一款2KW高频开关电源电路的设计方案及实现
- 格式:pdf
- 大小:269.32 KB
- 文档页数:5
2kw半桥llc开关芯片半桥LLC开关电源芯片是一种高效、高可靠性的电源转换芯片,常用于大功率电源系统中。
2KW的半桥LLC开关电源芯片是一种常见的规格,能够满足中高端电源系统的需求。
以下是一些关于2KW半桥LLC开关电源芯片的信息:一.芯片特点:1.高效:能够实现高效率的电源转换,降低能源损失和散热需求。
2.高可靠性:具有较低的故障率和较长的使用寿命。
3.集成度高:将开关管、PWM控制器、保护电路等集成在单颗芯片中,方便使用和调试。
二.工作原理:1.半桥结构:采用半桥电路结构,通过两个开关管交替导通和截止,实现电源的变压和整流。
L2.LC谐振电路:采用LLC谐振电路,实现开关管零电压或零电流切换,降低开关损耗和电磁干扰。
3.PWM控制:通过PWM控制电路,调节开关管的导通和截止时间,实现电源的稳压和调功。
三.应用领域:1.大功率电源系统:适用于需要大功率电源的设备,如服务器、基站、工业电源等。
2.新能源领域:可用于光伏逆变器、风能逆变器等新能源设备的电源系统。
3.电动汽车领域:可应用于电动汽车的充电桩、电机控制器等电源系统。
四.选型注意事项:1.输入电压范围:根据实际应用选择合适的输入电压范围。
2.输出电压和电流:根据实际需求选择合适的输出电压和电流规格。
3.工作频率:选择合适的工作频率以平衡电源性能和EMI 特性。
4.保护功能:选择具有完善保护功能的芯片,如过流保护、过压保护、欠压保护等。
在选择品牌和供应商时,应考虑其技术实力、产品质量、售后服务等因素。
应用示例:1.在服务器电源中的应用:用于实现服务器电源的高效、稳定供应。
2.在电动汽车充电桩中的应用:用于实现快速充电和稳定电压输出。
总之,2KW半桥LLC开关电源芯片是一种常用的高效、高可靠性电源转换芯片,适用于多种大功率电源系统的应用场景。
在选择和使用时,需注意其特点、工作原理、应用领域、选型注意事项。
同时,结合具体应用示例进行方案设计,可更好地发挥其性能优势。
高频开关稳压电源的设计高频开关稳压电源是一种采用高频开关技术来实现稳定输出电压的电源设计。
它在很多应用场景中都得到了广泛的应用,如电子设备、通信设备、工业控制系统等。
本文将从原理、设计和应用等方面对高频开关稳压电源进行详细介绍。
一、高频开关稳压电源的原理1.输入滤波电路:用于滤除输入电源中的电源干扰,避免其传播到输出端,以保证输出电压的稳定性。
2.整流电路:将输入电源交流信号变换为直流信号,一般使用整流桥或者整流二极管来实现。
3.DC-DC变换器:通过快速开关器件(如MOSFET)的开闭控制,将输入电压转换为高频交流信号,并经过变压器、滤波电路等处理后,得到所需的输出稳定电压。
4.控制电路:用于对DC-DC变换器进行调整和控制,以维持输出电压的稳定性。
通常采用PWM(脉宽调制)技术,通过调节开关器件的开闭时间来控制输出电压的大小。
二、高频开关稳压电源的设计步骤设计高频开关稳压电源通常需要经过以下几个步骤。
1.确定设计要求:包括输出电压、输出电流、转换效率、负载变化响应时间等。
这些指标将直接影响到电源设计的具体参数选择和性能。
2.选择开关器件:根据设计要求和应用场景的需求,选择合适的快速开关器件,如MOSFET或IGBT等。
一般来说,MOSFET具有开关速度快、功耗低、可靠性高等优点,在大多数情况下被广泛采用。
3.选择变压器:根据设计要求和开关器件的特性来选择合适的变压器。
变压器的参数包括输入输出电压比、变压器的绕制方式、匝数、铁芯材料等。
通过合理的设计和选择,可以使变压器的效率和体积得到优化。
4.设计控制电路:根据PWM技术,设计一个合适的控制电路。
控制电路的关键是根据反馈信号来对开关器件进行调整,以维持输出电压的稳定性。
同时,还需要考虑保护电路的设计,如过压保护、过流保护等,以提高电源的安全性和可靠性。
5.电路仿真和测试:设计完成后,需要进行电路的仿真和测试,验证电源的性能和稳定性。
通过仿真和测试,可以根据需要对电路进行优化和改进,以满足实际应用的需求。
高频开关电源的设计与制作(论文)《高频开关电源的设计与制作》论文版本,是提取了重点来简单论述的。
这也是在毕业设计最后学校要求进行缩减后拿去参评校级优秀毕业设计的,当然这是获奖的啦!欢迎下载参考!高频开关电源的设计与制作洛阳理工学院电气工程与自动化系黄贝利指导老师杨文方2011摘要:开关电源是利用现代电力电子技术,控制开关晶体管开通和关断的时间比率,维持稳定输出电压的一种电源。
我们设计了以MOSFET作为功率开关器件采用脉宽调制(PWM)技术,输出实时采样电压反馈信号,来控制输出电压变化的。
本文具体介绍了其系统构成,工作原理,基本控制器结构、功能和特点。
关键词:高频开关电源变换器SG3525 过流保护0. 前言随着电力电子技术的高速发展,开关电源不断向高频、高可靠、低耗、低噪声、抗干扰和模块化方向发展。
另外开关电源的发展与应用在节约能源、节约资源及保护环境方面都具有重要的意义。
现在迫切需要物美价廉,能满足多种不同工况要求的多规格、多品种、系列化的高质量、高性能的高频高压开关电源。
虽国内已有少数厂家生产高频高压开关电源,但价格昂贵。
因此设计开发价格低廉的高频高压开关电压是大势所趋,具有良好的市场。
[1] [2]1. 系统设计原理及其框图开关电源采用功率半导体器件作为开关器件,通过周期性间断工作,控制开关器件的占空比来调整输出电压。
其中DC/DC变换器进行功率转换,它是开关电源的核心部分,此外还有起动、过流与过压保护、噪声滤波等电路。
输出采样电路检测输出电压变化,与基准电压研比较,误差电压经过放大及脉宽调制(PWM)电路,再经过驱动电路控制功率器件的占空比,从而达到调整输出电压大小的目的。
开关电源结构框图如图1所示:图1 开关电源结构框图2. 高频开关电源的电路设计2.1 电源输入滤波及桥式整流电源输入滤波又称电磁干扰(EMI),主要用于抑制电气噪声和消除电磁干扰。
经滤波后送入桥式整流电路,将其整流得到所需的300V高压直流电,然后再送入功率变换器。
目录引言......................................................... 1本文概述 .................................................1.1选题背景............................................................................................................................1.2本课题主要特点和设计目标 ...........................................................................................1.3课题设计思路.................................................................................................................... 2SABER软件................................................2.1SABER简介 .....................................................................................................................2.2SABER仿真流程 .............................................................................................................2.3本章小结............................................................................................................................ 3三相桥式全控整流器的设计..................................3.1工作原理............................................................................................................................3.1.1 三相桥式全控整流电路的特点......................................................................................3.2保护电路............................................................................................................................3.2.1 过电压产生的原因..........................................................................................................3.2.2 过压保护 (1)3.2.3 过电流产生的原因 (1)3.2.4 过流保护 (1)3.3SABER仿真 (1)3.3.1 设计规范 (1)3.3.2 建立模型 (1)3.3.3 仿真结果 (1)3.3.4 结果分析 (1)3.4本章小结 (2)4功率因素校正技术 (2)4.1谐波 (2)4.1.1 谐波的危害 (2)4.1.2 谐波补偿和功率因素校正 (2)4.2有源功率因数校正 (2)4.2.1 APFC技术分类 (2)4.2.2 临界导电模式APFC的控制原理 (2)4.2.3 功率因素校正电路的缺点及解决方法 (2)4.3本章小结 (2)5软开关功率变换技术 (2)5.1软开关技术的提出 (2)5.1.1 开关损耗的成因 (2)5.2软开关技术 (2)5.2.1 软开关技术的一般实现方法 (2)5.2.2 软开关的发展历程主要分类 (2)5.3本章小结 (3)6双管正激变换器的设计 (3)6.1工作原理 (3)6.2SG3525的功能介绍以及应用 (3)6.2.1 SG3525基本工作原理和应用特点 (3)6.2.2 SG3525在双管正激开关电源中的应用 (3)6.3启动电路的改进 (3)6.4SABER仿真 (3)6.4.1 设计步骤简介 (3)6.4.2 设计规范 (3)6.4.3 开环设计(功率电路设计) (3)6.4.4 调制器设计和闭环仿真 (4)6.5仿真结果 (4)6.6本章小结 (4)7BOOST变换器的设计 (4)7.1工作原理 (4)7.2SABER仿真 (5)7.2.1 设计规范 (5)7.2.2 参数设计 (5)7.2.3 仿真结果 (5)7.3本章小结 (5)8系统集成调试 (5)9结论与展望 (5)谢辞 (5)参考文献 (5)附录 (5)引言人类已经进入工业经济时代,并处于转入高新技术产业迅猛发展的时期。
高频开关电源技术方案[范文大全]第一篇:高频开关电源技术方案高频开关电源技术方案客户需求技术参数30929003.pdf 技术方案 2.1 概述现场的实际应用情况:12台15V/12000A的电源配1台90V/2000A的电源,每6台15V/12000A 的电源配一台6kV/380V/1MW的变压器,其中90V/2000A电源由于只是用于去除氧化膜,并不需要长时间工作。
电源关注核心指标是可靠性和系统效率。
电源可以考虑采用3种主回路方式,每种方式各有优缺点。
2.2主回路原理图方案1 2.2.1方案1 总体思想为输入36脉波移相变压器,6组功率模块并联的方式,具体电路如下:15V/12000A 开关电源最大输出功率180kW,90V/2000A开关电源最大输出功率180kW,功率等级一样,考虑采用同样的主回路原理,如下:整流器整流器36脉移相变压器整流器整流器整流器整流器功率模块1输出15V/12000A或90V/2000A功率模块2输入380V/50Hz 功率模块3功率模块4功率模块5功率模块6功率模块原理如下:高频变压器及整流输入端配置36脉波移相变压器,可有效拟制输入电流谐波,基本能满足3%的要求;每台开关电源采用6个功率模块并联的方式,如1个模块出现异常,其他模块还能继续降额工作,提高了工作可靠性;模块之间的均流精度可达5%以内,因此15V/12000A的开关电源每个模块的等级设计为15V/2200A,90V/2000A的开关电源每个模块的等级设计为90V/360A。
逆变采用移相全桥软开关技术,效率高,比普通硬开关技术效率平均多2%左右;二次整流采用同步整流技术,效率远远大于采用一般二极管整流的方式,一般同步整流比普通二极管整流效率高出5%~6%。
输出加LC滤波,如不加LC滤波,输出导电排由于高频肌肤效应的缘故,导电排发热严重。
90V/2000A电源由于只是用于去除氧化膜,并不需要长时间工作,从降低成本角度考虑,可以不加36脉波移相变压器,输出也不需要LC 滤波,直流输出高频方波电压。
目录1绪论 (1)1.1高频开关电源概述 (1)1.2意义及其发展趋势 (2)2高频开关电源的工作原理 (3)2.1高频开关电源的基本原理 (3)2.2高频开关变换器 (5)2.2.1单端反激型开关电源变换器 (5)2.2.2多端式变换器 (6)2.3控制电路 (8)3高频开关电源主电路的设计 (9)3.1P W M开关变换器的设计 (9)3.2变换器工作原理 (10)3.3变换器中的开关元件及其驱动电路 (11)3.3.1开关器件 (11)3.3.2M O S F E T的驱动 (11)3.4高频变压器的设计 (13)3.4.1概述 (13)3.4.2变压器的设计步骤 (13)3.4.3变压器电磁干扰的抑制 (15)3.5整流滤波电路 (15)3.5.1整流电路 (15)3.5.2滤波电路 (16)4总结 (19)参考文献 (20)1 绪论1.1高频开关电源概述八十年代,国高频开关电源只在个人计算机、电视机等若干设备上得到应用。
由于开关电源在重量、体积、用铜用铁及能耗等方面都比线性电源和相控电源有显著减少,而且对整机多相指标有良好影响,因此它的应用得到了推广。
近年来许多领域,例如电力系统、邮电通信、军事装备、交通设施、仪器仪表、工业设备、家用电器等都越来越多应用开关电源,取得了显著效益。
究其原因,是新的电子元器件、新电磁材料、新变换技术、新控制理论及新的软件(简称五新)不断地出现并应用到开关电源的缘故。
五新使开关电源更上一层搂,达到了频率高、效率高、功率密度高、功率因数高、可靠性高(简称五高)。
有了五高,开关电源就有更强的竞争实力,应用也更为扩大,反过来又遇到更多问题和更实际的要求。
这些问题和要求可归纳为以下五个方面:(l)能否全面贯彻电磁兼容各项标准?(2)能否大规模稳定生产或快捷单件特殊生产?(3)能否组建大容量电源?(4)电气额定值能否更高(如功率因数)或更低(如输出电压)?(5)能否使外形更加小型化、外形适应使用场所要求?这五个问题是开关电源能否在更广泛领域应用的关键,是五个挑战。
电力高频开关电源的设计与分析作者:时东阳来源:《消费电子》2021年第10期在当前的社会环境中,信息技术的发展速度十分迅猛,这也使得各种各样的电子设备得到了广泛的普及应用,而无论何种电子设备,其都需要稳定的电源提供支持。
而线性电源就属于一种常用的电源,然而,线性电源自身所具备的缺点也十分明显,其内部输入电压的有效范围相对较窄,输出的电压也必须要低于输入电压,并且其整体体积相对较大,在某些特殊场合当中无法达到基本的使用需求。
而开关转换器则是通过开关管,对基本的开合状态进行更加全面的控制,使得电能的各种形态能够更好地适用于开关当中,确保输入电压能够稳定控制在一定范围当中,同时,在开关电源进行正常工作的过程中,也可以采用高频的DC/DC转换器,使得开关电源转换器能够具备高频化特征,这就形成了高频开关电源。
(一)标准化以及模块化开关电源设备的标准化转变,使得开关电源的应用范围更加广泛,这也进一步突出了开关电源标准化发展的重要作用。
而实现开关电源标准化发展的关键就在于整合不同用户所提出的基本需求,并针对性地制定出相应的要求内容,以此为基础来对研制生产环节加以规范,同时,标准化还能够更好地协调科研、生产以及使用三者之间的具体关系,确保开关电源系统自身具备更加科学合理的指标性能。
而电力高频开关电源的模块化。
主要就是将部分具备着特殊功能的电路进行集成处理,实现最佳的性能,提升整体资源利用率,而在当前的社会环境中,整体集成度也呈现出一种不断提升的状态,而将电力高频开关电源当中一些特殊功能有效集成在一起,能够强化其总体性能,在便于群众使用的同时,提高应用系统自身的稳定性。
(二)数字化以及智能化电力高频开关电源设备的数字化发展,就是将现代化的数字信号应用到其中,以此来代替传统的模拟信号,从而更好地完成一些制定功能。
而在当前嵌入式的发展模式当中。
可以明显看出开关电源数字控制以及模拟控制这两种现代化技术,其必然会在未来的发展进程中处于一种长期共存的状态,这也进一步突出了数字化发展的重要性。
高频开关电源的设计摘要从90年代开始,开关电源逐步得到广泛的应用。
开关电源的核心是DC-DC变换器。
影响开关电源的主要因素是其拓扑结构、开关频率、控制方式及关键元器件,如开关管、储能电感或脉冲变压器等。
本文首先介绍了本次设计的高频开关电源的现实意义和需要达到的目标要求,并介绍了主电路和控制电路的设计,采用了理论分析和实际硬件实验相结合的研究方法。
该系统以MOSFET作为功率开关器件,构成全桥开关变换器,整个电源由输入电路、主逆变器、输出滤波电路、辅助电源等部分组成。
系统主电路逆变部分采用了脉宽调制技术(PWM),PWM信号由集成控制器UC3875产生,从输出端实时采样电压、电流反馈信号,以控制输出电压和电流的变化。
实现了功率开关管的零电压开通和近似零电压关断,设计出高效率(达90%)、高可靠性、低电磁干扰的高频开关整流模块(48V/20A)。
关键词:高频开关电源;相移脉宽调制;零电压开关;DC-DC变换AbstractSince the nineteen's of last century, switch power has been used worldwide step by step. The core of switch power is DC-DC converter. The main factors that afect the performance of switch power is its topology, switch frequency,control mode and its key device units such as the switch tube, energy-storage inductor and pulse transformer.This paper introduces the practical significance of the high frequency switching power supply designed by us, and introduces the corresponding railway standards of the People'sRepublic of China. The main circuit and the control circuit are introduced in this paper, the research method includes the theory analysis and the practical experiments.The full-bridge converter is made up of four MOSFET. The system consists of the AC input stage, main inverter, output low-pass filter, auxiliary power supply etc. The theory of PWM is used in the system, and single of PWM is offered by controller UC3875.The feedback voltage and current achieved from output is used to control the change of the output. The Zero-Voltage Switching on and approximate Zero-Voltage Switching of the power devices are realized. High frequency switching rectifier module (48V/20A) has been designed with high efficiency (90%), high reliability and low EMI.Key words:High frequency switching power, Phase-Shifting PWM ZVS,Zero Voltage Switching,DC-DC Conversion高频开关电源的构成及其基本原理高频开关电源是将交流输入(单相或三相)电压变成所需要的直流电压的装置。
一种开关电容型高频功率脉冲发生电路的制作方法开关电容型高频功率脉冲发生电路是一种通过快速充放电电容来产生高频脉冲信号的电路。
它广泛应用于电子设备中的高频功率放大器、无线通信、雷达、激光等领域。
本文将介绍一种制作开关电容型高频功率脉冲发生电路的方法。
制作开关电容型高频功率脉冲发生电路的过程可以分为以下几个步骤:1.材料准备:首先需要准备所需的材料和工具,包括电容器、开关管、电感器、电阻器、电源、信号源、示波器等。
选取合适的材料和元件对于电路的性能和稳定性至关重要。
2.电路设计:根据需求和要求,设计出满足高频功率脉冲发生的电路结构和参数。
可以使用电路仿真软件进行电路性能分析和优化。
3.元件安装:根据电路设计图纸和布局要求,将各个元件按照正确的位置和方向焊接到电路板上。
注意焊接质量和可靠性,确保各个元件连接良好。
4.连接电路:根据电路设计图纸上的连线要求,使用导线或印刷线路板连接各个元件。
需要注意线路的长度、走向和电磁干扰等因素。
5.电源连接:将电源连接到电路上,确保电路供电正常。
需要根据实际情况选择适合的电源类型和电压。
6.信号源连接:将信号源连接到电路上,产生所需的脉冲信号。
通过信号源的调节和控制,可以改变脉冲的频率、幅度和宽度等参数。
7.电路调试:将电路连接到示波器上,观察脉冲信号的波形和特性。
根据需要进行调节和优化,确保电路符合设计要求。
8.效果测试:经过调试和优化后,对电路的性能进行测试。
可以使用测试设备对脉冲信号进行频率、幅度、占空比等参数的测量,并与设计要求进行对比。
9.电路封装:将电路板安装在合适的外壳中,确保电路的稳定性和安全性。
可以使用绝缘材料和导热材料进行包装,防止电路受潮、污染和热量积聚。
最后需要注意的是,在制作开关电容型高频功率脉冲发生电路时,需要遵循相关的安全操作规范。
由于高频脉冲电路存在一定的辐射和干扰,需要采取相应的保护措施,以减少对周围环境和设备的影响。
总之,制作开关电容型高频功率脉冲发生电路需要进行材料准备、电路设计、元件安装、连线连接、电源和信号源接入、电路调试、效果测试和电路封装等步骤。
一款2KW高频开关电源电路的设计方案及实现
大量集成电路、超大规模集成电路等电子通信设备日益增多,要求电源的发展趋势是小型化、轻量化。
本文主要针对滤波电感、电容和变压器的体积和重量比较大,因此提出了一款2KW高频开关电源电路的设计方案,通过方案中的电源电路的设计方法,达到了以减少它们的体积来实现小型化、轻量化。
引言
我们可以通过减少变压器的绕组匝数和金减小铁心尺寸来提高工作频率,但在提高开关频率的同时,开关损耗会随之增加,电路效率会严重下降。
针对这些问题出现了软开关技术,它利用以谐振为主的辅助换流手段,解决了电路中的开关损耗和开关噪声问题,使开关电源能高频高效地运行,从20世纪70年代以来国内外就开始不断研究高频软开关技术,目前已比较成熟,下面以方案中2KW的电源为例进行设计。
设计内容和方法
1、主电路型式的选择
变换电路的型式主要根据负载要求和给定电源电压等技术条件进行选择。
在几种常用的变换电路中,因为半桥、全桥变换电路功率开关管承受的电压比推挽变换电路低一倍,由于市电电压较高,所以不选推挽变换电路。
半桥变换电路与全桥变换电路在输出同样功率时,半桥变换电路的功率开关管承受二倍的工作电流,不易选管,输出功率较全桥小,所以采用全桥变换电路。
传统的全桥变换电路开关元件在电压很高或电流很大的条件下,在门极的控制下开通或关断,开关过程中电压、电流均不为零,出现重叠,导致了开。