项,得﹣x+3=1③移项,得﹣x=﹣2④系数化为1,得x=2⑤A.①B.②C.③D.④7.如图,“赵爽弦图”是由四个全等的直角三角形与中间一个小正方形拼成的一个大正方形,大正方形与小正方形的边长之比是2∶1,若随机在大正方形及其内部区域投针,则针孔扎到小正方形(阴影部分)的概率是()A.0.2 B.0.25 C.0.4 D.0.58.如图,桌面上放着1个长方体和1个圆柱体,按如图所示的方式摆放在一起,其左视图是()A.B.C.D.9.某药品经过两次降价,每瓶零售价由168元降为108元,已知两次降价的百分率相同,设每次降价的百分率为x,根据题意列方程得()A.168(1﹣x)2=108 B.168(1﹣x2)=108C.168(1﹣2x)=108 D.168(1+x)2=10810.某一超市在“五•一”期间开展有奖促销活动,每买100元商品可参加抽奖一次,中奖的概率为13.小张这期间在该超市买商品获得了三次抽奖机会,则小张( )A.能中奖一次B.能中奖两次C.至少能中奖一次D.中奖次数不能确定11.如图是由三个相同的小正方体组成的几何体,则该几何体的左视图是()A.B.C.D.12.-3的相反数是( )A .13B .3C .13- D .-3二、填空题:(本大题共6个小题,每小题4分,共24分.)13.某航空公司规定,乘客所携带行李的重量x (kg )与运费y (元)满足如图所示的函数图象,那么每位乘客最多可免费携带____kg 的行李.14.请从以下两个小题中任选一个作答,若多选,则按第一题计分.A .正多边形的一个外角是40°,则这个正多边形的边数是____________ .B .运用科学计算器比较大小:5? 12- ________ sin37.5° . 15.计算:()235y y ÷=____________16.如图,在3×3的方格中,A 、B 、C 、D 、E 、F 分别位于格点上,从C 、D 、E 、F 四点中任取一点,与点A 、B 为顶点作三角形,则所作三角形为等腰三角形的概率是__.17.如图,在△ABC 和△EDB 中,∠C =∠EBD =90°,点E 在AB 上.若△ABC ≌△EDB ,AC =4,BC =3,则AE =_____.18.如图,在△ABC 中,∠ACB =90°,∠A =30°,BC =4,以点C 为圆心,CB 长为半径作弧,交AB 于点D ;再分别以点B 和点D 为圆心,大于12BD 的长为半径作弧,两弧相交于点E ,作射线CE 交AB 于点F ,则AF 的长为_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)先化简:224424242x x xxx x-+-⎛⎫÷-+⎪-+⎝⎭,然后从67x-<<的范围内选取一个合适的整数作为x的值代入求值.20.(6分)如图,在▱ABCD中,AB=4,AD=5,tanA=43,点P从点A出发,沿折线AB﹣BC以每秒1个单位长度的速度向中点C运动,过点P作PQ⊥AB,交折线AD﹣DC于点Q,将线段PQ绕点P顺时针旋转90°,得到线段PR,连接QR.设△PQR与▱ABCD重叠部分图形的面积为S(平方单位),点P运动的时间为t(秒).(1)当点R与点B重合时,求t的值;(2)当点P在BC边上运动时,求线段PQ的长(用含有t的代数式表示);(3)当点R落在▱ABCD的外部时,求S与t的函数关系式;(4)直接写出点P运动过程中,△PCD是等腰三角形时所有的t值.21.(6分)如图,某校教学楼AB的后面有一建筑物CD,当光线与地面的夹角是22º时,教学楼在建筑物的墙上留下高2m的影子CE;而当光线与地面的夹角是45º时,教学楼顶A在地面上的影子F与墙角C有13m的距离(B、F、C在一条直线上).求教学楼AB的高度;学校要在A、E之间挂一些彩旗,请你求出A、E之间的距离(结果保留整数).22.(8分)计算:|2|﹣8﹣(2﹣π)0+2cos45°.解方程:33xx-=1﹣13x-23.(8分)如图,一位测量人员,要测量池塘的宽度AB的长,他过A B、两点画两条相交于点O的射线,在射线上取两点 D E 、 ,使 13OD OE OB OA == ,若测得 37.2DE = 米,他能求出 A B 、 之间的距离吗?若能,请你帮他算出来;若不能,请你帮他设计一个可行方案.24.(10分)解方程:3221x x x=+-. 25.(10分)如图,Rt △ABC 中,∠ABC =90°,点D ,F 分别是AC ,AB 的中点,CE ∥DB ,BE ∥DC .(1)求证:四边形DBEC 是菱形;(2)若AD =3, DF =1,求四边形DBEC 面积.26.(12分)如图,在△ABC 中,D 是BC 边上的一点,E 是AD 的中点,过A 作BC 的平行线交CE 的延长线与F ,且AF=BD ,连接BF 。
天津市滨海新区2019-2020学年中考二诊数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,O 是坐标原点,菱形OABC 的顶点A 的坐标为(﹣3,﹣4),顶点C 在x 轴的负半轴上,函数y=k x(x <0)的图象经过菱形OABC 中心E 点,则k 的值为( )A .6B .8C .10D .122.若关于x 的一元二次方程x 2﹣2x+m=0有两个不相等的实数根,则m 的取值范围是( ) A .m <﹣1 B .m <1 C .m >﹣1 D .m >13.已知点A 为某封闭图形边界上一定点,动点P 从点A 出发,沿其边界顺时针匀速运动一周.设点P 运动的时间为x ,线段AP 的长为y .表示y 与x 的函数关系的图象大致如右图所示,则该封闭图形可能是( )A .B .C .D .4.如图,为测量平地上一块不规则区域(图中的阴影部分)的面积,画一个边长为4m 的正方形,使不规则区域落在正方形内.现向正方形内随机投掷小球(假设小球落在正方形内每一点都是等可能的),经过大量重复投掷试验,发现小球落在不规则区域的频率稳定在常数0.65附近,由此可估计不规则区域的面积约为( )A .2.6m 2B .5.6m 2C .8.25m 2D .10.4m 25.如图,矩形AEHC 是由三个全等矩形拼成的,AH 与BE ,BF ,DF ,DG ,CG 分别交于点,,,,P Q K M N ,设BPQ V ,DKM △,CNH △的面积依次为1S ,2S ,3S ,若1320S S +=,则2S 的值为( )A.6 B.8 C.10 D.126.一个圆锥的侧面积是12π,它的底面半径是3,则它的母线长等于()A.2 B.3 C.4 D.67.如图,小明从A处出发沿北偏东60°方向行走至B处,又沿北偏西20°方向行走至C处,此时需把方向调整到与出发时一致,则方向的调整应是()A.右转80°B.左转80°C.右转100°D.左转100°8.下列实数中是无理数的是()A.227B.2﹣2C.5.15&&D.sin45°9.如图,BD是∠ABC的角平分线,DC∥AB,下列说法正确的是()A.BC=CD B.AD∥BCC.AD=BC D.点A与点C关于BD对称10.如图,以正方形ABCD的边CD为边向正方形ABCD外作等边△CDE,AC与BE交于点F,则∠AFE 的度数是()A.135°B.120°C.60°D.45°11.如图,点D、E分别为△ABC的边AB、AC上的中点,则△ADE的面积与四边形BCED的面积的比为( )A .1:2B .1:3C .1:4D .1:112.将一把直尺和一块含30°和60°角的三角板ABC 按如图所示的位置放置,如果∠CDE=40°,那么∠BAF 的大小为( )A .10°B .15°C .20°D .25°二、填空题:(本大题共6个小题,每小题4分,共24分.)13.因式分解:2xy 2xy x ++=______.14.关于x 的一元二次方程260x x b -+=有两个不相等的实数根,则实数b 的取值范围是________. 15.观察下列一组数13,25,37,49,511,…探究规律,第n 个数是_____. 16.如图,Rt ABC V 中,90ACB ∠=︒,30B ∠=︒,2AC =,将ABC V 绕点C 逆时针旋转至A B C ''V ,使得点A '恰好落在AB 上,A B ''与BC 交于点D ,则A CD '△的面积为_________.17.如图,O 是矩形ABCD 的对角线AC 的中点,M 是AD 的中点,若AB=6,AD=8,则四边形ABOM 的周长为_____.18.如果a ,b 分别是2016的两个平方根,那么a+b ﹣ab=___.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)中华文化,源远流长,在文学方面,《西游记》、《三国演义》、《水浒传》、《红楼梦》是我国古代长篇小说中的典型代表,被称为“四大古典名著”.某中学为了了解学生对四大古典名著的阅读情况,就“四大古典名著你读完了几部”的问题在全校学生中进行了抽样调查,根据调查结果绘制成如图所示的两个不完整的统计图,请结合图中信息解决下列问题:(1)本次调查了 名学生,扇形统计图中“1部”所在扇形的圆心角为 度,并补全条形统计图;(2)此中学共有1600名学生,通过计算预估其中4部都读完了的学生人数;(3)没有读过四大古典名著的两名学生准备从四大固定名著中各自随机选择一部来阅读,求他们选中同一名著的概率.20.(6分)如图,已知D 是AC 上一点,AB=DA ,DE ∥AB ,∠B=∠DAE .求证:BC=AE . 21.(6分)如图,以△ABC 的边AB 为直径的⊙O 分别交BC 、AC 于F 、G ,且G 是»AF 的中点,过点G 作DE ⊥BC ,垂足为E ,交BA 的延长线于点D(1)求证:DE 是的⊙O 切线;(2)若AB=6,BG=4,求BE 的长;(3)若AB=6,CE=1.2,请直接写出AD 的长.22.(8分)如图,点D ,C 在BF 上,AB ∥EF ,∠A=∠E ,BD=CF .求证:AB =EF .23.(8分)先化简,再求代数式(222311a a a --+-)÷11a +的值,其中a=2sin45°+tan45°. 24.(10分)如图,圆内接四边形ABCD 的两组对边延长线分别交于E 、F ,∠AEB 、∠AFD 的平分线交于P点.求证:PE⊥PF.25.(10分)如图,在平面直角坐标系中,四边形OABC为矩形,直线y=kx+b交BC于点E(1,m),交AB于点F(4,12),反比例函数y=nx(x>0)的图象经过点E,F.(1)求反比例函数及一次函数解析式;(2)点P是线段EF上一点,连接PO、PA,若△POA的面积等于△EBF的面积,求点P的坐标.26.(12分)(7分)某中学1000名学生参加了”环保知识竞赛“,为了了解本次竞赛成绩情况,从中抽取了部分学生的成绩(得分取整数,满分为100分)作为样本进行统计,并制作了如图频数分布表和频数分布直方图(不完整且局部污损,其中“■”表示被污损的数据).请解答下列问题:成绩分组频数频率50≤x<60 8 0.1660≤x<70 12 a70≤x<80 ■0.580≤x<90 3 0.0690≤x≤100 b c合计■ 1(1)写出a,b,c的值;(2)请估计这1000名学生中有多少人的竞赛成绩不低于70分;(3)在选取的样本中,从竞赛成绩是80分以上(含80分)的同学中随机抽取两名同学参加环保知识宣传活动,求所抽取的2名同学来自同一组的概率.27.(12分)M中学为创建园林学校,购买了若干桂花树苗,计划把迎宾大道的一侧全部栽上桂花树(两端必须各栽一棵),并且每两棵树的间隔相等,如果每隔5米栽1棵,则树苗缺11棵;如果每隔6米栽1棵,则树苗正好用完,求购买了桂花树苗多少棵?参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】【分析】根据勾股定理得到22+,根据菱形的性质得到AB=OA=5,AB∥x轴,求得B(-8,-4),得34到E(-4,-2),于是得到结论.【详解】∵点A的坐标为(﹣3,﹣4),∴2234+,∵四边形AOCB是菱形,∴AB=OA=5,AB∥x轴,∴B(﹣8,﹣4),∵点E是菱形AOCB的中心,∴E(﹣4,﹣2),∴k=﹣4×(﹣2)=8,故选B.【点睛】本题考查了反比例函数图象上点的坐标特征,菱形的性质,勾股定理,正确的识别图形是解题的关键.2.B【解析】【分析】根据方程有两个不相等的实数根结合根的判别式即可得出△=4-4m>0,解之即可得出结论.【详解】∵关于x的一元二次方程x2-2x+m=0有两个不相等的实数根,∴△=(-2)2-4m=4-4m>0,解得:m<1.故选B.【点睛】本题考查了根的判别式,熟练掌握“当△>0时,方程有两个不相等的两个实数根”是解题的关键.3.A【解析】【分析】【详解】解:分析题中所给函数图像,-段,AP随x的增大而增大,长度与点P的运动时间成正比.O E-段,AP逐渐减小,到达最小值时又逐渐增大,排除C、D选项,E F-段,AP逐渐减小直至为0,排除B选项.F G故选A.【点睛】本题考查了动点问题的函数图象,函数图象是典型的数形结合,图象应用信息广泛,通过看图获取信息,不仅可以解决生活中的实际问题,还可以提高分析问题、解决问题的能力.用图象解决问题时,要理清图象的含义即会识图.4.D【解析】【分析】首先确定小石子落在不规则区域的概率,然后利用概率公式求得其面积即可.【详解】∵经过大量重复投掷试验,发现小石子落在不规则区域的频率稳定在常数0.65附近,∴小石子落在不规则区域的概率为0.65,∵正方形的边长为4m ,∴面积为16 m 2设不规则部分的面积为s m 2 则16s =0.65 解得:s=10.4故答案为:D .【点睛】利用频率估计概率.5.B【解析】【分析】由条件可以得出△BPQ ∽△DKM ∽△CNH ,可以求出△BPQ 与△DKM 的相似比为12,△BPQ 与△CNH 相似比为13,由相似三角形的性质,就可以求出1S ,从而可以求出2S . 【详解】∵矩形AEHC 是由三个全等矩形拼成的,∴AB=BD=CD ,AE ∥BF ∥DG ∥CH ,∴∠BQP=∠DMK=∠CHN ,∴△ABQ ∽△ADM ,△ABQ ∽△ACH , ∴12AB BQ AD DM ==,13AB BQ AC CH ==, ∵EF=FG= BD=CD ,AC ∥EH ,∴四边形BEFD 、四边形DFGC 是平行四边形,∴BE ∥DF ∥CG ,∴∠BPQ=∠DKM=∠CNH ,又∵∠BQP=∠DMK=∠CHN ,∴△BPQ ∽△DKM ,△BPQ ∽△CNH ,∴221211()24S BQ S DM ⎛⎫=== ⎪⎝⎭,221311()39S BQ S CH ⎛⎫=== ⎪⎝⎭, 即214S S =,319S S =, 1320S S +=Q ,∴11920S S +=,即11020S =,解得:12S =,∴214S S =42=⨯8=,故选:B .【点睛】本题考查了矩形的性质,平行四边形的判定和性质,相似三角形的判定与性质,三角形的面积公式,得出S 2=4S 1,S 3=9S 1是解题关键.6.C【解析】设母线长为R ,底面半径是3cm ,则底面周长=6π,侧面积=3πR=12π,∴R=4cm .故选C .7.A【解析】【分析】【详解】60°+20°=80°.由北偏西20°转向北偏东60°,需要向右转.故选A .8.D【解析】A 、是有理数,故A 选项错误;B 、是有理数,故B 选项错误;C 、是有理数,故C 选项错误;D 、是无限不循环小数,是无理数,故D 选项正确;故选:D .9.A【解析】【分析】由BD是∠ABC的角平分线,根据角平分线定义得到一对角∠ABD与∠CBD相等,然后由DC∥AB,根据两直线平行,得到一对内错角∠ABD与∠CDB相等,利用等量代换得到∠DBC=∠CDB,再根据等角对等边得到BC=CD,从而得到正确的选项.【详解】∵BD是∠ABC的角平分线,∴∠ABD=∠CBD,又∵DC∥AB,∴∠ABD=∠CDB,∴∠CBD=∠CDB,∴BC=CD.故选A.【点睛】此题考查了等腰三角形的判定,以及平行线的性质.学生在做题时,若遇到两直线平行,往往要想到用两直线平行得同位角或内错角相等,借助转化的数学思想解决问题.这是一道较易的证明题,锻炼了学生的逻辑思维能力.10.B【解析】【分析】易得△ABF与△ADF全等,∠AFD=∠AFB,因此只要求出∠AFB的度数即可.【详解】∵四边形ABCD是正方形,∴AB=AD,∠BAF=∠DAF,∴△ABF≌△ADF,∴∠AFD=∠AFB,∵CB=CE,∴∠CBE=∠CEB,∵∠BCE=∠BCD+∠DCE=90°+60°=150°,∴∠CBE=15°,∵∠ACB=45°,∴∠AFB=∠ACB+∠CBE=60°.∴∠AFE=120°.故选B.【点睛】此题考查正方形的性质,熟练掌握正方形及等边三角形的性质,会运用其性质进行一些简单的转化. 11.B【解析】【分析】根据中位线定理得到DE ∥BC ,DE=12BC ,从而判定△ADE ∽△ABC ,然后利用相似三角形的性质求解. 【详解】解:∵D 、E 分别为△ABC 的边AB 、AC 上的中点,∴DE 是△ABC 的中位线,∴DE ∥BC ,DE=12BC , ∴△ADE ∽△ABC , ∴△ADE 的面积:△ABC 的面积=21()2=1:4,∴△ADE 的面积:四边形BCED 的面积=1:3;故选B .【点睛】本题考查三角形中位线定理及相似三角形的判定与性质.12.A【解析】【分析】先根据∠CDE=40°,得出∠CED=50°,再根据DE ∥AF ,即可得到∠CAF=50°,最后根据∠BAC=60°,即可得出∠BAF 的大小.【详解】由图可得,∠CDE=40° ,∠C=90°,∴∠CED=50°,又∵DE ∥AF ,∴∠CAF=50°,∵∠BAC=60°,∴∠BAF=60°−50°=10°,故选A.【点睛】本题考查了平行线的性质,熟练掌握这一点是解题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.2(1)x y【解析】【分析】先提取公因式x ,再对余下的多项式利用完全平方公式继续分解.【详解】xy 1+1xy+x ,=x (y 1+1y+1),=x (y+1)1.故答案为:x (y+1)1.【点睛】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.14.b <9【解析】【分析】由方程有两个不相等的实数根结合根的判别式,可得出3640b >∆=-,解之即可得出实数b 的取值范围.【详解】解:Q 方程260x x b +=﹣有两个不相等的实数根,2643640b b ∴∆=--=-()>,解得:b 9<.【点睛】本题考查的知识点是根的判别式,解题关键是牢记“当0∆>时,方程有两个不相等的实数根”. 15.21n n + 【解析】【分析】根据已知得出数字分母与分子的变化规律,分子是连续的正整数,分母是连续的奇数,进而得出第n 个数分子的规律是n ,分母的规律是2n+1,进而得出这一组数的第n 个数的值.【详解】解:因为分子的规律是连续的正整数,分母的规律是2n+1,所以第n 个数就应该是:21n n +, 故答案为21n n +. 【点睛】此题主要考查了数字变化规律,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.解题的关键是把数据的分子分母分别用组数n 表示出来.16【解析】【分析】首先证明△CAA′是等边三角形,再证明△A′DC 是直角三角形,在Rt △A′DC 中利用含30度的直角三角形三边的关系求出CD 、A′D 即可解决问题.【详解】在Rt △ACB 中,∠ACB=90°,∠B=30°,∴∠A=60°,∵△ABC 绕点C 逆时针旋转至△A′B′C ,使得点A′恰好落在AB 上,∴CA=CA′=2,∠CA′B′=∠A=60°,∴△CAA′为等边三角形,∴∠ACA′=60°,∴∠BCA′=∠ACB -∠ACA′=90°-60°=30°,∴∠A′DC=180°-∠CA′B′-∠BCA′=90°,在Rt △A′DC 中,∵∠A′CD=30°,∴A′D=12CA′=1,∴12A CD S CD A D ''=⋅⋅△112==故答案为:2 【点睛】本题考查了含30度的直角三角形三边的关系,等边三角形的判定和性质以及旋转的性质,掌握旋转的性质“对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等”是解题的关键.17.1.【解析】【分析】根据矩形的性质,直角三角形斜边中线性质,三角形中位线性质求出BO 、OM 、AM 即可解决问题.【详解】解:∵四边形ABCD 是矩形,∴AD=BC=8,AB=CD=6,∠ABC=90°,∴2210AC AB BC =+=,∵AO=OC ,∴152BO AC ==, ∵AO=OC ,AM=MD=4, ∴132OM CD ==, ∴四边形ABOM 的周长为AB+OB+OM+AM=6+5+3+4=1.故答案为:1.【点睛】本题看成矩形的性质、三角形中位线定理、直角三角形斜边中线性质等知识,解题的关键是灵活应用中线知识解决问题,属于中考常考题型.18.1【解析】【分析】先由平方根的应用得出a ,b 的值,进而得出a+b=0,代入即可得出结论.【详解】∵a ,b 分别是1的两个平方根,∴20162016a b ==-,,∵a ,b 分别是1的两个平方根,∴a+b=0,∴ab=a×(﹣a )=﹣a 2=﹣1,∴a+b ﹣ab=0﹣(﹣1)=1,故答案为:1.【点睛】此题主要考查了平方根的性质和意义,解本题的关键是熟练掌握平方根的性质.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)40、126(2)240人(3)14【解析】【分析】(1)用2部的人数10除以2部人数所占的百分比25%即可求出本次调查的学生数,根据扇形圆心角的度数=部分占总体的百分比×360°,即可得到“1部”所在扇形的圆心角;(2)用1600乘以4部所占的百分比即可;(3)根据树状图所得的结果,判断他们选中同一名著的概率.【详解】(1)调查的总人数为:10÷25%=40,∴1部对应的人数为40﹣2﹣10﹣8﹣6=14,则扇形统计图中“1部”所在扇形的圆心角为:1440×360°=126°;故答案为40、126;(2)预估其中4部都读完了的学生有1600×640=240人;(3)将《西游记》、《三国演义》、《水浒传》、《红楼梦》分别记作A,B,C,D,画树状图可得:共有16种等可能的结果,其中选中同一名著的有4种,故P(两人选中同一名著)=416=14.【点睛】本题考查了扇形统计图和条形统计图的综合,用样本估计总体,列表法或树状图法求概率.解答此类题目,要善于发现二者之间的关联点,即两个统计图都知道了哪个量的数据,从而用条形统计图中的具体数量除以扇形统计图中占的百分比,求出样本容量,进而求解其它未知的量.20.见解析【解析】【分析】【详解】证明:∵DE∥AB,∴∠CAB=∠ADE.在△ABC和△DAE中,∵CAB ADE {AB DAB DAE∠=∠=∠=∠,∴△ABC≌△DAE(ASA).∴BC=AE.【点睛】根据两直线平行,内错角相等求出∠CAB=∠ADE,然后利用“角边角”证明△ABC和△DAE全等,再根据全等三角形对应边相等证明即可.21.(1)证明见解析;(1)83;(3)1.【解析】【分析】(1)要证明DE是的⊙O切线,证明OG⊥DE即可;(1)先证明△GBA∽△EBG,即可得出ABBG=BGBE,根据已知条件即可求出BE;(3)先证明△AGB≌△CGB,得出BC=AB=6,BE=4.8再根据OG∥BE得出OGBE=DODB,即可计算出AD.【详解】证明:(1)如图,连接OG,GB,∵G是弧AF的中点,∴∠GBF=∠GBA,∵OB=OG,∴∠OBG=∠OGB,∴∠GBF=∠OGB,∴OG∥BC,∴∠OGD=∠GEB,∵DE⊥CB,∴∠GEB=90°,∴∠OGD=90°,即OG⊥DE且G为半径外端,∴DE为⊙O切线;(1)∵AB为⊙O直径,∴∠AGB=90°,∴∠AGB=∠GEB,且∠GBA=∠GBE,∴△GBA∽△EBG,∴AB BG BG BE=,∴224863BGBEAB===;(3)AD=1,根据SAS可知△AGB≌△CGB,则BC=AB=6,∴BE=4.8,∵OG∥BE,∴OG DOBE DB=,即334.86DADA+=+,解得:AD=1.【点睛】本题考查了相似三角形与全等三角形的判定与性质与切线的性质,解题的关键是熟练的掌握相似三角形与全等三角形的判定与性质与切线的性质.22.见解析【解析】试题分析:依据题意,可通过证△ABC≌△EFD来得出AB=EF的结论,两三角形中,已知的条件有AB∥EF 即∠B=∠F,∠A=∠E,BD=CF,即BC=DF;可根据AAS判定两三角形全等解题.证明:∵AB∥EF,∴∠B=∠F.又∵BD=CF,∴BC=FD.在△ABC与△EFD中,∴△ABC≌△EFD(AAS),∴AB=EF.23.11a-,22.【解析】【分析】先把小括号内的通分,按照分式的减法和分式除法法则进行化简,再把字母的值代入运算即可.【详解】解:原式()()()()()()21231,1111a a a a a a a ⎡⎤--=-⋅+⎢⎥+-+-⎢⎥⎣⎦()()()22231,11a a a a a --+=⋅++- 1,1a =-当2sin45tan45a =︒+︒211,2=⨯+=时原式=== 【点睛】考查分式的混合运算,掌握运算顺序是解题的关键.24.证明见解析.【解析】【分析】由圆内接四边形ABCD 的两组对边延长线分别交于E 、F ,∠AEB 、∠AFD 的平分线交于P 点,继而可得EM=EN ,即可证得:PE ⊥PF .【详解】∵四边形ABCD 内接于圆,∴BCF A ∠∠=,∵FM 平分BFC ∠,∴BFN CFN ∠∠=,∵EMP A BFN ∠∠∠=+,PNE BCF CFN ∠∠∠=+,∴EMP PNE ∠∠=,∴EM EN =,∵PE 平分MEN ∠,∴PE PF ⊥.【点睛】此题考查了圆的内接多边形的性质以及圆周角定理.此题难度不大,注意掌握数形结合思想的应用. 25.(1)2y x =;1522y x =-+;(2)点P 坐标为(114,98). 【解析】【分析】(1)将F (4,12)代入0n y x x=(>),即可求出反比例函数的解析式2y x =;再根据2y x =求出E 点坐标,将E 、F 两点坐标代入y kx b =+,即可求出一次函数解析式;(2)先求出△EBF 的面积,点P 是线段EF 上一点,可设点P 坐标为1522x x +(,﹣),根据面积公式即可求出P 点坐标.【详解】 解:(1)∵反比例函数0n y x x =(>)经过点142F (,),∴n=2, 反比例函数解析式为2y x =. ∵2y x=的图象经过点E (1,m ), ∴m=2,点E 坐标为(1,2). ∵直线y kx b =+ 过点12E (,),点142F (,), ∴2142k b k b +=⎧⎪⎨+=⎪⎩,解得1252k b ⎧=-⎪⎪⎨⎪=⎪⎩, ∴一次函数解析式为1522y x =+﹣; (2)∵点E 坐标为(1,2),点F 坐标为142(,),∴点B 坐标为(4,2),∴BE=3,BF=32, ∴1139•32224EBF S BE BF ∆==⨯⨯=, ∴94POA EBF S S ∆∆== . 点P 是线段EF 上一点,可设点P 坐标为1522x x +(,﹣), ∴115942224x ⨯-+=(), 解得114x =, ∴点P 坐标为11948(,). 【点睛】本题主要考查反比例函数,一次函数的解析式以及三角形的面积公式.26.(1)a=0.24,b=2,c=0.04;(2)600人;(3)25人.【解析】【分析】(1)利用50≤x<60的频数和频率,根据公式:频率=频数÷总数先计算出样本总人数,再分别计算出a,b,c的值;(2)先计算出竞赛分数不低于70分的频率,根据样本估计总体的思想,计算出1000名学生中竞赛成绩不低于70分的人数;(3)列树形图或列出表格,得到要求的所有情况和2名同学来自一组的情况,利用求概率公式计算出概率.【详解】解:(1)样本人数为:8÷0.16=50(名)a=12÷50=0.24,70≤x<80的人数为:50×0.5=25(名)b=50﹣8﹣12﹣25﹣3=2(名)c=2÷50=0.04所以a=0.24,b=2,c=0.04;(2)在选取的样本中,竞赛分数不低于70分的频率是0.5+0.06+0.04=0.6,根据样本估计总体的思想,有:1000×0.6=600(人)∴这1000名学生中有600人的竞赛成绩不低于70分;(3)成绩是80分以上的同学共有5人,其中第4组有3人,不妨记为甲,乙,丙,第5组有2人,不妨记作A,B从竞赛成绩是80分以上(含80分)的同学中随机抽取两名同学,情形如树形图所示,共有20种情况:抽取两名同学在同一组的有:甲乙,甲丙,乙甲,乙丙,丙甲,丙乙,AB,BA共8种情况,∴抽取的2名同学来自同一组的概率P=820=25【点睛】本题考查了频数、频率、总数间关系及用列表法或树形图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树形图法适合两步或两步以上完成的事件;概率=所求情况数与总情况数之比.27.购买了桂花树苗1棵【解析】分析:首先设购买了桂花树苗x棵,然后根据题意列出一元一次方程,从而得出答案.详解:设购买了桂花树苗x棵,根据题意,得:5(x+11-1)=6(x-1),解得x=1.答:购买了桂花树苗1棵.点睛:本题主要考查的是一元一次方程的应用,属于基础题型.解决这个问题的关键就是找出等量关系以及路的长度与树的棵树之间的关系.。
一、选择题(每题3分,共30分)1. 如果方程 $2x - 3 = 5$ 的解为 $x$,那么 $x$ 的值为()A. 4B. 2C. 1D. 8答案:A解析:将方程 $2x - 3 = 5$ 两边同时加3,得到 $2x = 8$,再两边同时除以2,得到 $x = 4$。
2. 在直角坐标系中,点 $A(2,3)$ 关于 $x$ 轴的对称点为()A. $(-2,3)$B. $(2,-3)$C. $(-2,-3)$D. $(2,3)$答案:B解析:点 $A(2,3)$ 关于 $x$ 轴对称,即纵坐标取相反数,所以对称点坐标为$(2,-3)$。
3. 下列函数中,是反比例函数的是()A. $y = 2x + 3$B. $y = \frac{1}{x}$C. $y = x^2$D. $y = 3x^3$答案:B解析:反比例函数的形式为 $y = \frac{k}{x}$($k \neq 0$),故选项B符合条件。
4. 在 $\triangle ABC$ 中,若 $a = 3$,$b = 4$,$c = 5$,则 $\triangle ABC$ 是()A. 等腰三角形B. 直角三角形C. 等边三角形D. 钝角三角形答案:B解析:根据勾股定理,若 $a^2 + b^2 = c^2$,则 $\triangle ABC$ 为直角三角形。
计算得 $3^2 + 4^2 = 5^2$,所以 $\triangle ABC$ 是直角三角形。
5. 下列数列中,不是等差数列的是()A. $2, 5, 8, 11, \ldots$B. $1, 4, 7, 10, \ldots$C. $3, 6, 9, 12, \ldots$D. $-1, 2, 5, 8, \ldots$答案:D解析:等差数列的特点是相邻两项之差相等。
计算相邻两项之差,发现选项D中的数列相邻两项之差为3,与其它选项不符。
二、填空题(每题5分,共25分)6. 若 $x + 2 = 5$,则 $x =\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_ \_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_ \_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_ \_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_ \_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_ \_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_ \_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_ \_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_ \_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_ \_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_ \_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_ \_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_ \_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_ \_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_ \_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_ \_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_ \_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_ \_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_ \_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_ \_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_ \_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_ \_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_ \_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_ \_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_ \_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_ \_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_ \_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_ \_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_ \_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_ \_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_ \_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_ \_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_ \_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_ \_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_ \_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_ \_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_ \_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_ \_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_ \_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_ \_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_ \_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_ \_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_ \_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_ \_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_ \_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_ \_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_ \_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_ \_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_ \_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_ \_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_ \_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_ \_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_ \_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_ \_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_ \_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_ \_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_ \_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_ \_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_ \_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_ \_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_ \_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_ \_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\。
2020年天津市中考二模试卷数学试卷一、选择题(本大题共12小题,共36分) 1. 计算(−6)+2 的结果等于( )A. −8B. −4C. 4D. 8 2. tan60°的值为( )A. √33B. √23C. √3D. √23. 下面图形中,是中心对称图形的是( )A. B. C. D.4. 2016年西峡香菇年出口值达到4380000000亿元,成为国内最大的干香菇出口货源集散中心.其中4380000000科学记数法表示为( )A. 438×107B. 4.38×108C. 4.38×109D. 4.38×10105. 如图,是由七个相同的小正方体组成的立体图形,其俯视图是( )A. B. C. D.6. √15介于两个相邻整数之间,这两个整数是( )A. 2~3B. 3~4C. 4~5D. 5~67. 化简21−a −1a−1的结果是( )A. 31−aB. 3a−1C. 11−aD. 1a−18. 二元一次方程组{2x −y =−2x +y =5的解为( )A. {x =−1y =6B. {x =73y =83C. {x =3y =2D. {x =1y =49. 如图,E 、F 分别是矩形ABCD 边AB 、CD 上的点,将矩形ABCD 沿EF 折叠,使A 、D 分别落在A′和D′处,若∠1=50°,则∠2的度数是( )A. 65°B. 60°C. 50°D. 40°10. 已知点A(x 1,y 1),(x 2,y 2)是反比例函数y =2x 图象上的点,若x 1>0>x 2,则一定成立的是( )A. y 1>y 2>0B. y 1>0>y 2C. 0>y 1>y 2D. y 2>0>y 111. 如图,正方形ABCD 的边长为8,M 在DC 上,且DM =2,N 是AC 上一动点,则DN +MN 的最小值为( ) A. 6 B. 8 C. 12 D. 1012. 已知:抛物线y =ax 2+bx +c(a <0)经过点(−1,0),且满足4a +2b +c >0,以下结论:①a +b >0;②a +c >0;③−a +b +c >0;④b 2−2ac >5a 2,其中正确的个数有( ) A. 1个 B. 2个 C. 3个 D. 4个 二、填空题(本大题共6小题,共18分) 13. 化简:(−a 2)⋅a 5=______.14. 计算:(√5+√6)(√5−√6)=______.15. 箱子里有7个白球、3个红球,它们仅颜色不同,从中随机摸出一球是白球的概率是______.16. 若直线y =−2x +3b +2经过第一、二、四象限,则b 的取值范围是______. 17. 如图,△ABC 是等边三角形.P 是∠ABC 的平分线BD 上一点,PE ⊥AB 于点E ,线段BP 的垂直平分线交BC 于点F ,垂足为点Q.若BF =2,则PE 的长为______. 18. 如图,在由边长都为1的小正方形组成的网格中,点A ,B ,C 均为格点,点P ,Q分别为线段AB ,BC 上的动点,且满足AP =BQ (I)线段AB 的长度等于______; (Ⅱ)当线段AQ +CP 取得最小值时,请借助无刻度直尺在给定的网格中画出线段AQ 和CP ,并简要说明你是怎么画出点Q ,P 的(不要求证明)______.三、解答题(本大题共7小题,共66分)19. 解不等式组{3x <x +8 ①4(x +1)≤7x +10 ②请结合意填空,完成本题的解答 (Ⅰ)解不等式①,得______; (Ⅱ)解不等式②,得______;(Ⅲ)把不等式①和②的解集在数轴上表示出来(Ⅳ)原不等式组的解集为______.20.4月23日是世界读书日,习近平总书记说:“读书可以让人保持思维活力,让人得到智慧的启发,让人漱养浩然正气.”倡导读书活动,鼓励师生利用课余时间广泛阅读.期末,学校为了调查这学期学生课外阅读情况,随机抽样调查了一部分学生阅读课外书的本数,并将收集到的数据整理成如图的统计图.(1)这次一共调查的学生人数是______人(2)所调查学生读书本数的众数是______本,中位数是______本.(3)若该校有800名学生,请你估计该校学生这学期读书总数是多少本?21.已知AB是⊙O的直径,弦CD与AB相交,∠BAC=40°.(1)如图1,若D为弧AB的中点,求∠ABC和∠ABD的度数;(2)如图2,过点D作⊙O的切线,与AB的延长线交于点P,若DP//AC,求∠OCD的度数.22.综合实践课上,某兴趣小组同学用航拍无人机进行测高实践,如图为实践时绘制的截面图.无人机从地面点B垂直起飞到达点A处,测得学校1号楼顶部E的俯角为60°,测得2号楼顶部F的俯角为45°,此时航拍无人机的高度为50米.已知1号楼的高度为20米,且EC和FD分别垂直地面于点C和D,B为CD的中点,求2号楼的高度.23.某单位要印刷“市民文明出行,遵守交通安全”的宣传材料,甲印刷厂提出:每份材料收1元印刷费,另收150元的制版费;乙印刷厂提出:每份材料收2.5元印刷费,不收制版费设在同一家印刷厂一次印制数量为x份(x为正整数)一次印制数量51020 (x)甲印刷厂收费(元)155______ ______ …______ 乙印刷厂收费(元)12.5______ ______ …______24.如图(1),在平面直角坐标系中,已知△AOB是等边三角形,点A的坐标是(0,4),点B在第一象限,点P(t,0)是x轴上的一个动点,连接AP,并把△AOP绕着点A 按逆时针方向旋转,使边AO与AB重合.连接OD,PD,得△ABD.(Ⅰ)当t=√3时,求DP的长;(Ⅱ)在点P运动过程中,依照条件所形成的△OPD面积为S.①求t>0时,求S与t之间的函数关系式;②当t≤0时,要使S=√3,请直接写出所有符合条件的点P的坐标.425.如图,抛物线y=ax2+bx+5过点A(1,0),B(5,0),与y轴相交于点C.2(1)求抛物线的解析式;(2)定义:平面上的任一点到二次函数图象上与它横坐标相同的点的距离,称为点到二次函数图象的垂直距离.如:点O到二次函数图象的垂直距离是线段OC的长.已知点E为抛物线对称轴上的一点,且在x轴上方,点F为平面内一点,当以A,B,E,F为顶点的四边形是边长为4的菱形时,请求出点F到二次函数图象的垂直距离.(3)在(2)中,当点F到二次函数图象的垂直距离最小时,在以A,B,E,F为顶点的菱形内部是否存在点Q,使得AQ,BQ,FQ之和最小,若存在,请求出最小值;若不存在,请说明理由.答案和解析1.【答案】B【解析】解:(−6)+2=−4.故选:B.绝对值不等的异号加法,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得0.依此即可求解.考查了有理数的加法,在进行有理数加法运算时,首先判断两个加数的符号:是同号还是异号,是否有0.从而确定用那一条法则.在应用过程中,要牢记“先符号,后绝对值”.2.【答案】C【解析】解:tan60°=√3.故选:C.将特殊角的三角函数值代入求解.本题考查了特殊角的三角函数值,解答本题的关键是掌握几个特殊角的三角函数值.3.【答案】B【解析】解:A、不是中心对称图形,本选项错误;B、是中心对称图形,本选项正确;C、不是中心对称图形,本选项错误;D、不是中心对称图形,本选项错误.故选:B.结合中心对称图形的概念进行求解即可.本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.4.【答案】C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.【解答】解:将4380000000用科学记数法表示为:4.38×109.故选C.5.【答案】D【解析】解:这个立体图形的俯视图是:,故选:D.根据组合体的形状即可求出答案.本题考查了学生的思考能力和对几何体三种视图的空间想象能力.解题的关键是根据组合体的形状进行判断.6.【答案】B【解析】解:∵3<√15<4, ∴这两个整数是:3~4. 故选:B .直接利用估算无理数的方法得出√15的取值范围即可.此题主要考查了估算无理数的大小,正确得出√15的取值范围是解题关键. 7.【答案】A【解析】解:原式=−2a−1−1a−1=−3a−1=31−a ,故选:A .原式变形后,利用同分母分式的减法法则计算即可得到结果. 此题考查了分式的加减法,熟练掌握运算法则是解本题的关键. 8.【答案】D【解析】解:{2x −y =−2①x +y =5②,①+②,得:3x =3, 解得:x =1,将x =1代入②,得:1+y =5, 解得:y =4, 所以方程组的解为{x =1y =4,故选:D .利用加减消元法求解可得.本题主要考查解二元一次方程组,解题关键是掌握方程组解法中的加减消元法和代入消元法.9.【答案】A【解析】解:由折叠的性质得,∠AEF =∠A′EF , ∵∠1=50′, ∴∠AEF =∠A′EF =180°−∠12=65°,∵四边形ABCD 是矩形, ∴AB//CD ,∴∠2=∠AEF =65°, 故选:A .由折叠的性质得到∠AEF =∠A′EF ,根据平行线的性质即可得到结论.本题考查了翻折变换−折叠问题,矩形的性质,平行线的性质,熟练掌握折叠的性质是解题的关键. 10.【答案】B【解析】解:∵k =2>0, ∴函数为减函数, 又∵x 1>0>x 2,∴A ,B 两点不在同一象限内, ∴y 2<0<y 1;故选:B.(k≠0,k为常数)中,当k>0时,双曲线在第一,三象限,在每个象限反比例函数y=2x内,y随x的增大而减小判定则可.本题考查了由反比例函数图象的性质判断函数图象上点的坐标特征,同学们应重点掌握.11.【答案】D【解析】解:如图,连接BM,∵点B和点D关于直线AC对称,∴NB=ND,则BM就是DN+MN的最小值,∵正方形ABCD的边长是8,DM=2,∴CM=6,∴BM=√62+82=10,∴DN+MN的最小值是10.故选:D.要求DN+MN的最小值,DN,MN不能直接求,可考虑通过作辅助线转化DN,MN的值,从而找出其最小值求解.此题考查正方形的性质和轴对称及勾股定理等知识的综合应用,解题的难点在于确定满足条件的点N的位置:利用轴对称的方法.然后熟练运用勾股定理.12.【答案】D【解析】解:(1)因为抛物线y=ax2+bx+c(a<0)经过点(−1,0),所以原式可化为a−b+c=0----①,又因为4a+2b+c>0----②,所以②−①得:3a+3b>0,即a+b>0;(2)②+①×2得,6a+3c>0,即2a+c>0,∴a+c>−a,∵a<0,∴−a>0,故a+c>0;(3)因为4a+2b+c>0,可以看作y=ax2+bx+c(a<0)当x=2时的值大于0,草图为:可见c>0,∵a−b+c=0,∴−a+b−c=0,两边同时加2c得−a+b−c+2c=2c,整理得−a+b+c=2c>0,即−a+b+c>0;(4)∵过(−1,0),代入得a−b+c=0,∴b2−2ac−5a2=(a+c)2−2ac−5a2=c2−4a2=(c+2a)(c−2a)又∵4a+2b+c>04a+2(a+c)+c>0即2a+c>0①∵a<0,∴c>0则c−2a>0②由①②知(c+2a)(c−2a)>0,所以b2−2ac−5a2>0,即b2−2ac>5a2综上可知正确的个数有4个.故选:D.(1)因为抛物线y=ax2+bx+c(a<0)经过点(−1,0),把点(−1,0)代入解析式,结合4a+2b+c>0,即可整理出a+b>0;(2)②+①×2得,6a+3c>0,结合a<0,故可求出a+c>0;(3)画草图可知c>0,结合a−b+c=0,可整理得−a+b+c=2c>0,从而求得−a+ b+c>0;(4)把(−1,0)代入解析式得a−b+c=0,可得出2a+c>0,再由a<0,可知c>0则c−2a>0,故可得出(c+2a)(c−2a)>0,即b2−2ac−5a2>0,进而可得出结论.此题是一道结论开放性题目,考查了二次函数的性质、一元二次方程根的个数和图象的位置之间的关系,同时结合了不等式的运算,是一道难题.13.【答案】−a7【解析】解:原式=−a2⋅a5=−a7.故答案为:−a7.根据同底数幂的乘除法进行计算即可.本题考查了整式的运算,掌握平同底数幂的运算法则是解题的关键.14.【答案】−1【解析】解:(√5+√6)(√5−√6)=(√5)2−(√6)2=5−6=−1.故答案为:−1.利用平方差公式求解即可得:原式=(√5)2−(√6)2,继而求得答案.此题考查了二次根式的乘除运算.此题难度不大,注意掌握平方差公式的应用是解此题的关键.15.【答案】710【解析】解:∵箱子里有7个白球、3个红球,∴从中随机摸出一球是白球的概率是77+3=710.故答案为710.用白球的个数除以球的总个数即可.此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.16.【答案】b>−23【解析】解:∵直线y=−2x+3b+2经过第一、二、四象限,∴3b+2>0,∴b>−2.3.故答案为:b>−23由一次函数图象经过的象限结合一次函数图象与系数的关系,即可得出关于b的一元一次不等式,解之即可得出结论.本题考查了一次函数图象与系数的关系,牢记“k<0,b>0⇔y=kx+b的图象在一、二、四象限”是解题的关键.17.【答案】√3【解析】解:∵△ABC是等边三角形.P是∠ABC的平分线BD上一点,∴∠FBQ=∠EBP=30°,∴在直角△BFQ中,BQ=BF⋅cos∠FBQ=2×√3=√3,2又∵QF是BP的垂直平分线,∴BP=2BQ=2√3.∵直角△BPE中,∠EBP=30°,BP=√3.∴PE=12故答案是:√3.在直角△BFQ中,利用三角函数即可求得BQ的长,则BP的长即可求得,然后在直角△BPE中,利用30度所对的直角边等于斜边的一半即可求得PE的长.本题考查了等边三角形的性质以及直角三角形的性质和三角函数,正确求得BQ的长是关键.18.【答案】5 如图2中,取格点J,S,连接JS得到交点T,作射线BT,取格点W,R,连接WR交射线BT于H,此时BH=3,连接AH交BC于点Q,取格点K,使得AK=5,连接CK交AB于P,点P,Q即为所求.【解析】解:(I)线段AB的长度=√32+42=5.故答案为5.(Ⅱ)如图1中,作BH⊥AB,使得BH=AC=3,易证△CAP≌△HBQ,推出HQ=PC,∴PC+AQ=AQ+HQ,∵AQ+QH≤AH,∴当A,Q,H共线时,AQ+QH的值最小.如图2中,取格点J,S,连接JS得到交点T,作射线BT,取格点W,R,连接WR交射线BT于H,此时BH=3,连接AH交BC于点Q,取格点K,使得AK=5,连接CK 交AB于P,点P,Q即为所求.故答案为如图2中,取格点J,S,连接JS得到交点T,作射线BT,取格点W,R,连接WR交射线BT于H,此时BH=3,连接AH交BC于点Q,取格点K,使得AK=5,连接CK交AB于P,点P,Q即为所求.(I)利用勾股定理计算即可.(Ⅱ)如图1中,作BH⊥AB,使得BH=AC=3,易证△CAP≌△HBQ,推出HQ=PC,推出PC+AQ=AQ+HQ,由AQ+QH≤AH,可知当A,Q,H共线时,AQ+QH的值最小.由此即可解决问题.本题考查复杂作图,勾股定理,全等三角形的判定和性质,三角形的三边关系等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会用转化的思想思考问题,属于中考填空题中的压轴题.19.【答案】(Ⅰ)x<4(Ⅱ)x≥−2(Ⅲ)(Ⅳ)−2≤x<4解:{3x<x+8 ①4(x+1)≤7x+10 ②(I)解不等式①,得x<4;(Ⅱ)解不等式②,得x≥−2;(Ⅲ)把不等式①和②的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为−2≤x<4,故答案为:x<4,x≥−2,−2≤x<4.【解析】先求出每个不等式的解集,再求出不等式组的解集即可.本题考查了解一元一次不等式组和在数轴上表示不等式组的解集,能根据不等式的解集找出不等式组的解集是解此题的关键.20.【答案】解:(1)20;(2)4;4 ;(3)每个人读书本数的平均数是:x−=120×(1+2×1+3×3+4×6+5×4+6×2+7×2+8)=4.5.∴总数是:800×4.5=3600.答:估计该校学生这学期读书总数约3600本.【解析】【分析】本题考查条形统计图、用样本估计总体、中位数、众数、加权平均数,解题的关键是明确题意,找出所求问题需要的条件.(1)将条形图中的数据相加即可;(2)根据众数和中位数的概念解答即可;(3)先求出平均数,再解答即可.【解答】解:(1)1+1+3+4+6+2+2+1=20,故答案为:20;(2)众数是4,中位数是4;故答案为:4;4;(3)见答案.21.【答案】解:(1)如图1,连接OD,∵AB是⊙O的直径,弦CD与AB相交,∠BAC=40°,∴∠ACB=90°.∴∠ABC=∠ACB−∠BAC=90°−40°=50°.∵D为弧AB的中点,∠AOB=180°,∴∠AOD=90°,∴∠ABD=45°;(2)如图2,连接OD,∵DP切⊙O于点D,∴OD⊥DP,即∠ODP=90°.由DP//AC,又∠BAC=40°,∴∠P=∠BAC=40°.∵∠AOD是△ODP的一个外角,∴∠AOD=∠P+∠ODP=130°.∴∠ACD=65°.∵OC=OA,∠BAC=40°,∴∠OCA=∠BAC=40°.∴∠OCD=∠ACD−∠OCA=65°−40°=25°.【解析】(1)根据圆周角和圆心角的关系和图形可以求得∠ABC和∠ABD的大小;(2)根据题意和平行线的性质、切线的性质可以求得∠OCD的大小.本题考查切线的性质、圆周角定理,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.22.【答案】解:过点E作EG⊥AB于G,过点F作FH⊥AB于H,则四边形ECBG,HBDF是矩形,∴EC=GB=20,HB=FD,∵B为CD的中点,∴EG=CB=BD=HF,由已知得:∠EAG=90°−60°=30°,∠AFH=45°.在Rt△AEG中,AG=AB−GB=50−20=30米,=10√3米,∴EG=AG⋅tan30°=30×√33在Rt△AHP中,AH=HF⋅tan45°=10√3米,∴FD=HB=AB−AH=50−10√3(米).答:2号楼的高度为(50−10√3)米.【解析】过点E作EG⊥AB于G,过点F作FH⊥AB于H,可得四边形ECBG,HBDF 是矩形,在Rt△AEG中,根据三角函数求得EG,在Rt△AHP中,根据三角函数求得AH,再根据线段的和差关系即可求解.此题考查了解直角三角形的应用−仰角俯角问题的知识.此题难度适中,注意能借助仰角或俯角构造直角三角形并解直角三角形是解此题的关键.23.【答案】解:(1)甲每份材料收1元印刷费,另收150元的制版费;故答案为160,170,150+x;乙每份材料收2.5元印刷费,故答案为25,50,2.5x;(2)对甲来说,印刷大于800份时花费大于150+800,即花费大于950元;对乙来说,印刷大于800份时花费大于2.5×800,即花费大于2000元;故去甲更省钱;【解析】(1)甲的印刷费150+x,乙的印刷费2.5x,分别代入即可;(2)对甲来说,印刷大于800份时花费大于950元;对乙来说,印刷大于800份时花费大于2000元;本题考查代数式求值;能够根据题意列出代数式,并根据实际情况进行最优求解是关键.24.【答案】解:(Ⅰ)∵A(0,4),∴OA=4,∵P(t,0),∴OP=t,∵△ABD是由△AOP旋转得到,∴△ABD≌△AOP,∴AP=AD,∠DAB=∠PAO,∴∠DAP=∠BAO=60°,∴△ADP是等边三角形,∴DP=AP,∵t=√3,∴OP =√3, ∴DP =AP =√AO 2+OP 2=√19; (Ⅱ)①当t >0时,如图1,BD =OP =t , 过点B ,D 分别作x 轴的垂线,垂足于F ,H ,过点B 作x 轴的平行线, 分别交y 轴于点P ,交DH 于点G ,∵△OAB 为等边三角形,BE ⊥y 轴,∴∠ABP =30°,AP =OP =2,∵∠ABD =90°,∴∠DBG =60°,∴DG =BD ⋅sin60°=√32t , ∵GH =OP =2,∴DH =2+√32t , ∴S =12t(2+√32t)=√34t 2+t(t >0);②当t ≤0时,分两种情况:∵点D 在x 轴上时,如图2在Rt △ABD 中,BD =OP =4√33,i 、当−4√33<t ≤0时,如图3, BD =OP =t ,BG =−√32t , ∴DH =GF =BF −BG =2−(−√32t)=2+√32t , ∴−12t(2+√32t)=√34, ∴t =−√33或t =−√3, ∴P(−√33,0)或(−√3,0), ii 、当t ≤−4√33时,如图4, BD =OP =−t ,DG =−√32t , ∴DH =−√32t −2, ∴12(−t)(−2−√32t)=√34, ∴t =−√21−2√33或t =√21−2√33(舍), ∴P(−√21−2√33,0).【解析】(Ⅰ)先判断出△ADP是等边三角形,进而得出DP=AP,即可得出结论;(Ⅱ)①先求出GH=OP=2,进而求出DG,再得出DH,即可得出结论;②分两种情况,利用三角形的面积建立方程求解即可得出结论.此题是几何变换综合题,主要考查了全等三角形的判定和性质,旋转的性质,三角形的面积公式,正确作出辅助线是解本题的关键.25.【答案】解:(1)∵抛物线y=ax2+bx+52过点A(1,0),B(5,0),∴0=a+b+5 20=25a+5b+5 2∴a=12,b=−3∴解析式y=12x2−3x+52(2)当y=0,则0=12x2−3x+52∴x1=5,x2=1∴A(1,0),B(5,0)∴对称轴直线x=3,顶点坐标(3,−2),AB=4∵抛物线与y轴相交于点C.∴C(0,5 2 )如图1①如AB为菱形的边,则EF//AB,EF=AB=4,且E的横坐标为3 ∴F的横坐标为7或−1∵AE=AB=4,AM=2,EM⊥AB∴EM=2√3∴F(7,2√3),或(−1,2√3)∴当x=7,y=12×49−7×3+52=6∴点F到二次函数图象的垂直距离6−2√3②如AB为对角线,如图2∵AEBF是菱形,AF=BF=4∴AB⊥EF,EM=MF=2√3∴F(3,−2√3)∴点F到二次函数图象的垂直距离−2+2√3(3)当F(3,−2√3)时,点F到二次函数图象的垂直距离最小如图3,以BQ为边作等边三角形BQD,将△BQF绕B逆时针旋转60°到△BDN位置,连接AN,作PN⊥AB于P∵等边三角形BQD∴QD=QB=BD,∵将△BQF绕B逆时针旋转60°到△BDN位置∴NB=BF=4,∠FBN=60°,DN=FQ∵AQ+BQ+FQ=AQ+QD+DN∴当AQ,QD,DN共线时AQ+BQ+FQ的和最短,即最短值为AN的长.∵AF=BF=4=AB,∴∠ABF=60°∴∠NBP=60°且BN=4,∴BP=2,PN=2√3∴AP=6在Rt△ANP中,AN=√36+12=4√3∴AQ+BQ+FQ的和最短值为4√3.【解析】(1)将A,B两点代入可求解析式.(2)分类讨论,以AB为边的菱形和以AB为对角线的菱形,抓住菱形边长为4和E的横坐标为3,可解F点坐标,即可求点F到二次函数图象的垂直距离.(3)构造三角形,根据两点之间线段最短,可得最短距离为AN,根据勾股定理求AN.本题考查了二次函数的综合题,待定系数法,菱形的性质,勾股定理等有关知识,关键是构造三角形转化BQ,和BQ的长.。
天津市滨海新区2019-2020学年第二次中考模拟考试数学试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,在ABC V 中,D 、E 分别在边AB 、AC 上,//DE BC ,//EF CD 交AB 于F ,那么下列比例式中正确的是( )A .AF DE DF BC =B .DF AF DB DF =C .EF DE CD BC = D .AF AD BD AB= 2.如图,正方形ABCD 的边长为2cm ,动点P 从点A 出发,在正方形的边上沿A→B→C 的方向运动到点C 停止,设点P 的运动路程为x(cm),在下列图象中,能表示△ADP 的面积y(cm 2)关于x(cm)的函数关系的图象是( )A .B .C .D .3.如图,点A 为∠α边上任意一点,作AC ⊥BC 于点C ,CD ⊥AB 于点D ,下列用线段比表示cosα的值,错误的是( )A .CD ACB .BC AB C .BD BC D .AD AC4.已知关于x 的方程2222x x a x x x x x +-+=--恰有一个实根,则满足条件的实数a 的值的个数为( ) A .1 B .2 C .3 D .4 5.如图,点A 、B 、C 在⊙O 上,∠OAB=25°,则∠ACB 的度数是( )A .135°B .115°C .65°D .50°6.一元二次方程(x+2017)2=1的解为( )A .﹣2016,﹣2018B .﹣2016C .﹣2018D .﹣20177. “车辆随机到达一个路口,遇到红灯”这个事件是( )A .不可能事件B .不确定事件C .确定事件D .必然事件8.下列分子结构模型的平面图中,既是轴对称图形又是中心对称图形的有( )A .1个B .2个C .3个D .4个9.下列运算正确的是( )A .5a+2b=5(a+b )B .a+a 2=a 3C .2a 3•3a 2=6a 5D .(a 3)2=a 5 10.下列运算正确的是( )A .a 2•a 3=a 6B .(12)﹣1=﹣2C .16 =±4D .|﹣6|=611.二次函数y =ax 2+bx +c(a≠0)的图象如图,下列结论正确的是( )A .a<0B .b 2-4ac<0C .当-1<x<3时,y>0D .-2b a=1 12.对于一组统计数据1,1,6,5,1.下列说法错误的是( )A .众数是1B .平均数是4C .方差是1.6D .中位数是6二、填空题:(本大题共6个小题,每小题4分,共24分.)13.以下两题任选一题作答:(1).下图是某商场一楼二楼之间的手扶电梯示意图,其中 AB 、CD 分别表示一楼、二楼地面的水平,∠ABC=150°,BC 的长是 8m ,则乘电梯次点 B 到点 C 上升的高度 h 是_____m .(2).一个多边形的每一个内角都是与它相邻外角的 3 倍,则多边形是_____边形.14.在矩形ABCD 中,对角线AC 、BD 相交于点O ,∠AOB =60°,AC =6cm ,则AB 的长是_____. 15.已知⊙O 半径为1,A 、B 在⊙O 上,且2AB ,则AB 所对的圆周角为__o .16.如图,直线m∥n,△ABC为等腰直角三角形,∠BAC=90°,则∠1= 度.17.如图,随机闭合开关1K,2K,3K中的两个,能让两盏灯泡1l和2l同时发光的概率为___________.18.如图,在每个小正方形的边长为1的网格中,点A,B,C均在格点上.(1)AB的长等于____;(2)在△ABC的内部有一点P,满足S△PAB S△PBC S△PCA =1:2:3,请在如图所示的网格中,用无刻度...的直尺,画出点P,并简要说明点P的位置是如何找到的(不要求证明)_______三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,在电线杆上的C处引拉线CE、CF固定电线杆,拉线CE和地面成60°角,在离电线杆6米的B处安置测角仪,在A处测得电线杆上C处的仰角为30°,已知测角仪高AB为1.5米,求拉线CE 的长(结果保留根号).20.(6分)一项工程,甲,乙两公司合做,12天可以完成,共需付施工费102000元;如果甲,乙两公司单独完成此项工程,乙公司所用时间是甲公司的1.5倍,乙公司每天的施工费比甲公司每天的施工费少1500元.甲,乙两公司单独完成此项工程,各需多少天?若让一个公司单独完成这项工程,哪个公司的施工费较少?21.(6分)抛物线2y x bx c =-++与x 轴交于A ,B 两点(点A 在点B 的左边),与y 轴正半轴交于点C .(1)如图1,若A (-1,0),B (3,0),① 求抛物线2y x bx c =-++的解析式;② P 为抛物线上一点,连接AC ,PC ,若∠PCO=3∠ACO ,求点P 的横坐标;(2)如图2,D 为x 轴下方抛物线上一点,连DA ,DB ,若∠BDA+2∠BAD=90°,求点D 的纵坐标.22.(8分)反比例函数k y x =在第一象限的图象如图所示,过点A (2,0)作x 轴的垂线,交反比例函数k y x=的图象于点M ,△AOM 的面积为2. 求反比例函数的解析式;设点B 的坐标为(t ,0),其中t >2.若以AB 为一边的正方形有一个顶点在反比例函数k y x=的图象上,求t 的值. 23.(8分)2018年4月22日是第49个世界地球日,今年的主题为“珍惜自然资源呵护美丽国土一讲好我们的地球故事”地球日活动周中,同学们开展了丰富多彩的学习活动,某小组搜集到的数据显示,山西省总面积为15.66万平方公里,其中土石山区面积约5.59万平方公里,其余部分为丘陵与平原,丘陵面积比平原面积的2倍还多0.8万平方公里.(1)求山西省的丘陵面积与平原面积;(2)活动周期间,两位家长计划带领若干学生去参观山西地质博物馆,他们联系了两家旅行社,报价均为每人30元.经协商,甲旅行社的优惠条件是,家长免费,学生都按九折收费;乙旅行社的优惠条件是,家长、学生都按八折收费.若只考虑收费,这两位家长应该选择哪家旅行社更合算?24.(10分)如图,在△ABC中,∠BAC=90°,AD⊥BC于点D,BF平分∠ABC交AD于点E,交AC 于点F,求证:AE=AF.25.(10分)九(3)班“2017年新年联欢会”中,有一个摸奖游戏,规则如下:有4张纸牌,背面都是喜羊羊头像,正面有2张笑脸、2张哭脸.现将4张纸牌洗匀后背面朝上摆放到桌上,然后让同学去翻纸牌.(1)现小芳有一次翻牌机会,若正面是笑脸的就获奖,正面是哭脸的不获奖.她从中随机翻开一张纸牌,求小芳获奖的概率.(2)如果小芳、小明都有翻两张牌的机会.小芳先翻一张,放回后再翻一张;小明同时翻开两张纸牌.他们翻开的两张纸牌中只要出现一张笑脸就获奖.他们获奖的机会相等吗?通过树状图分析说明理由.26.(12分)如图,在四边形ABCD中,AD∥BC,∠B=90°,BC=6,AD=3,AB=3,点E,F同时从B点出发,沿射线BC向右匀速移动,已知点F的移动速度是点E移动速度的2倍,以EF为一边在CB 的上方作等边△EFG,设E点移动距离为x(0<x<6).(1)∠DCB=度,当点G在四边形ABCD的边上时,x=;(2)在点E,F的移动过程中,点G始终在BD或BD的延长线上运动,求点G在线段BD的中点时x 的值;(3)当2<x<6时,求△EFG与四边形ABCD重叠部分面积y与x之间的函数关系式,当x取何值时,y有最大值?并求出y的最大值.27.(12分)如图,在矩形ABCD中,点F在边BC上,且AF=AD,过点D作DE⊥AF,垂足为点E.求证:DE=AB;以D为圆心,DE为半径作圆弧交AD于点G,若BF=FC=1,试求的长.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】【分析】根据平行线分线段成比例定理和相似三角形的性质找准线段的对应关系,对各选项分析判断.【详解】A、∵EF∥CD,DE∥BC,∴AF AEDF EC=,AE DEAC BC=,∵CE≠AC,∴AF DEDF BC≠,故本选项错误;B、∵EF∥CD,DE∥BC,∴AF AEDF EC=,AE ADEC BD=,∴AF ADDF BD=,∵AD≠DF,∴DF AFDB DF≠,故本选项错误;C、∵EF∥CD,DE∥BC,∴DE AEBC AC=,EF AECD AC=,∴EF DECD BC=,故本选项正确;D、∵EF∥CD,DE∥BC,∴AD AEAB AC=,AF AEAD AC=,∴AF ADAD AB=,∵AD≠DF,∴AF ADBD AB≠,故本选项错误.故选C.【点睛】本题考查了平行线分线段成比例的运用及平行于三角形一边的直线截其它两边,所得的新三角形与原三角形相似的定理的运用,在解答时寻找对应线段是关健.2.B【解析】【分析】△ADP的面积可分为两部分讨论,由A运动到B时,面积逐渐增大,由B运动到C时,面积不变,从而得出函数关系的图象.【详解】解:当P点由A运动到B点时,即0≤x≤2时,y=12×2x=x,当P点由B运动到C点时,即2<x<4时,y=12×2×2=2,符合题意的函数关系的图象是B;故选B.【点睛】本题考查了动点函数图象问题,用到的知识点是三角形的面积、一次函数,在图象中应注意自变量的取值范围.3.D【解析】【分析】根据锐角三角函数的定义,余弦是邻边比斜边,可得答案.【详解】cosα=BD BC CD BC AB AC==.故选D.【点睛】熟悉掌握锐角三角函数的定义是关键.4.C【解析】【分析】先将原方程变形,转化为整式方程后得2x2-3x+(3-a)=1①.由于原方程只有一个实数根,因此,方程①的根有两种情况:(1)方程①有两个相等的实数根,此二等根使x(x-2)≠1;(2)方程①有两个不等的实数根,而其中一根使x(x-2)=1,另外一根使x(x-2)≠1.针对每一种情况,分别求出a的值及对应的原方程的根.【详解】去分母,将原方程两边同乘x(x﹣2),整理得2x2﹣3x+(3﹣a)=1.①方程①的根的情况有两种:(1)方程①有两个相等的实数根,即△=9﹣3×2(3﹣a)=1.解得a=238.当a=238时,解方程2x2﹣3x+(﹣72+3)=1,得x1=x2=34.(2)方程①有两个不等的实数根,而其中一根使原方程分母为零,即方程①有一个根为1或2.(i)当x=1时,代入①式得3﹣a=1,即a=3.当a=3时,解方程2x2﹣3x=1,x(2x﹣3)=1,x1=1或x2=1.4.而x1=1是增根,即这时方程①的另一个根是x=1.4.它不使分母为零,确是原方程的唯一根.(ii)当x=2时,代入①式,得2×3﹣2×3+(3﹣a)=1,即a=5.当a=5时,解方程2x2﹣3x﹣2=1,x1=2,x2=﹣12.x1是增根,故x=﹣12为方程的唯一实根;因此,若原分式方程只有一个实数根时,所求的a的值分别是238,3,5共3个.故选C.【点睛】考查了分式方程的解法及增根问题.由于原分式方程去分母后,得到一个含有字母的一元二次方程,所以要分情况进行讨论.理解分式方程产生增根的原因及一元二次方程解的情况从而正确进行分类是解题的关键.5.B【解析】【分析】由OA=OB得∠OAB=∠OBA=25°,根据三角形内角和定理计算出∠AOB=130°,则根据圆周角定理得∠P= 12∠AOB,然后根据圆内接四边形的性质求解.【详解】解:在圆上取点 P ,连接 PA 、 PB. ∵OA=OB ,∴∠OAB=∠OBA=25°,∴∠AOB=180°−2×25°=130°,∴∠P=12∠AOB=65°,∴∠ACB=180°−∠P=115°.故选B.【点睛】本题考查的是圆,熟练掌握圆周角定理是解题的关键. 6.A【解析】【分析】利用直接开平方法解方程.【详解】(x+2017)2=1x+2017=±1,所以x1=-2018,x2=-1.故选A.【点睛】本题考查了解一元二次方程-直接开平方法:形如x2=p或(nx+m)2=p(p≥0)的一元二次方程可采用直接开平方的方法解一元二次方程.7.B【解析】【分析】根据事件发生的可能性大小判断相应事件的类型即可.【详解】“车辆随机到达一个路口,遇到红灯”是随机事件.故选:B.【点睛】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的实际;不可能事件是指在一定条件下,一定不发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.8.C【解析】【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A是轴对称图形,不是中心对称图形;B,C,D是轴对称图形,也是中心对称图形.故选:C.【点睛】掌握中心对称图形与轴对称图形的概念:轴对称图形:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形;中心对称图形:在同一平面内,如果把一个图形绕某一点旋转180°,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.9.C【解析】【分析】直接利用合并同类项法则以及单项式乘以单项式、幂的乘方运算法则分别化简得出答案.【详解】A、5a+2b,无法计算,故此选项错误;B、a+a2,无法计算,故此选项错误;C、2a3•3a2=6a5,故此选项正确;D、(a3)2=a6,故此选项错误.故选C.【点睛】此题主要考查了合并同类项以及单项式乘以单项式、幂的乘方运算,正确掌握运算法则是解题关键.10.D【解析】【分析】运用正确的运算法则即可得出答案.【详解】A、应该为a5,错误;B、为2,错误;C、为4,错误;D、正确,所以答案选择D项.【点睛】本题考查了四则运算法则,熟悉掌握是解决本题的关键.11.D【解析】试题分析:根据二次函数的图象和性质进行判断即可.解:∵抛物线开口向上,a>∴0∴A选项错误,∵抛物线与x轴有两个交点,∴240->b ac∴B选项错误,由图象可知,当-1<x<3时,y<0∴C选项错误,x=由抛物线的轴对称性及与x轴的两个交点分别为(-1,0)和(3,0)可知对称轴为1即-=1,∴D选项正确,故选D.12.D【解析】【分析】根据中位数、众数、方差等的概念计算即可得解.【详解】A、这组数据中1都出现了1次,出现的次数最多,所以这组数据的众数为1,此选项正确;B、由平均数公式求得这组数据的平均数为4,故此选项正确;C、S2=15[(1﹣4)2+(1﹣4)2+(6﹣4)2+(5﹣4)2+(1﹣4)2]=1.6,故此选项正确;D、将这组数据按从大到校的顺序排列,第1个数是1,故中位数为1,故此选项错误;故选D.考点:1.众数;2.平均数;1.方差;4.中位数.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.4 8【解析】【分析】(1)先求出斜边的坡角为30°,再利用含30°的直角三角形即可求解;(2)设这个多边形边上为n,则内角和为(n-2)×180°,外角度数为360? n故可列出方程求解.【详解】(1)∵∠ABC=150°,∴斜面BC的坡角为30°,∴h=12BC=4m(2)设这个多边形边上为n,则内角和为(n-2)×180°,外角度数为360? n依题意得2180360?3nn n -⨯︒=⨯()解得n=8故为八边形.【点睛】此题主要考查含30°的直角三角形与多边形的内角和计算,解题的关键是熟知含30°的直角三角形的性质与多边形的内角和公式.14.3cm.【解析】【分析】根据矩形的对角线相等且互相平分可得OA =OB =OD =OC ,由∠AOB =60°,判断出△AOB 是等边三角形,根据等边三角形的性质求出AB 即可. 【详解】解:∵四边形ABCD 是矩形,AC =6cm ∴OA =OC =OB =OD =3cm , ∵∠AOB =60°, ∴△AOB 是等边三角形, ∴AB =OA =3cm , 故答案为:3cm 【点睛】本题主要考查矩形的性质和等边三角形的判定和性质,解本题的关键是掌握矩形的对角线相等且互相平分.15.45º或135º 【解析】试题解析:如图所示,∵OC ⊥AB ,∴C 为AB 的中点,即122AC BC AB === 在Rt △AOC 中,OA=1, 2AC =根据勾股定理得:2222OC OA AC =-=即OC=AC , ∴△AOC 为等腰直角三角形, 45AOC ∴∠=o , 同理45BOC ∠=o ,90AOB AOC BOC ∴∠=∠+∠=o ,∵∠AOB 与∠ADB 都对¶AB ,1452ADB AOB o ,∴∠=∠= ∵大角270AOB ∠=o ,135.AEB ∴∠=o则弦AB 所对的圆周角为45o 或135.o故答案为45或135. 16.1. 【解析】试题分析:∵△ABC 为等腰直角三角形,∠BAC=90°,∴∠ABC=∠ACB=1°,∵m ∥n ,∴∠1=1°;故答案为1.考点:等腰直角三角形;平行线的性质. 17.13【解析】 【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与能让两盏灯泡同时发光的情况,再利用概率公式求解即可求得答案. 【详解】 解:画树状图得:由树状图得:共有6种结果,且每种结果的可能性相同,其中能让两盏灯泡同时发光的是闭合开关为:K 1、K 3与K 3、K 1共两种结果, ∴能让两盏灯泡同时发光的概率21==63, 故答案为:13. 【点睛】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.18.17;答案见解析.【解析】【详解】(1)AB=2214=17.故答案为17.(2)如图AC与网格相交,得到点D、E,取格点F,连接FB并且延长,与网格相交,得到M,N,G.连接DN,EM,DG,DN与EM相交于点P,点P即为所求.理由:平行四边形ABME的面积:平行四边形CDNB的面积:平行四边形DEMG的面积=1:2:1,△PAB的面积=12平行四边形ABME的面积,△PBC的面积=12平行四边形CDNB的面积,△PAC的面积=△PNG的面积=12△DGN的面积=12平行四边形DEMG的面积,∴S△PAB:S△PBC:S△PCA=1:2:1.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.CE的长为(4+)米【解析】【分析】由题意可先过点A作AH⊥CD于H.在Rt△ACH中,可求出CH,进而CD=CH+HD=CH+AB,再在Rt△CED中,求出CE的长.【详解】过点A作AH⊥CD,垂足为H,由题意可知四边形ABDH为矩形,∠CAH=30°,∴AB=DH=1.5,BD=AH=6,在Rt△ACH中,tan∠CAH=CH AH,∴CH=AH•tan∠CAH,∴CH=AH•tan∠CAH=6tan30°=6×3=23(米),∵DH=1.5,∴CD=23+1.5,在Rt△CDE中,∵∠CED=60°,sin∠CED=CD CE,∴CE=23 1.53+=(4+3)(米),答:拉线CE的长为(4+)米.考点:解直角三角形的应用-仰角俯角问题20.解:(1)设甲公司单独完成此项工程需x天,则乙公司单独完成此项工程需1.5x天.根据题意,得111x 1.5x12 +=,解得x=1.经检验,x=1是方程的解且符合题意.1.5 x=2.∴甲,乙两公司单独完成此项工程,各需1天,2天.(2)设甲公司每天的施工费为y元,则乙公司每天的施工费为(y﹣1500)元,根据题意得12(y+y﹣1500)=10100解得y=5000,甲公司单独完成此项工程所需的施工费:1×5000=100000(元);乙公司单独完成此项工程所需的施工费:2×(5000﹣1500)=105000(元);∴让一个公司单独完成这项工程,甲公司的施工费较少.【解析】(1)设甲公司单独完成此项工程需x天,则乙工程公司单独完成需1.5x天,根据合作12天完成列出方程求解即可.(2)分别求得两个公司施工所需费用后比较即可得到结论.21.(1)①y=-x2+2x+3②3513(2)-1【解析】分析:(1)①把A 、B 的坐标代入解析式,解方程组即可得到结论;②延长CP 交x 轴于点E ,在x 轴上取点D 使CD=CA ,作EN ⊥CD 交CD 的延长线于N .由CD=CA ,OC ⊥AD ,得到∠DCO=∠ACO .由∠PCO=3∠ACO ,得到∠ACD=∠ECD ,从而有tan ∠ACD=tan ∠ECD ,AI EN CI CN =,即可得出AI 、CI的长,进而得到34AI EN CI CN ==.设EN=3x ,则CN=4x ,由tan ∠CDO=tan ∠EDN ,得到31EN OC DN OD ==,故设DN=x ,则CD=CN-DN=3x=10,解方程即可得出E 的坐标,进而求出CE 的直线解析式,联立解方程组即可得到结论;(2)作DI ⊥x 轴,垂足为I .可以证明△EBD ∽△DBC ,由相似三角形对应边成比例得到BI ID ID AI=, 即D B D D D Ax x y y x x --=--,整理得()22D D A B D A B y x x x x x x =-++.令y=0,得:20x bx c -++=. 故A B A B x x b x x c +==-,,从而得到22D D D y x bx c =--.由2D D D y x bx c =-++,得到2D D y y =-,解方程即可得到结论.详解:(1)①把A (-1,0),B (3,0)代入2y x bx c =-++得:10930b c b c --+=⎧⎨-++=⎩,解得:23b c =⎧⎨=⎩, ∴223y x x =-++②延长CP 交x 轴于点E ,在x 轴上取点D 使CD=CA ,作EN ⊥CD 交CD 的延长线于N . ∵CD=CA ,OC ⊥AD ,∴ ∠DCO=∠ACO .∵∠PCO=3∠ACO ,∴∠ACD=∠ECD ,∴tan ∠ACD=tan ∠ECD ,∴AI ENCI CN=,AI=10AD OC CD ⨯=∴2210CA AI -=,∴34AI EN CI CN ==. 设EN=3x ,则CN=4x . ∵tan ∠CDO=tan ∠EDN , ∴31EN OC DN OD ==,∴DN=x ,∴10,∴103x=,∴DE=103,E(133,0).CE的直线解析式为:9313y x=-+,2133923y xy x x⎧=-+⎪⎨⎪=-++⎩2923313x x x-++=-+,解得:123513x x==,.点P的横坐标3513.(2)作DI⊥x轴,垂足为I.∵∠BDA+2∠BAD=90°,∴∠DBI+∠BAD=90°.∵∠BDI+∠DBI=90°,∴∠BAD=∠BDI.∵∠BID=∠DIA,∴△EBD∽△DBC,∴BI IDID AI=,∴D B DD D Ax x yy x x--=--,∴()22D D A B D A By x x x x x x=-++.令y=0,得:20x bx c-++=.∴A B A Bx x b x x c+==-,,∴()222D D A B D A B D Dy x x x x x x x bx c=-++=--.∵2D D Dy x bx c=-++,∴2D Dy y=-,解得:y D=0或-1.∵D为x轴下方一点,∴1Dy=-,∴D的纵坐标-1 .点睛:本题是二次函数的综合题.考查了二次函数解析式、性质,相似三角形的判定与性质,根与系数的关系.综合性比较强,难度较大.22.(2)6yx(2)7或2.【解析】试题分析:(2)根据反比例函数k的几何意义得到12|k|=2,可得到满足条件的k=6,于是得到反比例函数解析式为y=6x;(2)分类讨论:当以AB为一边的正方形ABCD的顶点D在反比例函数y=6x的图象上,则D点与M点重合,即AB=AM,再利用反比例函数图象上点的坐标特征确定M点坐标为(2,6),则AB=AM=6,所以t=2+6=7;当以AB为一边的正方形ABCD的顶点C在反比例函数y=6x的图象上,根据正方形的性质得AB=BC=t-2,则C点坐标为(t,t-2),然后利用反比例函数图象上点的坐标特征得到t(t-2)=6,再解方程得到满足条件的t的值.试题解析:(2)∵△AOM的面积为2,∴12|k|=2,而k>0,∴k=6,∴反比例函数解析式为y=6x;(2)当以AB为一边的正方形ABCD的顶点D在反比例函数y=6x的图象上,则D点与M点重合,即AB=AM,把x=2代入y=6x得y=6,∴M点坐标为(2,6),∴AB=AM=6,∴t=2+6=7;当以AB为一边的正方形ABCD的顶点C在反比例函数y=6x的图象上,则AB=BC=t-2,∴C点坐标为(t,t-2),∴t(t-2)=6,整理为t2-t-6=0,解得t2=2,t2=-2(舍去),∴t=2,∴以AB为一边的正方形有一个顶点在反比例函数y=kx的图象上时,t的值为7或2.考点:反比例函数综合题.23.(1)平原面积为3.09平方公里,丘陵面积为6.98平方公里;(2)见解析. 【解析】【分析】(1)先设山西省的平原面积为x平方公里,则山西省的丘陵面积为(2x+0.8)平方公里,再根据总面积=平原面积+丘陵面积+土石山区面积列出等式求解即可;(2)先分别列出甲、乙两个旅行社收费与学生人数的关系式,然后再分情况讨论即可.【详解】解:(1)设山西省的平原面积为x平方公里,则山西省的丘陵面积为(2x+0.8)平方公里.由题意:x+2x+0.8+5.59=15.66,解得x=3.09,2x+0.8=6.98,答:山西省的平原面积为3.09平方公里,则山西省的丘陵面积为6.98平方公里.(2)设去参观山西地质博物馆的学生有m人,甲、乙旅行社的收费分别为y甲元,y乙元.由题意:y甲=30×0.9m=27m,y乙=30×0.8(m+2)=24m+48,当y甲=y乙时,27m=24m+48,m=16,当y甲>y乙时,27m>24m+48,m>16,当y甲<y乙时,27m<24m+48,m<16,答:当学生人数为16人时,两个旅行社的费用一样.当学生人数为大于16人时,乙旅行社比较合算.当学生人数为小于16人时,甲旅行社比较合算.【点睛】本题考查了一元一次方程的应用,解题的关键是熟练的掌握一元一次方程的应用.24.见解析【解析】【分析】根据角平分线的定义可得∠ABF=∠CBF,由已知条件可得∠ABF+∠AFB=∠CBF+∠BED=90°,根据余角的性质可得∠AFB=∠BED,即可求得∠AFE=∠AEF,由等腰三角形的判定即可证得结论.【详解】∵BF 平分∠ABC,∴∠ABF=∠CBF,∵∠BAC=90°,AD⊥BC,∴∠ABF+∠AFB=∠CBF+∠BED=90°,∴∠AFB=∠BED,∵∠AEF=∠BED,∴∠AFE=∠AEF,∴AE=AF.【点睛】本题考查了等腰三角形的判定、直角三角形的性质,根据余角的性质证得∠AFB=∠BED是解题的关键.25.(1)12;(2)他们获奖机会不相等,理由见解析.【解析】【分析】(1)根据正面有2张笑脸、2张哭脸,直接利用概率公式求解即可求得答案;(2)根据题意分别列出表格,然后由表格即可求得所有等可能的结果与获奖的情况,再利用概率公式求解即可求得他们获奖的概率.【详解】(1)∵有4张纸牌,背面都是喜羊羊头像,正面有2张笑脸、2张哭脸,翻一次牌正面是笑脸的就获奖,正面是哭脸的不获奖,∴获奖的概率是12;故答案为12;(2)他们获奖机会不相等,理由如下:小芳:∵共有16种等可能的结果,翻开的两张纸牌中只要出现笑脸的有12种情况,∴P(小芳获奖)=123 164;小明:哭2 笑1,哭2 笑2,哭2 哭1,哭2 ∵共有12种等可能的结果,翻开的两张纸牌中只要出现笑脸的有10种情况,∴P (小明获奖)=105=126, ∵P (小芳获奖)≠P (小明获奖),∴他们获奖的机会不相等.【点睛】本题考查了列表法或树状图法求概率,用到的知识点为:概率=所求情况数与总情况数之比.26. (1) 30;2;(2)x=1;(3)当x=187时,y 最大=937; 【解析】【分析】(1)如图1中,作DH ⊥BC 于H ,则四边形ABHD 是矩形.AD=BH=3,BC=6,CH=BC ﹣BH=3,当等边三角形△EGF 的高=3, 时,点G 在AD 上,此时x=2;(2)根据勾股定理求出BD 的长度,根据三角函数,求出∠ADB=30°,根据中点的定义得出11233,22BG BD ==⨯=根据等边三角形的性质得到BF ,即可求出x 的值; (3)图2,图3三种情形解决问题.①当2<x<3时,如图2中,点E 、F 在线段BC 上,△EFG 与四边形ABCD 重叠部分为四边形EFNM ;②当3≤x<6时,如图3中,点E 在线段BC 上,点F 在射线BC 上,重叠部分是△ECP ;【详解】(1)作DH ⊥BC 于H ,则四边形ABHD 是矩形.∵AD=BH=3,BC=6,∴CH=BC ﹣BH=3,在Rt △DHC 中,CH=3,3,DH AB ==∴3tan DH DCB CH ∠==当等边三角形△EGF 的高等于3时,点G 在AD 上,此时x=2,∠DCB=30°, 故答案为30,2,(2)如图∵AD ∥BC∴∠A=180°﹣∠ABC=180°﹣90°=90° 在Rt △ABD 中,()22223323,BD AB BD =+=+=31sin ,223AB ADB BD ∠===Q ∴∠ADB=30° ∵G 是BD 的中点∴11233,22BG BD ==⨯= ∵AD ∥BC∴∠ADB=∠DBC=30°∵△GEF 是等边三角形,∴∠GFE=60°∴∠BGF=90°在Rt △BGF 中,32,cos BG BF GBF ===∠ ∴2x=2即x=1;(3)分两种情况:当2<x <3,如图2点E 、点F 在线段BC 上△GEF 与四边形ABCD 重叠部分为四边形EFNM∵∠FNC=∠GFE ﹣∠DCB=60°﹣30°=30° ∴∠FNC=∠DCB∴FN=FC=6﹣2x∴GN=x ﹣(6﹣2x )=3x ﹣6∵∠FNC=∠GNM=30°,∠G=60°∴∠GMN=90°在Rt△GNM中,133333tan603333, 222MG GN x NMMG x x⎛⎫==-=⋅=-⨯=-⎪⎝⎭o∴131333333,222EFG GMNxy S S x x x⎛⎫⎛⎫=-=⨯⋅---⎪⎪ ⎪⎝⎭⎝V V22739393731893.7x x x⎛⎫=-+-=--+⎪⎝⎭∴当187x=时,y最大93.7=当3≤x<6时,如图3,点E在线段BC上,点F在线段BC的延长线上,△GEF与四边形ABCD重叠部分为△ECP ∵∠PCE=30°,∠PEC=60°∴∠EPC=90°在Rt△EPC中EC=6﹣x,113,22EP EC x==-13tan3tan6033,22PC EP PEC x x⎛⎫=⋅∠=-⋅=⎪⎝⎭o21133339333322y x x x x⎛⎫⎛⎫∴=⨯-=-+⎪⎪ ⎪⎝⎭⎝⎭对称轴为3336,32x==⨯当x<6时,y随x的增大而减小∴当x=3时,y最大93=综上所述:当187x=时,y最大93=【点睛】属于四边形的综合题,考查动点问题,等边三角形的性质,三角函数,二次函数的最值等,综合性比较强,难度较大.27.(1)详见解析;(2).【解析】∵四边形ABCD是矩形,∴∠B=∠C=90°,AB=CD,BC=AD,AD∥BC,∴∠EAD=∠AFB,∵DE⊥AF,∴∠AED=90°,在△ADE和△FAB中,∴△ADE≌△FAB(AAS),∴AE=BF=1∵BF=FC=1∴BC=AD=2故在Rt△ADE中,∠ADE=30°,DE=,∴的长==.2019-2020学年中考数学模拟试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图1,在△ABC中,AB=BC,AC=m,D,E分别是AB,BC边的中点,点P为AC边上的一个动点,连接PD,PB,PE.设AP=x,图1中某条线段长为y,若表示y与x的函数关系的图象大致如图2所示,则这条线段可能是()A.PD B.PB C.PE D.PC2.已知关于x的方程2x+a-9=0的解是x=2,则a的值为A.2 B.3 C.4 D.53.在同一直角坐标系中,函数y=kx-k与kyx(k≠0)的图象大致是()A.B.C.D.4.如图,△ABC内接于⊙O,AD为⊙O的直径,交BC于点E,若DE=2,OE=3,则tan∠ACB·tan∠ABC=( )A.2 B.3 C.4 D.55.将下列各选项中的平面图形绕轴旋转一周,可得到如图所示的立体图形的是()A.B.C.D.6.在一个不透明的袋中装有10个只有颜色不同的球,其中5个红球、3个黄球和2个白球.从袋中任意摸出一个球,是白球的概率为()A.12B.13C.310D.157.已知=2{=1xy是二元一次方程组+=8{=1mx nynx my-的解,则2m n-的算术平方根为()A.±2 B.C.2 D.4 8.下列解方程去分母正确的是( )A.由,得2x﹣1=3﹣3xB.由,得2x﹣2﹣x=﹣4C.由,得2y-15=3yD.由,得3(y+1)=2y+69.如图,△ABC中,∠B=55°,∠C=30°,分别以点A和点C为圆心,大于12AC的长为半径画弧,两弧相交于点M,N作直线MN,交BC于点D,连结AD,则∠BAD的度数为()A.65°B.60°C.55°D.45°10.把边长相等的正六边形ABCDEF和正五边形GHCDL的CD边重合,按照如图所示的方式叠放在一起,延长LG交AF于点P,则∠APG=()A.141°B.144°C.147°D.150°11.某公司第4月份投入1000万元科研经费,计划6月份投入科研经费比4月多500万元.设该公司第5、6个月投放科研经费的月平均增长率为x,则所列方程正确的为( )A.1000(1+x)2=1000+500B.1000(1+x)2=500C.500(1+x)2=1000D.1000(1+2x)=1000+50012.如图是一个小正方体的展开图,把展开图折叠成小正方体后,有“我”字的一面相对面上的字是()A.国B.厉C.害D.了二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,数轴上点A、B、C所表示的数分别为a、b、c,点C是线段AB的中点,若原点O是线段AC 上的任意一点,那么a+b-2c= ______ .14.已知两圆内切,半径分别为2厘米和5厘米,那么这两圆的圆心距等于_____厘米.15.有五张分别印有等边三角形、正方形、正五边形、矩形、正六边形图案的卡片(这些卡片除图案不同外,其余均相同).现将有图案的一面朝下任意摆放,从中任意抽取一张,抽到卡片的图案既是中心对称图形,又是轴对称图形的概率为_____.16.一元二次方程x2+mx+3=0的一个根为- 1,则另一个根为.17.将两块全等的含30°角的三角尺如图1摆放在一起,设较短直角边为1,如图2,将Rt△BCD沿射线BD方向平移,在平移的过程中,当点B的移动距离为时,四边ABC1D1为矩形;当点B的移动距离为时,四边形ABC1D1为菱形.。
天津市滨海新区2020年中考数学二模试卷(解析版)一、选择题(本大题共12小题,每小题3分,共36分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.计算2﹣3的结果是()A.﹣5 B.﹣1 C.1 D.52.tan45°的值等于()A. B. C.1 D.3.下列图案中,可以看作是轴对称图形的是()A. B. C. D.4.月球的半径约为1738000m,1738000这个数用科学记数法可表示为()A.1.738×106B.1.738×107C.0.1738×107D.17.38×1055.一个几何体零件如图所示,则它的俯视图是()A. B. C. D.6.与1+最接近的整数是()A.1 B.2 C.3 D.47.在平面直角坐标系xOy中,点P(﹣2,3)关于x轴的对称点坐标是()A.(﹣2,﹣3) B.(2,﹣3)C.(2,3) D.(﹣3,﹣2)8.在反比例函数y=图象上有两点A(x1,y1),B (x2,y2),x1<0<x2,y1<y2,则m 的取值范围是()A.m>B.m<C.m≥D.m≤9.如图,已知在⊙O中,AB是弦,半径OC⊥AB,垂足为点D,要使四边形OACB为菱形,还需要添加一个条件,这个条件可以是()A.AD=BD B.OD=CD C.∠CAD=∠CBD D.∠OCA=∠OCB10.如图,将▱ABCD绕点C顺时针旋转一定角度后,得到▱EFCG,若BC与CG在同一直线上,点D落在EG上,则旋转的度数为()A.45°B.50°C.55°D.60°11.今年来某县加大了对教育经费的投入,2020年投入2500万元,2020年投入3500万元.假设该县投入教育经费的年平均增长率为x,根据题意列方程,则下列方程正确的是()A.2500x2=3500 B.2500(1+x)2=3500C.2500(1+x%)2=3500 D.2500(1+x)+2500(1+x)2=350012.如图,已知二次函数y=a(x﹣h)2+k在坐标平面上的图象经过(0,5)、(10,8)两点.若a<0,0<h<10,则h的值可能为()A.1 B.3 C.5 D.7二、填空题(本大题共6小题,每小题3分,共18分)13.计算2x2+3x2的结果等于______.14.把直线y=﹣x﹣1沿x轴向右平移2个单位,所得直线的函数解析式为______.15.如图,转盘中8个扇形的面积都相等,任意转动转盘1次,当转盘停止转动时,指针指向大于6的数的概率为______.16.如图,在等腰三角形ABC中,AB=AC,DE垂直平分AB,已知∠ADE=40°,则∠DBC=______°.17.如图,已知正方形ABCD的边长为2,点O是正方形ABCD的中心,把正方形ABCD 绕点O逆时针旋转45°得到正方形A′B′C′D′,则正方形ABCD与正方形A′B′C′D′重叠部分形成的正八边形的边长为______.18.如图,将线段AB放在每个小正方形的边长为1的网格中,点A,点B均落在格点上.(1)AB的长等于______;(2)请在如图所示的网格中,用无刻度的直尺,在线段AB上画出点P,使AP=,并简要说明画图方法(不要求证明)______.三、解答题(本大题共7小题,共66分.解答应写出文字说明、演算步骤或推理过程)19.解不等式组请结合题意填空,完成本小题的解答.(1)解不等式①,得______;(2)解不等式②,得______;(3)把不等式①和②的解集在数轴上表示出来;(4)原不等式组的解集为______.20.学校准备从甲乙两位选手中选择一位选手代表学校参加所在地区的汉字听写大赛,学校对两位选手从表达能力、阅读理解、综合素质和汉字听写四个方面做了测试,他们各自的成绩(百分制)如表:选手表达能力阅读理解综合素质汉字听写甲85 78 85 73乙73 80 82 83(1)由表中成绩已算得甲的平均成绩为80.25,请计算乙的平均成绩,从他们的这一成绩看,应选派谁;(2)如果表达能力、阅读理解、综合素质和汉字听写分别赋予它们2、1、3和4的权,请分别计算两名选手的平均成绩,从他们的这一成绩看,应选派谁.21.(10分)(2020•武汉)如图,AB是⊙O的直径,C,P是上两点,AB=13,AC=5.(1)如图(1),若点P是的中点,求PA的长;(2)如图(2),若点P是的中点,求PA的长.22.(10分)(2020•岳阳)如图是放在水平地面上的一把椅子的侧面图,椅子高为AC,椅面宽为BE,椅脚高为ED,且AC⊥BE,AC⊥CD,AC∥ED.从点A测得点D、E的俯角分别为64°和53°.已知ED=35cm,求椅子高AC约为多少?(参考数据:tan53°≈,sin53°≈,tan64°≈2,sin64°≈)23.(10分)(2020•滨海新区二模)从A地向B地打长途电话,通话时间不超过3mn收费2.4元,超过3min后每分加收1元.(Ⅰ)根据题意,填写下表:通话时间2 3 6 …min通话费用/元______ 2.4 ______ …(Ⅱ)设通话时间为xmin,通话费用y元,求y与x的函授解析式;(Ⅲ)若小红有10元钱,求她打一次电话最多可以通话的时间(本题中通话时间取整数,不足1min的通话时间按1min计费).24.(10分)(2020•徐州)如图,平面直角坐标系中,将含30°的三角尺的直角顶点C落在第二象限.其斜边两端点A、B分别落在x轴、y轴上,且AB=12cm(1)若OB=6cm.①求点C的坐标;②若点A向右滑动的距离与点B向上滑动的距离相等,求滑动的距离;(2)点C与点O的距离的最大值=______ cm.25.(10分)(2020•广州)已知O为坐标原点,抛物线y1=ax2+bx+c(a≠0)与x轴相交于点A(x1,0),B(x2,0),与y轴交于点C,且O,C两点间的距离为3,x1•x2<0,|x1|+|x2|=4,点A,C在直线y2=﹣3x+t上.(1)求点C的坐标;(2)当y1随着x的增大而增大时,求自变量x的取值范围;(3)将抛物线y1向左平移n(n>0)个单位,记平移后y随着x的增大而增大的部分为P,直线y2向下平移n个单位,当平移后的直线与P有公共点时,求2n2﹣5n的最小值.2020年天津市滨海新区中考数学二模试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.计算2﹣3的结果是()A.﹣5 B.﹣1 C.1 D.5【考点】有理数的减法.【分析】减去一个数等于加上这个数的相反数,再运用加法法则求和.【解答】解:2﹣3=2+(﹣3)=﹣1.故选B.【点评】考查了有理数的减法,解决此类问题的关键是将减法转换成加法.2.tan45°的值等于()A. B. C.1 D.【考点】特殊角的三角函数值.【分析】直接利用特殊角的三角函数值求出答案.【解答】解:tan45°=1.故选:C.【点评】此题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键.3.下列图案中,可以看作是轴对称图形的是()A. B. C. D.【考点】轴对称图形.【分析】结合选项根据轴对称图形的概念求解即可.【解答】解:A、不是轴对称图形,本选项错误;B、不是轴对称图形,本选项错误;C、不是轴对称图形,本选项错误;D、是轴对称图形,本选项正确.故选D.【点评】本题考查了轴对称图形的知识,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.4.月球的半径约为1738000m,1738000这个数用科学记数法可表示为()A.1.738×106B.1.738×107C.0.1738×107D.17.38×105【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将1738000用科学记数法表示为:1.738×106.故选:A.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.一个几何体零件如图所示,则它的俯视图是()A. B. C. D.【考点】简单组合体的三视图.【分析】根据从上面看得到的视图是俯视图,再结合几何体零件的实物图观察,即可判断出这个几何体零件的俯视图是哪个.【解答】解:这个几何体零件的俯视图是一个正中间有一个小正方形的矩形,所以它的俯视图是选项C中的图形.故选:C.【点评】此题主要考查了简单组合体的三视图,要熟练掌握,考查了对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.6.与1+最接近的整数是()A.1 B.2 C.3 D.4【考点】估算无理数的大小.【分析】先依据被开方数越大对应的算术平方根也越大估算出的大小,然后即可做出判断.【解答】解:∵2.22=4.84,2.32=5.29,∴2.22<5<2.32.∴2.2<<2.3.∴3.2<1+<3.3.∴与1+最接近的整数是3.故选:C.【点评】本题主要考查的是估算无理数的大小,利用夹逼法估算出的大小是解题的关键.7.在平面直角坐标系xOy中,点P(﹣2,3)关于x轴的对称点坐标是()A.(﹣2,﹣3) B.(2,﹣3)C.(2,3) D.(﹣3,﹣2)【考点】关于x轴、y轴对称的点的坐标.【分析】根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数可得答案.【解答】解:点P(﹣2,3)关于x轴的对称点坐标是(﹣2,﹣3),故选:A.【点评】此题主要考查了关于x轴对称点的坐标,关键是掌握点的坐标的变化规律.8.在反比例函数y=图象上有两点A(x1,y1),B (x2,y2),x1<0<x2,y1<y2,则m 的取值范围是()A.m>B.m<C.m≥D.m≤【考点】反比例函数图象上点的坐标特征.【分析】首先根据当x1<0<x2时,有y1<y2则判断函数图象所在象限,再根据所在象限判断1﹣3m的取值范围.【解答】解:∵x1<0<x2时,y1<y2,∴反比例函数图象在第一,三象限,∴1﹣3m>0,解得:m<.故选B.【点评】本题主要考查反比例函数的性质,关键是根据题意判断出图象所在象限.9.如图,已知在⊙O中,AB是弦,半径OC⊥AB,垂足为点D,要使四边形OACB为菱形,还需要添加一个条件,这个条件可以是()A.AD=BD B.OD=CD C.∠CAD=∠CBD D.∠OCA=∠OCB【考点】菱形的判定;垂径定理.【分析】利用对角线互相垂直且互相平分的四边形是菱形,进而求出即可.【解答】解:∵在⊙O中,AB是弦,半径OC⊥AB,∴AD=DB,当DO=CD,则AD=BD,DO=CD,AB⊥CO,故四边形OACB为菱形.故选:B.【点评】此题主要考查了菱形的判定以及垂径定理,熟练掌握菱形的判定方法是解题关键.10.如图,将▱ABCD绕点C顺时针旋转一定角度后,得到▱EFCG,若BC与CG在同一直线上,点D落在EG上,则旋转的度数为()A.45°B.50°C.55°D.60°【考点】旋转的性质;平行四边形的性质.【分析】由旋转的性质得出CD=CB,得出∠CDG=∠G,由平行四边形的性质得出∠ADC=∠DCG,证出∠CDG=∠G=∠DCG,得出∠DCG=60°即可.【解答】解:由旋转的性质得:CD=CG,∴∠CDG=∠G,∵四边形ABCD是平行四边形,∴AD∥BC,∴AD∥BG,∴∠ADC=∠DCG,∵∠ADC=∠G,∴∠CDG=∠G=∠DCG,∴∠DCG=60°,即旋转的角度为60°,故选:D.【点评】本题考查了旋转的性质和平行四边形的性质;熟练掌握平行四边形的性质和旋转的性质,并能进行推理计算是解决问题的关键.11.今年来某县加大了对教育经费的投入,2020年投入2500万元,2020年投入3500万元.假设该县投入教育经费的年平均增长率为x,根据题意列方程,则下列方程正确的是()A.2500x2=3500 B.2500(1+x)2=3500C.2500(1+x%)2=3500 D.2500(1+x)+2500(1+x)2=3500【考点】由实际问题抽象出一元二次方程.【分析】根据2020年教育经费额×(1+平均年增长率)2=2020年教育经费支出额,列出方程即可.【解答】解:设增长率为x,根据题意得2500×(1+x)2=3500,故选B.【点评】本题考查一元二次方程的应用﹣﹣求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.(当增长时中间的“±”号选“+”,当下降时中间的“±”号选“﹣”).12.如图,已知二次函数y=a(x﹣h)2+k在坐标平面上的图象经过(0,5)、(10,8)两点.若a<0,0<h<10,则h的值可能为()A.1 B.3 C.5 D.7【考点】二次函数图象上点的坐标特征.【分析】根据抛物线的大致图象,根据顶点式得到抛物线的对称轴为直线x=h,由于抛物线过(0,5)、(10,8)两点.若a<0,0<h<10,则点(0,5)到对称轴的距离大于点(10,8)到对称轴的距离,所以h﹣0>10﹣h,然后解不等式后进行判断.【解答】解:∵抛物线的对称轴为直线x=h,而(0,5)、(10,8)两点在抛物线上,∴h﹣0>10﹣h,解得h>5.故选D【点评】本题考查了二次函数图象与系数的关系:二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小,当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置,当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定,△=b2﹣4ac >0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.二、填空题(本大题共6小题,每小题3分,共18分)13.计算2x2+3x2的结果等于5x2.【考点】合并同类项.【分析】直接利用合并同类项法则求出答案.【解答】解:2x2+3x2=5x2.故答案为:5x2.【点评】此题主要考查了合并同类项,正确把握定义是解题关键.14.把直线y=﹣x﹣1沿x轴向右平移2个单位,所得直线的函数解析式为y=﹣x+1.【考点】一次函数图象与几何变换.【分析】直接根据“左加右减”的平移规律求解即可.【解答】解:把直线y=﹣x﹣1沿x轴向右平移2个单位,所得直线的函数解析式为y=﹣(x ﹣2)﹣1,即y=﹣x+1.故答案为y=﹣x+1.【点评】本题考查了一次函数图象与几何变换.掌握“左加右减,上加下减”的平移规律是解题的关键.15.如图,转盘中8个扇形的面积都相等,任意转动转盘1次,当转盘停止转动时,指针指向大于6的数的概率为.【考点】概率公式.【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【解答】解:∵共8个数,大于6的有2个,∴P(大于6)==,故答案为:.【点评】本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.16.如图,在等腰三角形ABC中,AB=AC,DE垂直平分AB,已知∠ADE=40°,则∠DBC= 15°.【考点】线段垂直平分线的性质;等腰三角形的性质.【分析】根据线段垂直平分线求出AD=BD,推出∠A=∠ABD=50°,根据三角形内角和定理和等腰三角形性质求出∠ABC,即可得出答案.【解答】解:∵DE垂直平分AB,∴AD=BD,∠AED=90°,∴∠A=∠ABD,∵∠ADE=40°,∴∠A=90°﹣40°=50°,∴∠ABD=∠A=50°,∵AB=AC,∴∠ABC=∠C=(180°﹣∠A)=65°,∴∠DBC=∠ABC﹣∠ABD=65°﹣50°=15°,故答案为:15.【点评】本题考查了等腰三角形的性质,线段垂直平分线性质,三角形内角和定理的应用,能正确运用定理求出各个角的度数是解此题的关键,难度适中.17.如图,已知正方形ABCD的边长为2,点O是正方形ABCD的中心,把正方形ABCD 绕点O逆时针旋转45°得到正方形A′B′C′D′,则正方形ABCD与正方形A′B′C′D′重叠部分形成的正八边形的边长为2﹣2.【考点】正多边形和圆;旋转的性质.【分析】首先求出正方形的对角线长;进而求出OA′的长;证明△A′MN为等腰直角三角形,求出A′N的长度;同理求出D′M′的长度,即可解决问题.【解答】解:连接OA′,交AB于M,如图所示:∵正方形ABCD的边长为2,∴该正方形的对角线长=2,∴OA′=;而OM=1,∴A′M=﹣1;由题意得:∠MA′N=45°,∠A′MN=90°,∴∠MNA′=45°,∴MN=A′M=﹣1;由勾股定理得:A′N=2﹣;同理可求D′M′=2﹣,∴NM'=2﹣(4﹣2)=2﹣2,∴正八边形的边长为2﹣2,故答案为2﹣2.【点评】该题主要考查了旋转变换的性质、正方形的性质、勾股定理等几何知识点及其应用;应牢固掌握旋转变换的性质、正方形的性质等几何知识点,这是灵活运用、解题的基础和关键.18.如图,将线段AB放在每个小正方形的边长为1的网格中,点A,点B均落在格点上.(1)AB的长等于;(2)请在如图所示的网格中,用无刻度的直尺,在线段AB上画出点P,使AP=,并简要说明画图方法(不要求证明)取格点C、D,连接CD,CD与AB交于点P,则点P即为所求.(可根据△APC∽△BPD证明).【考点】勾股定理.【分析】(1)利用格点,根据勾股定理求出AB的长;2)根据三角形相似,使得AP为AB长度的即可.【解答】解:(1)AB==;(2)如图所示:取格点C、D,连接CD,CD与AB交于点P,则点P即为所求.(可根据△APC∽△BPD证明)故答案为;取格点C、D,连接CD,CD与AB交于点P,则点P即为所求.(可根据△APC ∽△BPD证明).【点评】本题考查了勾股定理,充分利用格点的特点和相似三角形的性质是解题的关键.三、解答题(本大题共7小题,共66分.解答应写出文字说明、演算步骤或推理过程)19.解不等式组请结合题意填空,完成本小题的解答.(1)解不等式①,得x>﹣6;(2)解不等式②,得x≤2;(3)把不等式①和②的解集在数轴上表示出来;(4)原不等式组的解集为﹣6<x≤2.【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】(1)先移项,再合并同类项,求出不等式①的解集即可;(2)先移项,再合并同类项,求出不等式②的解集即可;(3)把两不等式的解集在数轴上表示出来即可;(4)根据数轴上不等式的解集,求出其公共部分即可.【解答】解:(1)解不等式①得,x>﹣6.故答案为:x>﹣6;(2)解不等式②得,x≤2.故答案为:x≤2;(3)不等式①和②的解集在数轴上表示为:;(4)由(3)得,不能等式组的解集为:﹣6<x≤2.故答案为:﹣6<x≤2.【点评】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.20.学校准备从甲乙两位选手中选择一位选手代表学校参加所在地区的汉字听写大赛,学校对两位选手从表达能力、阅读理解、综合素质和汉字听写四个方面做了测试,他们各自的成绩(百分制)如表:选手表达能力阅读理解综合素质汉字听写甲85 78 85 73乙73 80 82 83(1)由表中成绩已算得甲的平均成绩为80.25,请计算乙的平均成绩,从他们的这一成绩看,应选派谁;(2)如果表达能力、阅读理解、综合素质和汉字听写分别赋予它们2、1、3和4的权,请分别计算两名选手的平均成绩,从他们的这一成绩看,应选派谁.【考点】加权平均数;算术平均数.【分析】(1)先用算术平均数公式,计算乙的平均数,然后根据计算结果与甲的平均成绩比较,结果大的胜出;(2)先用加权平均数公式,计算甲、乙的平均数,然后根据计算结果,结果大的胜出.【解答】解:(1)=(73+80+82+83)÷4=79.5,∵80.25>79.5,∴应选派甲;(2)=(85×2+78×1+85×3+73×4)÷(2+1+3+4)=79.5,=(73×2+80×1+82×3+83×4)÷(2+1+3+4)=80.4,∵79.5<80.4,∴应选派乙.【点评】此题考查了算术平均数与加权平均数,解题的关键是:熟记计算算术平均数与加权平均数公式.21.(10分)(2020•武汉)如图,AB是⊙O的直径,C,P是上两点,AB=13,AC=5.(1)如图(1),若点P是的中点,求PA的长;(2)如图(2),若点P是的中点,求PA的长.【考点】相似三角形的判定与性质;勾股定理;等腰直角三角形;圆心角、弧、弦的关系;圆周角定理.【分析】(1)根据圆周角的定理,∠APB=90°,P是弧AB的中点,所以三角形APB是等腰三角形,利用勾股定理即可求得.(2)根据垂径定理得出OP垂直平分BC,得出OP∥AC,从而得出△ACB∽△0NP,根据对应边成比例求得ON、AN的长,利用勾股定理求得NP的长,进而求得PA.【解答】解:(1)如图(1)所示,连接PB,∵AB是⊙O的直径且P是的中点,∴∠PAB=∠PBA=45°,∠APB=90°,又∵在等腰三角形△APB中有AB=13,∴PA===.(2)如图(2)所示:连接BC.OP相交于M点,作PN⊥AB于点N,∵P点为弧BC的中点,∴OP⊥BC,∠OMB=90°,又因为AB为直径∴∠ACB=90°,∴∠ACB=∠OMB,∴OP∥AC,∴∠CAB=∠POB,又因为∠ACB=∠ONP=90°,∴△ACB∽△0NP∴=,又∵AB=13 AC=5 OP=,代入得ON=,∴AN=OA+ON=9∴在Rt△OPN中,有NP2=0P2﹣ON2=36在Rt△ANP中有PA===3∴PA=3.【点评】本题考查了圆周角的定理,垂径定理,勾股定理,等腰三角形判定和性质,相似三角形的判定和性质,作出辅助线是本题的关键.22.(10分)(2020•岳阳)如图是放在水平地面上的一把椅子的侧面图,椅子高为AC,椅面宽为BE,椅脚高为ED,且AC⊥BE,AC⊥CD,AC∥ED.从点A测得点D、E的俯角分别为64°和53°.已知ED=35cm,求椅子高AC约为多少?(参考数据:tan53°≈,sin53°≈,tan64°≈2,sin64°≈)【考点】解直角三角形的应用-仰角俯角问题.【分析】根据正切函数的定义,可得方程①②,根据代入消元法,可得答案.【解答】解:在Rt△ACD中,tan∠ADC=tan64°==2,CD= ①.在Rt△ABE中tan∠ABE=tan53°==,BE=AB ②.BE=CD,得===AB,解得AB=70cm,AC=AB+BC=AB+DE=70+35=105cm.【点评】本题考查了解直角三角形的应用,利用正切函数得出方程①②是解题关键.23.(10分)(2020•滨海新区二模)从A地向B地打长途电话,通话时间不超过3mn收费2.4元,超过3min后每分加收1元.(Ⅰ)根据题意,填写下表:通话时间2 3 6 …min通话费用/元 2.4 2.4 5.4…(Ⅱ)设通话时间为xmin,通话费用y元,求y与x的函授解析式;(Ⅲ)若小红有10元钱,求她打一次电话最多可以通话的时间(本题中通话时间取整数,不足1min的通话时间按1min计费).【考点】一次函数的应用.【分析】(Ⅰ)根据从A地向B地打长途电话,通话时间不超过3mn收费2.4元,超过3min 后每分加收1元计算即可解答;(Ⅱ)分两种情况求函数解析式:当x≤3时;当x>3时,根据通话时间与收费标准,可得函数解析式;(Ⅲ)根据通话时间与收费标准,可得函数解析式,根据函数值,可得相应自变量的值.【解答】解:(Ⅰ)根据通话时间不超过3mn收费2.4元,当通话时间为2min时,通话费为2.4元;当通话时间6min时,通话费为2.4+(6﹣3)×1=5.4元;故答案为:2.4,5.4.(Ⅱ)当x≤3时,y=2.4,当x>3时,y=2.4+(x﹣3)×1=x﹣0.6,综上所述,y=.(3)当y=10时,x﹣0.6=10,解得x=10.6.∵通话时间取整数,不足1min的通话时间按1min计费,∴打一次电话最多可以通话10min,答:有10元钱时,打一次电话最多可以通话10min.【点评】本题考查了分段函数,分类讨论是解题关键,利用通话时间与收费标准得出函数关系式.24.(10分)(2020•徐州)如图,平面直角坐标系中,将含30°的三角尺的直角顶点C落在第二象限.其斜边两端点A、B分别落在x轴、y轴上,且AB=12cm(1)若OB=6cm.①求点C的坐标;②若点A向右滑动的距离与点B向上滑动的距离相等,求滑动的距离;(2)点C与点O的距离的最大值=12cm.【考点】相似形综合题.【分析】(1)①过点C作y轴的垂线,垂足为D,利用含30°角的直角三角形的性质解答即可;②设点A向右滑动的距离为x,得点B向上滑动的距离也为x,利用三角函数和勾股定理进行解答;(2)过C作CE⊥x轴,CD⊥y轴,垂足分别为E,D,证明△ACE与△BCD相似,再利用相似三角形的性质解答.【解答】解:(1)①过点C作y轴的垂线,垂足为D,如图1:在Rt△AOB中,AB=12,OB=6,则BC=6,∴∠BAO=30°,∠ABO=60°,又∵∠CBA=60°,∴∠CBD=60°,∠BCD=30°,∴BD=3,CD=3,所以点C的坐标为(﹣3,9);②设点A向右滑动的距离为x,根据题意得点B向上滑动的距离也为x,如图2:AO=12×cos∠BAO=12×cos30°=6.∴A'O=6﹣x,B'O=6+x,A'B'=AB=12在△A'O B'中,由勾股定理得,(6﹣x)2+(6+x)2=122,解得:x=6(﹣1),∴滑动的距离为6(﹣1);(2)设点C的坐标为(x,y),过C作CE⊥x轴,CD⊥y轴,垂足分别为E,D,如图3:则OE=﹣x,OD=y,∵∠ACE+∠BCE=90°,∠DCB+∠BCE=90°,∴∠ACE=∠DCB,又∵∠AEC=∠BDC=90°,∴△ACE∽△BCD,∴,即,∴y=﹣x,OC2=x2+y2=x2+(﹣x)2=4x2,∴取AB中点D,连接CD,OD,则CD与OD之和大于或等于CO,当且仅当C,D,O三点共线时取等号,此时CO=CD+OD=6+6=12,故答案为:12.第二问方法二:因角C与角O和为180度,所以角CAO与角CBO和为180度,故A,O,B,C四点共圆,且AB为圆的直径,故弦CO的最大值为12.【点评】此题考查相似三角形的综合题,关键是根据相似三角形的性质和勾股定理以及三角函数进行分析解答.25.(10分)(2020•广州)已知O为坐标原点,抛物线y1=ax2+bx+c(a≠0)与x轴相交于点A(x1,0),B(x2,0),与y轴交于点C,且O,C两点间的距离为3,x1•x2<0,|x1|+|x2|=4,点A,C在直线y2=﹣3x+t上.(1)求点C的坐标;(2)当y1随着x的增大而增大时,求自变量x的取值范围;(3)将抛物线y1向左平移n(n>0)个单位,记平移后y随着x的增大而增大的部分为P,直线y2向下平移n个单位,当平移后的直线与P有公共点时,求2n2﹣5n的最小值.【考点】二次函数综合题.【分析】(1)利用y轴上点的坐标性质表示出C点坐标,再利用O,C两点间的距离为3求出即可;(2)分别利用①若C(0,3),即c=3,以及②若C(0,﹣3),即c=﹣3,得出A,B 点坐标,进而求出函数解析式,进而得出答案;(3)利用①若c=3,则y1=﹣x2﹣2x+3=﹣(x+1)2+4,y2=﹣3x+3,得出y1向左平移n个单位后,则解析式为:y3=﹣(x+1+n)2+4,进而求出平移后的直线与P有公共点时得出n 的取值范围,②若c=﹣3,则y1=x2﹣2x﹣3=(x﹣1)2﹣4,y2=﹣3x﹣3,y1向左平移n个单位后,则解析式为:y3=(x﹣1+n)2﹣4,进而求出平移后的直线与P有公共点时得出n 的取值范围,进而利用配方法求出函数最值.【解答】解:(1)令x=0,则y=c,故C(0,c),∵OC的距离为3,∴|c|=3,即c=±3,∴C(0,3)或(0,﹣3);(2)∵x1x2<0,∴x1,x2异号,①若C(0,3),即c=3,把C(0,3)代入y2=﹣3x+t,则0+t=3,即t=3,∴y2=﹣3x+3,把A(x1,0)代入y2=﹣3x+3,则﹣3x1+3=0,即x1=1,∴A(1,0),∵x1,x2异号,x1=1>0,∴x2<0,∵|x1|+|x2|=4,∴1﹣x2=4,解得:x2=﹣3,则B(﹣3,0),代入y1=ax2+bx+3得,,解得:,∴y1=﹣x2﹣2x+3=﹣(x+1)2+4,则当x≤﹣1时,y随x增大而增大.②若C(0,﹣3),即c=﹣3,把C(0,﹣3)代入y2=﹣3x+t,则0+t=﹣3,即t=﹣3,∴y2=﹣3x﹣3,把A(x1,0),代入y2=﹣3x﹣3,则﹣3x1﹣3=0,即x1=﹣1,∴A(﹣1,0),∵x1,x2异号,x1=﹣1<0,∴x2>0∵|x1|+|x2|=4,∴1+x2=4,解得:x2=3,则B(3,0),代入y1=ax2+bx+3得,,解得:,∴y1=x2﹣2x﹣3=(x﹣1)2﹣4,则当x≥1时,y随x增大而增大,综上所述,若c=3,当y随x增大而增大时,x≤﹣1;若c=﹣3,当y随x增大而增大时,x≥1;(3)①若c=3,则y1=﹣x2﹣2x+3=﹣(x+1)2+4,y2=﹣3x+3,y1向左平移n个单位后,则解析式为:y3=﹣(x+1+n)2+4,则当x≤﹣1﹣n时,y随x增大而增大,y2向下平移n个单位后,则解析式为:y4=﹣3x+3﹣n,要使平移后直线与P有公共点,则当x=﹣1﹣n,y3≥y4,即﹣(﹣1﹣n+1+n)2+4≥﹣3(﹣1﹣n)+3﹣n,解得:n≤﹣1,∵n>0,∴n≤﹣1不符合条件,应舍去;②若c=﹣3,则y1=x2﹣2x﹣3=(x﹣1)2﹣4,y2=﹣3x﹣3,y1向左平移n个单位后,则解析式为:y3=(x﹣1+n)2﹣4,则当x≥1﹣n时,y随x增大而增大,y2向下平移n个单位后,则解析式为:y4=﹣3x﹣3﹣n,要使平移后直线与P有公共点,则当x=1﹣n,y3≤y4,即(1﹣n﹣1+n)2﹣4≤﹣3(1﹣n)﹣3﹣n,解得:n≥1,综上所述:n≥1,2n2﹣5n=2(n﹣)2﹣,∴当n=时,2n2﹣5n的最小值为:﹣.【点评】此题主要考查了二次函数综合以及二次函数的平移以及二次函数增减性等知识,利用分类讨论得出n的取值范围是解题关键.。