功能材料概论总复习
- 格式:ppt
- 大小:2.54 MB
- 文档页数:75
先进功能材料复习资料汇总[精选]第一篇:先进功能材料复习资料汇总[精选]1、说明功能材料与结构材料的区别并举例。
1)功能材料的功能对应于材料的微观结构和微观物体的运功,结构材料则主要利用其力学和机械性能。
2)功能材料的聚集态和形态非常多样化,除了晶态外,还有气态、液态、液晶态、非晶态、混合态、等离子态等;除了三维体相材料外,还有二维、一维和零维材料;除了平衡态外,还有非平衡态。
而结构材料的形态较为单一。
3)功能材料多以元件形式为最终产品,如纳米氧化锌薄膜用于特种气体敏感材料,制作传感器,如汽车司机酒精检测。
而结构材料多以材料形式为最终产品,如钢材、铝合金用在汽车和飞机结构、大梁、门框上,起力学支撑和结构固定作用。
4)功能材料的制备技术涉及新工艺和新技术,如急冷、超净、超微、超纯、薄膜化、集成化、微型化、智能化、精细控制等。
而结构材料的制备多涉及传统的方法,如轧制、铸造、烧结等。
2、说明一次功能材料与二次功能材料的区别并举例。
一次功能材料:当向材料输入的能量和从材料输出的能量属于同一种形式时,材料起到能量传输部件的作用。
材料的这种功能称为一次功能。
以一次功能为使用目的的材料又称为载体材料。
如:1)力学功能:粘、润滑、超塑、高弹、防震性等。
2)声功能:隔音、吸音性等。
3)热功能:传热、隔热、吸热、蓄热性等。
4)电功能:导电、超导性、绝缘、电阻等。
5)磁功能:硬磁性(记录介质)、软磁性(磁头等)等。
6)光功能:透光、反折射光、吸光、偏振光、聚光性等。
7)化学功能:吸附、催化、生化反应、酶反应等。
8)其他功能:如放射特性、电磁波特性等。
二次功能材料:当向材料输入的能量和从材料输出的能量属于不同形式时,材料起能量的转换部件作用,材料的这种功能称为二次功能或高次功能。
如:1)光能→其他形式(如光合成、光分解、光致抗蚀、化学发光、感光、光致伸缩、光伏、光导电等)。
2)电能→其他形式(如电磁、电热、热电、光电、场致发光、电化学、电光效应等)。
功能材料复习资料⼀、简答题1、功能材料是指具有⼀种或⼏种特定功能的材料,如磁性材料、光学材料等,它具有优良的物理、化学和⽣物功能,在物件中起着“功能”的作⽤。
2、红外材料是指与红外线的辐射、吸收、透射和探测等相关的⼀些材料。
红外线的辐射起源于分⼦的振动和转动,⽽分⼦振动和转动起源于温度。
它本质上和可见光⼀样是⼀种电磁波,波长在0.76~1000um 之间。
3、热平衡辐射体是当⼀个物体向周围发射辐射时,同时也吸收周围物体所发射的辐射能量,当物体与外界进⾏能量交换慢到使物体在任何短时间内仍保持确定温度时,该过程可以看作是平衡。
4、全发射率、单⾊发射率、灰体、选择性辐射体实际物体发射辐射性能没有⿊体理想,受到外界辐射源照射时,它并不能全部吸收⼀定波长的能量,在给定温度下,从表⾯发射的辐射出射度⽐同⼀温度下⿊体的辐射出射度⼩。
因此,把实际物体发射的辐射出射度和同⼀温度下⿊体发射的辐射出射度之⽐定义为发射率ε,也称全发射率。
把各个波长的辐射出射度与同温度、同波长下⿊体的辐射出射度之⽐定义为光谱发射率ε(λ),也称为单⾊发射率。
⿊体:ε=1,ε(λ)=1;实际物体:ε<1,ε(λ)<1;灰体的发射率与波长⽆关,ε=ε(λ),也可以说发射率与波长⽆关的物体称为灰体;随波产变化⽽改变发射率的物体称为选择性辐射体。
5、全息成像过程是利⽤光的⼲涉和衍射现象,在照相⼲板或胶⽚上以⼲涉条纹形式把图像记录下来,然后以光照射这种⼲板,就能以⽴体形式再现物体的原来图像。
由于它记录了物体的全部信息(振幅和相位),所以称为全息照相术。
6、隐⾝技术凡是能使军事⽬标的各种可探测的⽬标特征减少或迷盲的技术均可称为隐⾝技术。
隐⾝技术可分为两⼤类:主动隐⾝技术和被动隐⾝技术。
主动隐⾝技术是采取各种主动措施如⼲扰、假⽬标、烟幕、地形匹配等使敌⽅的探测⼿段受到迷惑⽽⽆法识别⽬标。
被动隐⾝技术是指在武器系统的设计和使⽤过程中,降低其作为⽬标特征的技术。
《功能材料学》复习重点1.什么是功能材料和主要特征:功能材料是指具有优良的物理、化学、生物或其相互转化的功能,用于非承载目的的材料。
有以下五大主要特征:%1功能对应于材料的微观结构和微观物体的运动。
%1其聚集态和形态非常多样化。
%1产品形式主要是材料元件一体化。
%1是利用现代科学技术,多学科交叉的知识密集型产物。
%1采用许多新工艺和新技术进行制备与检测。
2.电了导电材料中的超导体、导体、半导体和绝缘体的区别?答:导体、超导体、半导体和绝缘体的区别在于电导率、能带结构和导电机理三方面。
(1)电导率:导体的电导率Wl()5S/m;超导体的电导率为无限大;半导体的电导率为10-7-104S/m;绝缘体的电导率W10-7S/m。
(2)能带结构:导体和超导体的能带结构有三类:未满带+重带+空带;满带+空带;未满带+禁带+空带。
半导体和绝缘体的能带结构是满(价)带+禁带+空(导)带,半导体的禁带宽度为0<Eg兰2eV,而绝缘体的禁带宽度大于2eV。
(3)导电机理:导体是通过日由电了的运动而导电的,导体中均存在电子运动的通道即导带,电了进入导带运动均不需能带间跃迁。
超导体的导电是因为超导电了的存在,它的运动是不受阻的。
半导体价带中的电了受激发后从满带跃到空带中,跃迁电子可在空带中自由运动,传导电了的负电荷,满带中留下的空穴按电了运动相反的方向运动传导正电荷;半导体的导电来源于电子和空穴的运动,电子和空穴都是半导体中导电的载流子。
绝缘体不导电。
3.超导材料及其特征值?某些金属、金属化合物及合金,当温度低到一定程度时,电阻突然消失,把这种处于零电阻的状态叫做超导态。
有超导态存在的材料叫超导材料。
其特征值为:(1)临界温度Tc。
当TvTc时,导体的P=0,具有超导性。
当T>Tc时,导体的P尹0,即失去超导性。
(2)临界磁场强度He。
除温度外,足够强的磁场也能破坏超导态。
使超导态转变成正常态的最小磁场He⑴叫做此温度下该超导体的临界磁场。
根据去年考试经验,只复习此提纲即可,但要找出此次期中考试的内容。
去年题型为填空题,名词解释,问答题,与复习提纲的三部分相照应,其中填空题考得很细,要背得仔细些,问答题要答出大意。
功能材料去年期末复习提纲绪论0**所谓新材料,是“在近阶段将达到实用化的高功能材料”,一般认为,新材料可以包括:晶须材料、非晶材料、超塑性材料、形状记忆材料、功能陶瓷、功能有机材料、超导材料、碳纤维、能量转换材料等。
0**一次功能当向材料输入的能量和从材料输出的能量属于同种形式时,材料起能量传送部件作用,材料的这种功能称为一次功能。
以一次功能为使用目的材料也可以称之为载体材料。
一次功能主要有:1.力学功能惯性、粘性、流动性、润滑性、成型性、超塑性、高弹性、恒弹性、振动性和防振性2.声功能如吸音性和隔音性3.热功能如隔热性、传热性、吸热性和蓄热性等4.电功能如导电性、超导性、绝缘性和电阻等。
5.磁功能如软磁性、硬磁性、半硬磁性等。
6.光功能如透光性、遮光性、反射光性、折射光性、吸收光性、偏振性、聚光性、分光性等。
7.化学功能如催化作用、吸附作用、生物化学反应、酶反应、气体吸收性等。
8.其它功能如电磁波特性(常与隐身相联系)、放射特性等。
二次功能当向材料输入的能量和输出能量属于不同形式时,材料起能量的转换部件作用。
这种功能称为二次功能或高次功能。
二次功能按能量的转换系统可以分为:1.光能与其它形式能量的转换如光化反应,光致抗蚀,光合成反应,光分解反应,化学发光,感光反应,光致伸缩,光生伏持效应和光导电效应。
2.电能与其它形式能量的转换如电磁效应,电阻发热效应,热电效应,光电效应,场致发光效应,电光效应和电化学效应等。
3.磁能与其它形式能量的转换如热磁效应,磁冷冻效应,光磁效应和磁性转变等。
4.机械与其它形式能量的转换如压电效应,磁致伸缩,电致伸缩,光压效应,声光效应,光弹性效应,机械化学效应,形状记忆效应和热弹性效应等。
0**目前用于功能材料制备的方法很多,如:快速凝固、镀膜、超晶格、机械合金化、溶胶-凝胶、极限条件(极高温、高压、高真空、失重等)下制备的方法、复合及杂化、晶须及大单晶制备法等等。
1.能带:满带:被电子填满的能带。
空带:没有被电子填充的能带。
价带:被价电子占据的能量最高的能带。
导带:价带以上的空带。
2.本征半导体:本征半导体是不含有任何杂质的半导体,它表示半导体本身固有的特性。
3.迈斯纳效应(B=0):处于超导态的物体完全排斥磁场,即磁力线不能进入超导体内部,这一特征叫完全抗磁性或迈斯纳效应。
4.超导隧道效应(约瑟夫森效应):两超导体中间的绝缘层能让超导电流通过的现象,称为超导隧道效应。
5.介电损耗:电介质在交变电场作用下,以发热的形式而耗散能量的现象称为介电损耗。
6.光电导效应:半导体在受到光照射时,其电导率发生变化的现象称为光电导效应。
7.光生伏特效应 :光照射到半导体的p-n结上时,在p-n结的两端会出现电势差,p区为正极,n区为负极。
这一电势差可以用高内阻的电压表测量出来,这种效应称为光生伏特效应,简称光伏效应。
8.光电发射效应:当金属或半导体受到光照射时,其表面和体内的电子因吸收光子能量而被激发,如果被激发的电子具有足够的能量,足以克服表面势垒而从表面离开,即产生光电发射效应。
9.施主耗尽:10.磁滞现象:磁滞现象是磁化的不可逆性的表现,是铁磁体在磁化时,B 值的减小滞后于H 值减小的现象。
11.磁致伸缩效应:在磁场中磁化状态改变时,铁磁和亚铁磁材料引起尺寸或体积微小的变化,称为磁致伸缩。
12.电致发光:电致发光是指在直流或交流电场作用下,依靠电流和电场的激发使材料发光的现象。
又称场致发光。
这种发光材料称为电致发光材料或场致发光材料。
13.压电效应:1、正压电效应:当外加应力T作用于某些单晶或多晶介电体并使它们发生应变S时,介电体内的正负电荷中心会产生相对位移,并在某两个相对的表面产生异号束缚电荷。
这种由应力作用使材料发生电极化(即带电)或电极化的变化的现象称为正压电效应。
2、逆压电效应:与正压电效应产生的过程相反,当对这类介电体施加外电场并使其中的正负电荷中心产生位移时,该介电体要随之发生变形。
功能材料的定义:用于工业和技术上的有关物理性能,以电、磁、声、光、热等物理性能为特性的材料称为功能材料。
1•掌握钙钛矿的品胞结构:①A离子位于氧八面体与氧八面体的间隙,B离子位于氧八面体的中心。
②形成稳定钙钛矿相结构的两个基本条件:阳离子半径要合适;阴阳离子Z间要形成强离子键。
容差因子t。
2、掌握三种极化机制和自发极化的概念:①电子位极化、离子位移极化、固有偶极矩取向极化;②自发极化:在没有外迫场作用时,晶体小存在着由于电偶极子的有序排列而产生的极化,称为自发极化。
4、儿个概念:①铁电体内H发极化相同的小区域称为电畴,电畴与电畴Z间的交界称为畴壁;②使剩余极化強度降为零的电场值Ec称为侨顽电场强度(矫顽场);③晶体受到机械力的作用时,农面产生束缚电荷,英电荷密度大小与施加外力大小成线性关系,这种由机械效应转换成电效应的工程称为正压电效应;晶体在受到外电场激励下产生形变,且二者z间呈线性关系,这种曲电效应转换为机械效应的工程称为逆压电效应;这两者•合称为压电效应;④晶体在受到外电场E激励下产生形变S,但二者呈非线性关系,形变S与电场的平方E2呈线性关系,即S-E2,这种效应称为电致伸缩效应:⑤曲于温度的变化,晶体出现结构上的电荷中心相对位移,使自发极化强度发生变化,从而在两端产生并号的束缚电荷,这种现象称为热释电效应;⑥晶体顺电相与铁电相的临界转变温度Tc称为居里温度1、学握钛酸张的晶体结构及其变化:伙酸饮晶体结构有立方相、四方相、斜方相和三方相等晶相,均屈于钙钛矿型结构的变体,四方相、斜方相和三方相为铁电相,立方相为顺电相。
2、掌揺弛豫铁电陶瓷与传统铁电体的区别:弛豫铁电陶瓷的特点①介电常数髙②相对较低的烧结温度③电致伸缩效应大④电致应变滞后小⑤剩余极化小。
3、居里Th斯定律和容温变化率的含义:①在屈里温度以匕饮酸锁的介电常数岁温度的变化遵循居里―外斯定律::②表征介电常数温度稳定性的容温变化率如下式所示:4,弥散相变和频率色散的金义:①弥散相变:即顺电一^电相变是逐渐的变化而非突变,表现为介电常数9温度的关系Illi线中介电峰的宽化,禽于居里温度附近仍心在R发极化和电滞I可线;②频率色散:即在Tm附近低温侧介电临壑损耗峰随测试频率的提岛,而略向禹温方向移动,而介电峰壑损耗蜂分别随频率增加而略有降低和增加。
2016年《功能材料》总复习绪论1. 新材料指“在近阶段将达到实用化的高功能材料”,一般认为可以包括:晶须材料、非晶材料、超塑性材料、形状记忆材料、功能陶瓷、功能有机材料、超导材料、碳纤维、能量转换材料等。
2. 功能材料指那些具有优良的电学、磁学、光学、热学、声学、力学、化学、生物医学功能,特殊的物理、化学、生物学效应,能完成功能相互转化,主要用来制造各种功能元器件而被广泛应用于各类高科技领域的高新技术材料。
(磁性、电子、信息、光学、敏感、能源)3. 与结构材料相比,功能材料有以下主要特征:1)功能材料的功能对应于材料的微观结构和微观物体的运动,是最本质的特征。
2)功能材料的聚集态和形态非常多样化,除晶态外,还有气态、液态、液晶态、非晶态、混合态和等离子态。
除三维材料外,还有二维、一维和零维材料。
3)结构材料常以材料形式为最终产品,而功能材料有相当一部分是以元件形式为最终产品,即材料-元件一体化。
4)功能材料是多学科交叉的知识密集型产物。
5)功能材料的制备技术不同于结构材料用的传统技术,而是采用许多先进的新工艺和新技术,如急冷、超净、超微、超纯、薄膜化、集成化、微型化、智能化以及精细控制和检测技术。
4. 功能材料按其功能的显示过程可分为:1)一次功能材料:当向材料输入的能量和从材料输出的能量属于同一种形式时,材料起到能量传输部件的作用。
材料的这种功能称为一次功能。
以一次功能为使用目的的材料又称为载体材料。
2)二次功能材料:当向材料输入的能量和从材料输出的能量属于不同形式时,材料起能量的转换部件作用,材料的这种功能称为二次功能或高次功能。
有人认为这种材料才是真正的功能材料。
5. 功能材料的制备方法1)溶胶-凝胶法(Sol--Gel法,简称SG法)2)快淬快凝技术:通过快淬快凝工艺可以得到在常规条件下的亚稳相。
亚稳相可以是材料的使用状态,也可能是为了得到好性能的中间状态。
实际上可以把亚稳状态的材料看作是平衡态来使用。
功能材料试题及参考答案功能材料试题及参考答案篇一:功能材料试题参考答案一、名词解释(共24分,每个3分)居里温度:铁电体失去自发极化使电畴结构消失的最低温度(或晶体由顺电相到铁电相的转变温度)。
铁电畴:铁电晶体中许许多多晶胞组成的具有相同自发极化方向的小区域称为铁电畴。
电致伸缩:在电场作用下,陶瓷外形上的伸缩(或应变)叫电致伸缩。
介质损耗:陶瓷介质在电导和极化过程中有能量消耗,一部分电场能转变成热能。
单位时间内消耗的电能叫介质损耗。
n型半导体:主要由电子导电的半导体材料叫n型半导体。
电导率:电导率是指面积为1cm2,厚度为1cm的试样所具有的电导(或电阻率的倒数或它是表征材料导电能力大小的特征参数)。
压敏电压:一般取I=1mA时所对应的电压作为I随V陡峭上升的电压大小的标志称压敏电压。
施主受主相互补偿:在同时有施主和受主杂质存在的半导体中,两种杂质要相互补偿,施主提供电子的能力和受主提供空状态的能力因相互抵消而减弱。
二、简答(共42分,每小题6分)1.化学镀镍的原理是什么?答:化学镀镍是利用镍盐溶液在强还原剂(次磷酸盐)的作用下,在具有催化性质的瓷件表面上,使镍离子还原成金属、次磷酸盐分解出磷,获得沉积在瓷件表面的镍磷合金层。
由于镍磷合金具有催化活性,能构成催化自镀,使得镀镍反应得以不断进行。
2.干压成型所用的粉料为什么要造粒?造粒有哪几种方式?各有什么特点?答:为了烧结和固相反应的进行,干压成型所用粉料颗粒越细越好,但是粉料越细流动性越差;同时比表面积增大,粉料占的体积也大。
干压成型时就不能均匀地填充模型的每一个角落常造成空洞、边角不致密、层裂、弹性后效等问题。
为了解决以上问题常采用造粒的方法。
造粒方式有两种方式:加压造粒法和喷雾干燥法。
加压造粒法的特点是造出的颗粒体积密度大、机械强度高、能满足大型和异型制品的成型要求。
但是这种方法生产效率低、自动化程度不高。
喷雾干燥法可得到流动性好的球状团粒,产量大、可连续生产,适合于自动化成型工艺。
1.金属基复合材料制备工艺的选择原则(1)基体与增强剂的选择,基体与增强剂的结合(2)界面的形成机制,界面产物的控制及界面设计(3)增强剂在基体中的均匀分布(4)制备工艺方法及参数的选择和优化(5)制备成本的控制和降低,工业化应用的前景2. 金属基复合材料制备工艺的分类1)固态法:真空热压扩散结合、超塑性成型/ 扩散结合、模压、热等静压、粉末冶金法2)液态法:液态浸渗、真空压铸、反压铸造、半固态铸造3)喷射成型法:等离子喷涂成型、喷射成型4)原位生长法3. 金属基复合材料的界面结合形式(1)机械结合:第一类界面。
主要依靠增强剂的粗糙表面的机械“锚固”力结合。
(2)浸润与溶解结合:第二类界面。
如相互溶解严重,也可能发生溶解后析出现象,严重损伤增强剂,降低复合材料的性能。
如采用熔浸法制备钨丝增强镍基高温合金复合材料以及碳纤维/镍基复合材料在600℃下碳在镍中先溶解后析出的现象等。
(3)化学反应结合:第三类界面。
大多数金属基复合材料的基体与增强相之间的界面处存在着化学势梯度。
只要存在着有利的动力学条件,就可能发生相互扩散和化学反应4.金属基复合材料的界面优化以及界面设计改善增强剂与基体的润湿性以及控制界面反应的速度和反应产物的数量,防止严重危害复合材料性能的界面或界面层的产生,进一步进行复合材料的界面设计,是金属基复合材料界面研究的重要内容。
从界面优化的观点来看,增强剂与基体的在润湿后又能发生适当的界面反应,达到化学结合,有利于增强界面结合,提高复合材料的性能5. 界面优化以及界面设计一般有以下几种途径<1> 增强剂的表面改性处理(1)改善增强剂的力学性能(保护层);(2)改善增强剂与基体的润湿性和粘着性(润湿层);(3)防止增强剂与基体之间的扩散、渗透和反应(阻挡层);(4)减缓增强剂与基体之间因弹性模量、热膨胀系数等的不同以及热应力集中等因素所造成的物理相容性差的现象(过渡层、匹配层)。
1. 新能源材料面临的挑战和发展方向。
新能源与新材料,是国民经济和社会发展的命脉,它们广泛渗透于人类的生活Z中,影响着人类的生存质最。
新材料是高新技术与产业发展的基础性与先导性行业,每一次材料技术的重大突破都会带动一个新兴产业样的发展,其研发水平及产业化规模已成为衡量一个国家经济发展、科技进步和国防实力的重要标志。
相对于传统能源,新能源普遍具有污染少、储量大的特点,对于解决当今世界严重的坏境污染问题和资源(特别是化石能源)枯竭问题具冇重要意义。
面对益严峻的能源问题和环境污染问题,最终离不开新材料、新能源的不断涌现,新能源材料的开发已经越来越引起壯界各国研究机构的广泛重视,新的技术和成果不断涌现。
可以说,新能源材料的开发和利用己成为社会可持续发展的重要的影响因素。
新能源材料是指支撑新能源发展的、具冇能量储存和转换功能的功能材料或结构功能一体化材料。
能源材料是材料的一个重耍组成部分,有的学者将能源材料划分为新能源技术材料、能量转换与储能材料和节能材料等。
在该分类中,新能源技术材料是核能、太阳能、氢能、风能、地热能和海洋潮汐能等新能源技术所使用的材料;能最转换与储能材料是各种能量转换与储能装置所使用的材料,是发展研制各种新型、高效能量转换与储能装宜的关键, 包括铿离子电池材料、镰氮电池材料、燃料电池材料、超级电容器材料和热电转换材料;节能材料是能够提肓能源利用效率的各种新烈节能技术所使用的材料,包括超导材料、建筑节能材料等能够提高传统工业能源利川效率的各种新型材料。
新能源是传统能源的冇益补充,人力发展新能源,调整能源结构是我们当前和未来的必然选择。
因此,我们认为新能源材料是指实现新能源的转化和利用以及发展新能源技术屮所要用到的关键材料,它是发展新能源的核心和基础。
从材料学木身和能源发展的观点看,能储存和有效利用现有传统能源的新材料也可以归属为新能源材料。
新能源材料線氢电池材料、鏗离子电池材料、燃料电池材料、太阳能电池材料、反应堆核能材料、发展生物质能所需的垂点材料、新型相变储能和节能材料等。