新人教版七年级数学下册同步练习6.3实数(含答案)
- 格式:doc
- 大小:224.00 KB
- 文档页数:8
初中数学同步训练必刷题(人教版七年级下册 6.3 实数)一、单选题(每题3分,共30分)1.(2022七上·余杭月考)下列实数中,无理数是()A.0B.3.14C.√5D.227【答案】C【知识点】无理数的认识【解析】【解答】解:A、0是有理数,故A不符合题意;B、3.14是有理数,故B不符合题意;C、√5是无理数,故C符合题意;D、227是有理数,故D不符合题意;故答案为:C【分析】整数和分数统称为有理数,可对A,B,D作出判断;开方开不尽的数是无理数,可对C作出判断.2.(2022八上·杏花岭期中)下列四个实数中,最大的数是()A.-3B.-1C.√10D.3【答案】C【知识点】实数大小的比较【解析】【解答】解:因为√10>3>−3>−1,所以√10最大.故答案为:C.【分析】根据实数比较大小的方法求解即可。
3.(2022七上·乐清期中)关于√8的叙述正确的是()A.在数轴上不存在表示√8的点B.√8=√2+√6C.√8=±√2D.与√8最接近的整数是3【答案】D【知识点】平方根;实数在数轴上的表示;估算无理数的大小【解析】【解答】解:A、∵实数与数轴上的点是一一对应关系,∴任意一个实数都可以用数轴上的点表示,故选项A错误;B、∵√2≈1.414,√6≈2.236,√2+√6≈1.414+2.236=3.65,√8=2√2≈2×1.414=2.828,∴∴√8≠√2+√6,故选项B错误;C、∵√8>0,−√2<0,∴√8≠−√2,故选项C错误;D、∵√8=2√2≈2×1.414=2.828∴与√8最接近的整数是3,故选项D正确.故答案为:D.【分析】根据数轴上的点与实数是一一对应关系,可判断A;分别估算出√2、√6、√8的大小即可判断B、D;根据正数大于负数,可判断C.4.(2022七上·新城月考)与数轴上的点建立一一对应关系的是()A.全体有理数B.全体整数C.全体自然数D.全体实数【答案】D【知识点】实数在数轴上的表示【解析】【解答】解:∵数轴上的点和实数是一一对应的,∴与数轴上的点建立一一对应关系的是全体实数.故答案为:D.【分析】根据数轴上的点和实数是一一对应的进行判断即可.3的值为()5.(2022七下·西山期末)计算:|√5−3|+√−8A.1−√5B.5−√5C.√5−1D.√5−5【答案】A【知识点】实数的运算3=3−√5+(−2)=1−√5.【解析】【解答】解:|√5−3|+√−8故答案为:A.【分析】利用绝对值,立方根计算求解即可。
6.3 实数一选择题1、下列说法正确的是()A. 单独的一个数或一个字母也是代数式B. 任何有理数的绝对值都是正数C. 如果两个数的绝对值相等,那么这两个数相等D. 数轴上的任意一个点都可以表示一个有理数2、下列实数中,是有理数的为()A.B.C.D.3、下列各数中,既不是正数也不是负数的是().A. 0B. —1C. 3D. 24、下列有关叙述错误的是()A. 是正数B. 是的平方根C.D. 是分数5、两数在数轴上的位置如图所示,下列结论中正确的是().A. 以上均不对B. ab>0C. a<0,b>0D. a>0,b<06、估计11的值在()之间.A. 4与5之间B. 3与4之间C. 2与3之间D. 1与2之间7、在下列语句中:①无理数的相反数是无理数;②一个数的绝对值一定是非负数;③有理数比无理数小;④无限小数不一定是无理数.其中正确的是()A. ②③B. ②③④C. ①②④D. ②④8、的绝对值是()A.B.C.D.9、实数在数轴上的对应点的位置如图所示,这四个数中,绝对值最大的是()A. dB. cC. bD. a10、已知,则下列大小关系正确的是()A.B.C.D.二填空题1.化简:=_________.2.比较大小:3_______(填写“<”或“>”) 3.请写出一个大于8而小于10的无理数:_______.4.已知,a<23<b ,且a 、b 是两个连续的整数,则|a+b|=______.三 计算题 1.计算:9×(﹣32)+4+|﹣3|2.计算:|﹣4|+(﹣2)0﹣(21)﹣1.3.计算:25﹣|﹣2|+(﹣3)0﹣(51)﹣1. 参考答案一 选择题ADADD BCADA二 填空题1.2—32. >3.π+6(答案不唯一)4. 9三 计算题1.—12. 33.—1。
第2课时实数的运算关键问答①本题用到的运算律是什么?1.-5的绝对值是( )A .-15B .-5C. 5 D .5 2.①计算:3 2-2+2=________.3.计算:327+16-14.命题点 1 实数的大小比较 [热度:90%]4.比较大小:|3-2|________|3|+|-2|.5.数轴上表示-3.14的点在表示-π的点的________边.6.实数a 在数轴上对应的点的位置如图6-3-6所示,试确定a ,-a ,1a,a 2的大小关系.图6-3-6命题点 2 实数的性质 [热度:93%]7.4的倒数是( )A .-2 B.12C .2 D .±128.下列实数中绝对值最小的是( )A .-4B .-2C .1D .39.②实数2-1的相反数是( )A.2-1B.2+1 C .1-2D .-2-1方法点拨②a 的相反数是-a .若两个数的和为0,则这两个数互为相反数.10.计算|3-2|的结果是( ) A .2-3B.3-2 C .-2-3D .2+ 311.③观察下列各式:①a 2;②|a |+1;③-a ;④23a .取一个适当的实数作为a 的值代入求值后,不可能互为相反数的式子序号为( )A .②④B .①②C .①③D .③④解题突破③两个数的符号不同才有可能互为相反数(0除外).12.④如果一个实数的绝对值为11-5,那么这个实数为______________.易错警示 ④本题容易丢掉11-5这种情况.13.若无理数a 使得|a -4|=4-a ,则a 的一个值可以是________.14.若(x +3)2+|y -2|=0,则|x +y |=________.15.若a 是15的整数部分,b 是15的小数部分,则a -b -ab =____________.16.已知7+5=x +y ,其中x 是整数,且0<y <1,求x -y +5的相反数.17.⑤在数轴上点A 表示的数是 5.(1)若把点A 向左平移2个单位长度得到点B ,求点B 表示的数;(2)若点C 和(1)中的点B 所表示的数互为相反数,求点C 表示的数;(3)在(1)(2)的条件下,求线段OA ,OB ,OC 的长度之和.解题突破⑤求线段OA ,OB ,OC 的长度之和,即求A ,B ,C 三个点所表示的数的绝对值之和. 命题点 3 实数的运算 [热度:98%]18.若等式2□2=2 2成立,则□内的运算符号为( )A .+B .-C .×D .÷19.计算|3-4|-3-22的结果是( )A .23-8B .0C .-23D .-820.定义新运算“☆”:a ☆b =ab +1,则2☆(3☆5)=__________. 21.⑥有四个实数分别是|-9|,22,-38,2 2.请你计算其中有理数的积与无理数的积的差,结果是__________.解题突破⑥(1)先确定四个数中的有理数和无理数;(2)再分别计算它们的积;(3)最后求两个积 的差.22.⑦已知数轴上有A ,B 两点,且这两点之间的距离为4 2.若点A 在数轴上表示的数为3 2,则点B 在数轴上表示的数为____________.解题突破⑦点B 在点A 的左边还是右边?23.计算: (1)19+32627-1+|3-2|-(-2)2+2 3;(2)(-1)3+||3-2+2÷23- 4.24.⑧我们知道,任意一个正整数n 都可以进行这样的分解:n =p ×q (p ,q 是正整数,且p ≤q ),在n 的所有这种分解中,如果p ,q 两因数之差的绝对值最小,我们就称p ×q 是n 的最佳分解.并规定:F (n )=p q.例如12可以分解成1×12,2×6或3×4,因为12-1>6-2>4-3,所以3×4是12的最佳分解,所以F (12)=34. (1)如果一个正整数a 是另外一个正整数b 的平方,那么我们称正整数a 是完全平方数,求证:对任意一个完全平方数m ,总有F (m )=1;(2)如果一个两位正整数t ,t =10x +y (1≤x ≤y ≤9,x ,y 为自然数),交换其个位上的数字与十位上的数字得到的新数减去原来的两位正整数所得的差为18,那么我们称t 为“吉祥数”,求所有“吉祥数”中,F (t )的最大值.解题突破⑧(1)读懂新定义的条件:一个正整数分解成两个正整数的积,且取两因数之差的绝对值最小的情况.(2)在列举的所有情况中,找出满足条件的情况.典题讲评与答案详析1.C 2.22+23.解:原式=3+4-12=132. 4.< [解析]∵|3-2|=3-2,|3|+|-2|=3+2,∴3-2<3+ 2.故填“<”.5.右 [解析] 因为3.14<π,所以-3.14>-π,所以数轴上表示-3.14的点在表示-π的点的右边.6.解:∵-1<a <0,不妨令a =-12,∴-a =12,1a =-2,a 2=14. ∵-2<-12<14<12,∴1a<a <a 2<-a . 7.B [解析] 因为4=2,所以4的倒数是12. 8.C [解析] -4的绝对值是4,-2的绝对值是2,1的绝对值是1,3的绝对值是3.因为4>3>2>1,所以这些实数中绝对值最小的是1.9.C [解析] 实数2-1的相反数是-(2-1)=1- 2.10.A [解析] 因为3<2,所以3-2<0,所以|3-2|=-(3-2)=2- 3.11.B [解析]∵a 2≥0,|a |+1≥1,∴①和②不可能互为相反数.12.11-5或5-11[解析] 因为|11-5|=11-5,|5-11|=11-5,所以这个实数为11-5或5-11.13.2(答案不唯一) [解析] 答案不唯一,只要a 是小于4的无理数即可.14.3-2 [解析] 由题意,得x =-3,y =2,所以|x +y |=|-3+2|=-(-3+2)=3- 2.15.15-415 [解析] 因为3<15<4,所以a =3,b =15-3,所以a -b -ab = 3-(15-3)-3×(15-3)=3-15+3-315+9=15-415.16.解:∵4<5<9,∴2<5<3.又∵7+5=x +y ,其中x 是整数,且0<y <1,∴x =9,y =5-2,∴x -y +5=9-(5-2)+5=11,∴x -y +5的相反数是-11.17.解:(1)点B 表示的数是5-2.(2)点C 表示的数是2- 5.(3)由题意,得点A 表示5,点B 表示5-2,点C 表示2-5,∴OA =5,OB =5-2,OC =|2-5|=5-2,∴OA +OB +OC =5+5-2+5-2=3 5-4.18.A [解析] 因为2+2=2 2,2-2=0,2×2=2,2÷2=1,所以选A.19.C [解析] 原式=4-3-3-4=-2 3.故选C. 20.3 [解析] 2☆(3☆5)=2☆(3×5+1)=2☆4=2×4+1=3.21.-20 [解析] 有理数为|-9|,-38,它们的积为|-9|×(-38)=-18.无理数为22, 2 2,它们的积为22×2 2=2.有理数与无理数积的差为-18-2=-20. 22.-2或7 2[解析] 本题要分两种情况进行分析:①当点B 在点A 的左边时, 则3 2-4 2=-2,故点B 表示的数是-2;②当点B 在点A 的右边时, 则4 2+3 2=7 2,故点B 表示的数是7 2.综上,点B 在数轴上表示的数为-2或7 2.23.解:(1)原式=13-13+2-3-4+2 3=3-2. (2)原式=-1+2-3+2×32-2=-1. 24.解:(1)证明:对任意一个完全平方数m ,设m =n 2(n 为正整数).∵|n -n |=0,∴n ×n 是m 的最佳分解,∴对任意一个完全平方数m ,总有F (m )=n n=1. (2)设交换t 的个位上的数字与十位上的数字得到的新数为t ′,则t ′=10y +x . ∵t 为“吉祥数”,∴t ′-t =(10y +x )-(10x +y )=9(y -x )=18,∴y =x +2.∵1≤x ≤y ≤9,x ,y 为自然数,∴“吉祥数”有13,24,35,46,57,68,79.∵F (13)=113,F (24)=46=23,F (35)=57, F (46)=223,F (57)=319,F (68)=417, F (79)=179, 又∵57>23>417>319>223>113>179, ∴所有“吉祥数”中,F (t )的最大值是57. 【关键问答】①乘法分配律的逆用.。
6.3 实数同步精练
一.选择题
1.的相反数是()
A.﹣B.C.D.5
2.下列实数中,有理数是()
A.B.πC.D.
3.在实数|﹣3.14|,﹣3,﹣,﹣π中,最小的数是()
A.﹣B.﹣3C.|﹣3.14|D.﹣π
4.如图,在数轴上点A和点B之间的整数是()
A.1和2B.2和3C.3和4D.4和5
5.下列计算中,正确的是()
A.=﹣2B.5=5C.=2D.=3 6.已知A,B,C是数轴上三点,点B是线段AC的中点,点A,B对应的实数分别为﹣1和,则点C对应的实数是()
A.B.C.D.
二.填空题
7.请写出一个小于﹣1的无理数.
8.比较大小:﹣3.
9.|π|=,||=.
10.下列各数中:12,,,﹣|﹣1|,0.1010010001…(每两个1之间的0依次加1),其中,无理数有个.
11.的平方根是,=,=.
12.已知x,y为两个连续的整数,且x<<y,则5x+y的平方根为.
三.解答题
13.把下列各数分别填在相应的括号内.
﹣,0,0.16,,,﹣,,,﹣,﹣3.14.
有理数:{…};
无理数:{…};
负实数:{…};
正分数:{…}.
14.计算:(1)||+.
(2).
15.已知与(b+27)2互为相反数,求﹣的值.
16.已知+|b+3|=b+3,m为的整数部分,n为的小数部分,求2m﹣n 的值.
17.(1)如图,化简﹣|a+b|++|b+c|.
18.已知正数a的两个不同平方根分别是2x﹣2和6﹣3x,a﹣4b的算术平方根是4.(1)求这个正数a以及b的值;
(2)求b2+3a﹣8的立方根.。
6.3实数第1课时实数的有关概念关键问答①无理数有几种常见的表现形式?②数轴上的每一点都可以表示一个什么样的数?1.①2017·滨州下列各数中是无理数的是()A. 2B.0 C.12017D.-12.②如图6-3-1,半径为1个单位长度的圆片上有一点Q与数轴上的原点重合(提示:圆的周长C=2πr),把圆片沿数轴向左滚动1周,点Q到达数轴上点A的位置,则点A表示的数是________,属于__________(填“有理数”或“无理数”).图6-3-1命题点1无理数[热度:90%]3.③下列说法正确的是()A.无理数就是无限小数B.无理数就是带根号的数C.无理数都是无限不循环小数D.无理数包括正无理数、0和负无理数易错警示③(1)无理数的特征:无理数的小数部分位数无限且不循环,不能表示成分数的形式.(2)常见的无理数有三种表现形式:化简后含π的数;有规律的无限不循环小数,如:1.3131131113…;含有根号且开方开不尽的数,如5,36.4.④在下列各数:0.51525354…,0,0.2,3π,227,9,39,13111,27中,是无理数的有________________________.方法点拨④一个数不是有理数就是无理数,识别一个数是不是有理数,只需看其是不是整数或分数即可.5.有一个数值转换器,原理如图6-3-2所示:当输入的x 为256时,输出的y 是________.图6-3-26.⑤在1,2,3,…,100这100个自然数的算术平方根和立方根中,无理数共有多 少个?方法点拨⑤分别找出1~100这100个自然数的算术平方根和立方根中有理数的个数,即可得出无理数的个数.命题点 2 实数的概念与分类 [热度:95%] 7.⑥下列说法中,正确的是( ) A .正整数、负整数统称整数 B .正数、0、负数统称有理数C .实数包括无限小数与无限不循环小数D .实数包括有理数与无理数 易错警示⑥实数包括有理数和无理数,即有限小数、无限循环小数、无限不循环小数. 8.⑦有下列说法:①两个无理数的和还是无理数;②无理数与有理数的积是无理数;③有理数与有理数的和不可能是无理数;④无限小数是无理数;⑤不是有限小数的数不是有理数.其中正确的有( )A .0个B .1个C .2个D .3个 解题突破⑦两个无理数的和或差不一定是无理数.9.⑧实数13,24,π6中,分数有( )A .0个B .1个C .2个D .3个 方法点拨⑧分数是两个整数作商,不能整除的数. 10.下列说法错误的是( ) A.14是有理数 B.2是无理数 C .-3-27是正实数 D.22是分数11.在数轴上,表示实数2与10的点之间的整数点有________个;表示实数2与10之间的实数点有________个.12.将下列各数填在相应的集合里: 3512,π,3.1415926,-0.456,3.030030003…(从左到右相邻的两个3之间0的个数逐渐加1),0,511,-321,(-13)2,0.1.有理数集合:{_____________________________________________…};无理数集合:{_____________________________________________…};正实数集合:{_____________________________________________…};整数集合:{_______________________________________________…}.命题点3实数与数轴[热度:98%]13.下列说法中正确的是()A.每一个整数都可以用数轴上的点表示,数轴上的每一个点都表示一个整数B.每一个有理数都可以用数轴上的点表示,数轴上的每一个点都表示一个有理数C.每一个无理数都可以用数轴上的点表示,数轴上的每一个点都表示一个无理数D.每一个实数都可以用数轴上的点表示,数轴上的每一个点都表示一个实数14.⑨如图6-3-3,数轴上的A,B,C,D四个点表示的数中,与-3最接近的是()图6-3-3A.点A B.点B C.点C D.点D解题突破⑨-3介于哪两个连续的整数之间?这两个连续的整数中哪个整数的平方与3的差的绝对值小?15.2018·宁晋县期中如图6-3-4,圆的直径为1个单位长度,该圆上的点A与数轴上表示-1的点重合,将该圆沿数轴滚动1周,点A到达点A′的位置,则点A′表示的数是()图6-3-4A.π-1 B.-π-1C.-π-1或π-1 D.-π-1或π+116.⑩在同一数轴上表示2的点与表示-3的点之间的距离是________.方法点拨⑩数轴上两点间的距离等于右边的点表示的数减去左边的点表示的数.17.⑪如图6-3-5所示,按下列方法将数轴的正半轴绕在一个圆(该圆的周长为3个单位长度,且在圆周的三等分点处分别标上了数字0,1,2)上.先让原点与圆周上0所对应的点重合,再将数轴的正半轴按顺时针方向绕在该圆周上,使数轴上1,2,3,4,…所对应的点分别与圆周上1,2,0,1,…所对应的点重合,这样数轴的正半轴上的整数就与圆周上的数字建立了一种对应关系.图6-3-5(1)圆周上数字a与数轴上的数字5对应,则a=__________;(2)数轴绕过圆周100圈后,一个整数点落在圆周上数字2所对应的位置,这个整数是________.模型建立⑪数轴绕过圆周n圈(n为正整数)后,一个整数落在圆周上数字2所对应的位置,这个整数是3n+2.18.阅读下面的文字,解答问题.大家都知道2是无理数,而无理数是无限不循环小数,因此2的小数部分我们不可能全部写出来,于是小明用2-1来表示2的小数部分,你同意小明的表示方法吗?事实上,小明的表示方法是有道理的,因为2的整数部分是1,所以将2减去其整数部分,差就是其小数部分.(1)你能求出5+2的整数部分和小数部分吗?(2)已知10+3=x +y ,其中x 是整数,且0<y <1,请求出x -y 的相反数.19.⑫定义:可以表示为两个互质整数的商的形式的数称为有理数,整数可以看作是分母为1的有理数;反之为无理数.如2不能表示为两个互质的整数的商,所以2是无理数.可以这样证明:设2=a b ,a 与b 是互质的两个整数,且b ≠0,则2=a 2b 2,a 2=2b 2.因为b 是整数且不为0,所以a 是不为0的偶数.设a =2n (n 是整数),所以b 2=2n 2,所以b 也是偶数,这与a ,b 是互质的两个整数矛盾,所以2是无理数.仔细阅读上文,求证:5是无理数.方法点拨⑫从结论的反向出发,经推理,推得与基本事实、定义、定理或已知条件相矛盾的结果,这样的方法称为反证法.典题讲评与答案详析1.A 2.-2π无理数 3.C4.0.51525354…,3π,39,27[解析] 因为0是整数,0.2可化成分数,9=3,是整数,13111,227是分数,所以这五个数都是有理数.0.51525354…,3π,39,27都是无理数.5.2[解析] 由题图中所给的程序可知,把256取算术平方根,结果为16,因为16是有理数,所以再取算术平方根,结果为4,是有理数.再取4的算术平方根,结果为2,是有理数.再取算术平方根,结果为2,2是无理数,所以y= 2.6.解:∵12=1,22=4,32=9,…,102=100,∴1,2,3,…,100这100个自然数的算术平方根中,有理数有10个,∴无理数有90个.∵13=1,23=8,33=27,43=64,53=125,且64<100,125>100,∴1,2,3,…,100这100个自然数的立方根中,有理数有4个,∴无理数有96个,∴1,2,3,…,100这100个自然数的算术平方根和立方根中,无理数共有90+96=186(个).7.D[解析] 正整数、负整数、0统称为整数;有理数分为正有理数、0和负有理数;有理数包括无限循环小数和有限小数;实数包括有理数和无理数.8.B[解析] 两个无理数的和不一定是无理数,如2和-2;无理数与有理数的积也不一定是无理数,如2和0;有理数与有理数的和一定是有理数;无限不循环小数是无理数;有限小数和无限循环小数是有理数.9.B [解析] 分数是两个整数作商,不能整除的数,因此只有13是分数.10.D [解析]A 项,14=12是有理数,故选项正确;B 项,2是无理数,故选项正确;C 项,-3-27=3是正实数,故选项正确;D 项,22是无理数,故选项错误.故选D.11.2 无数12.有理数集合:{3512,3.1415926,-0.456,0,511,(-13)2,…};无理数集合:{π,3.030030003…(从左到右相邻的两个3之间0的个数逐渐加1),-321,0.1,…};正实数集合:{3512,π,3.1415926,3.030030003…(从左到右相邻的两个3之间0的个数逐渐加1),511,(-13)2,0.1,…};整数集合:{3512,0,(-13)2,…}.13.D [解析] 实数与数轴上的点具有一一对应的关系. 14.B15.C [解析]∵圆的直径为1个单位长度,∴此圆的周长=π,∴当圆向左滚动时点A ′表示的数是-1-π;当圆向右滚动时点A ′表示的数是π-1.16.2+3 [解析] 在同一数轴上表示2的点与表示-3的点之间的距离是2+||-3=2+ 3.17.(1)2 (2)302 [解析] (1)∵数轴上1,2,3,4,…所对应的点分别与圆周上1,2,0,1,…所对应的点重合,∴圆周上的数字a 与数轴上的数字5对应时,a =2.(2)∵数轴上1,2,3,4,…所对应的点分别与圆周上1,2,0,1,…所对应的点重合,∴圆周上的数字0,1,2与数轴的正半轴上的整数0,1,2,3,4,5,6,7,8,…每3个一组分别对应,∴数轴绕过圆周100圈后,一个整数点落在圆周上数字2所对应的位置,这个整数是302.18.解:(1)∵4<5<9,∴2<5<3,∴5的整数部分是2,小数部分是5-2,∴5+2的整数部分是2+2=4,小数部分是5-2.(2)∵3的整数部分是1,小数部分是3-1,∴10+3的整数部分是10+1=11,小数部分是3-1,∴x=11,y=3-1,∴x-y的相反数是y-x=3-12.19.证明:设5=ab,a与b是互质的两个整数,且b≠0,则5=a2b2,a2=5b2.因为b是整数且不为0,所以a不为0且为5的倍数.设a=5n(n是整数),所以b2=5n2,所以b也为5的倍数,这与a,b是互质的两个整数矛盾,所以5是无理数.【关键问答】①无理数有三种常见的表现形式:一是含有根号且开方开不尽的数;二是化简后含π的数;三是人为创造的一些无限不循环小数.②数轴上的每一点都可以表示一个实数.。
2021-2022学年人教版七年级数学下册《6-3实数》同步练习题(附答案)1.如果整数a满足,则a的值是()A.1B.2C.3D.42.估计﹣2的值在()A.2到3之间B.3到4之间C.4到5之间D.5到6之间3.规定新运算“⊕”:对于任意实数a、b都有a⊕b=ab﹣a+b﹣1,例如:2⊕5=2×5﹣2+5﹣1,则方程2⊕x=1的解昰()A.B.1C.D.4.在,﹣,π,0,,0.5,0.1212212221…(相邻两个1之间依次多一个2)这些数中,无理数的个数有()A.5个B.4个C.3个D.2个5.下列说法正确的是()A.都是无理数B.无理数包括正无理数、零、负无理数C.数轴上的点表示的数是有理数D.绝对值最小的数是06.下列说法:①负数没有立方根;②如果一个数的平方根是这个数本身,那么这个数是1或0;③一个数的算术平方根一定是正数;④(π﹣4)2的算术平方根是4﹣π,其中不正确的有()A.1个B.2个C.3个D.4个7.下列整数中,最靠近的整数是()A.1B.2C.3D.48.下列说法正确的是()A.等于±2B.2和﹣都是实数C.无理数和数轴上的点一一对应D.9.对于实数a和b,定义两种新运算:①a*b=(|a﹣b|+a+b),②a⊗b=a11b,则(5⊗3)*(3⊗5)=()A.355B.533C.533﹣355D.533+35510.实数a ,b 在数轴上的对应点如图所示,化简:= . 11.下列各数:﹣1、、、,0.1010010001…(相邻两个1之间0的个数增加1),其中无理数的个数是 . 12.计算:= . 13.计算:+= . 14.比较大小:﹣1 3(填“>”、“<”或“=”). 15.比较大小:3.(选填“>”、“=”或“<”) 16.已知a 是的整数部分,b 是它的小数部分,则(﹣a )3+(b +3)2= .17.已知实数a 满足|2021﹣a |+2022 a =,求a ﹣20212的值为 . 18.计算:(1)﹣12022﹣|﹣2|+; (2)(﹣2)3﹣24×(﹣).19.有理数a 、b 、c 在数轴上的位置如图:(1)用“>”或“<”填空:a 0,b 0,c ﹣a 0.(2)化简:|a |+|b ﹣c |﹣|c ﹣a |.20.计算:(1)﹣﹣(2)﹣12+(﹣2)3×﹣×()21.实数a 、b 、c 在数轴上的位置如图所示,其中c 为8的立方根,求代数式+|b ﹣a |+﹣|2b |的值.参考答案1.解:∵7<9<11,∴<3<,∴如果整数a满足,则a的值是:3,故选:C.2.解:∵16<21<25,∴4<<5,∴2<﹣2<3,∴估计﹣2的值在:2和3之间,故选:A.3.解:∵a⊕b=ab﹣a+b﹣1,2⊕x=1,∴2x﹣2+x﹣1=1,解得x=,故选:C.4.解:=﹣3,无理数有,π,0.1212212221…(相邻两个1之间依次多一个2),共有3个.故选:C.5.解:A、,是无理数,=2是有理数,不符合题意;B、无理数包括正无理数、负无理数,0是有理数,不符合题意;C、数轴上的点表示的数可以是有理数,也可以是无理数,例如:π,不符合题意;D、任何数的绝对值都是非负数,所以绝对值最小的数是0,符合题意;故选:D.6.解:①负数有立方根,说法不正确,符合题意;②如果一个数的平方根是这个数本身,那么这个数是0,说法不正确,符合题意;③0的算术平方根一定是0,说法不正确,符合题意;④(π﹣4)2的算术平方根是4﹣π,说法正确,不符合题意;其中不正确的有3个;故选:C.7.解:∵4<8<9,∴<<,即2<<3,∵2.52=6.25,8>6.25,∴与最接近的整数是3.故选:C.8.解:=2,A选项错误,不符合题意.2和﹣都是实数,B选项正确,符合题意.实数和数轴上的点一一对应,C选项错误,不符合题意.>1,D选项错误,不符合题意.故选:B.9.解:(5⊗3)*(3⊗5)=533*355=(|533﹣355|+533+355)=(355﹣533+533+355)=×2×355=355.故选:A.10.解:根据数轴上点的位置得:a<0<b,∴a﹣b<0,则原式=|a﹣b|﹣(b﹣1)=b﹣a﹣b+1=﹣a+1.故答案为:﹣a+1.11.解:无理数有,,0.1010010001…(相邻两个1之间0的个数增加1),共有3个.故答案为:3.12.解:=|﹣2|=2,故答案为2.13.解:+=﹣3+2=﹣1, 故答案为:﹣1.14.解:∵9<13<16, ∴<<, ∴3<<4,∴2<﹣1<3, 故答案为:<.15.解:3=>,故答案为:>.16.解:∵3<<4, ∴的整数部分=3,小数部分为 ﹣3,则(﹣a )3+(b +3)2=(﹣3)3+(﹣3+3)2=﹣27+10=﹣17. 故答案为:﹣17.17.解:根据二次根式有意义得:a ﹣2022≥0, ∴a ≥2022,∴2021﹣a <0,∴a ﹣2021+2022-a =a ,∴2022-a =2021,∴a ﹣2022=20212,∴a =20212+2022,∴a ﹣20212=2022.故答案为:2022.18.解:(1)原式=﹣1﹣2+=.(2)原式=﹣8﹣24×+24× =﹣8﹣2+20=10.19.解:(1)由题意得:a<0<b<c,∴a<0,b>0,c﹣a>0,故答案为:<,>,>;(2)由(1)可得:∴a<0,b﹣c<0,c﹣a>0,∴|a|+|b﹣c|﹣|c﹣a|=﹣a+c﹣b﹣(c﹣a)=﹣a+c﹣b﹣c+a=﹣b.20.解:(1)﹣﹣=3﹣6+2=﹣1;(2)﹣12+(﹣2)3×﹣×()=﹣1﹣8×+3×(﹣)=﹣1﹣1﹣1=﹣3.21.解:∵c为8的立方根,∴c=2,∵a<0,b﹣a<0,b﹣c<0,2b<0,∴原式=|a|+|b﹣a|+|b﹣c|﹣|2b|=﹣a+a﹣b+c﹣b+2b=c=2.。
如果别人思考数学的真理像我一样深入持久,他也会找到我的发现。
——高斯2020-2021学年度初一数学第二学期人教(2012)七年级下册第六章实数6.3实数同步训练一、选择题1.实数a,b,c,d在数轴上的位置如图所示,下列关系式不正确的是()A.|a|>|b|B.|ac|=ac C.b<d D.c+d>02.正方形ABCD在数轴上的位置如图所示,点D、A对应的数分别为0和1,若正方形ABCD绕着顶点顺时针方向在数轴上连续翻转,翻转1次后,点B所对应的数为2;则翻转2016次后,数轴上数2016所对应的点是()A.点C B.点D C.点A D.点B3.下列结论:①两个无理数的和一定是无理数②两个无理数的积一定是无理数③任何一个无理数都能用数轴上的点表示④实数与数轴上的点一一对应,其中正确的是()A.①②B.②③C.③④D.②③④4.在实数1)0))1))2中)最小的实数是()A .-2B .-1C .1D .05.已知甲、乙、丙三数,甲=531者正确 ( )A .丙<乙<甲B .乙<甲<丙C .甲<乙<丙D .甲=乙=丙6.实数a ,b 在数轴上的对应点的位置如图所示,则正确的结论是( )A .a >﹣2B .a <﹣3C .a >﹣bD .a <﹣b7.在实数- 3.14中,无理数的个数是()个. A .1 B .2 C .3 D .48.在下列式子中,正确的是( )A .20200->B .3π->-C .33-=D .03>-9.3-的倒数是( )A .3B .13 C .13- D .3-10则实数a 在数轴上的对应点一定在( )A .原点左侧B .原点右侧C .原点或原点右侧D .原点或原点左侧11.﹣2的绝对值是( )A .2B .12C .12- D .2-12.下列实数3π,78-,0 3.15( ).A .1个B .2个C .3个D .4个二、填空题 13.高斯函数[]x ,也称为取整函数,即[]x 表示不超过x 的最大整数.例如:[]2.32=,[]1.52-=-.则下列结论:)[][]2.112-+=-; )[][]0x x +-=; ③若[]13x +=,则x 的取值范围是23x ≤<;④当11x -≤<时,[][]11x x ++-+的值为0、1、2.其中正确的结论有_____(写出所有正确结论的序号).14.如图,观察所给算式,找出规律:1+2+1=4)1+2+3+2+1=9)1+2+3+4+3+2+1=16)1+2+3+4+5+4+3+2+1=25)……根据规律计算1+2+3+…+99+100+99+…+3+2+1=____________15.写出一个大于3且小于4的无理数:___________.16.比较大小:填“>”、“<”或“=”).17.点 M ,N 在数轴上,且两点间的距离是个单位,已知点 N 表示的数是 1,则点 M 表示的实数是_____.18之间,整数个数有_________个三、解答题19.计算:2(2)1-+20.在 13-,π,02,22-,2.121121112⋯⋯(两个 2 之间依次多一个 1),0.3中. (1)是有理数的有 .(2)是无理数的有 .(3)是整数的有 .(4)是分数的有 .21.a ,b 均为正整数,且a ,b ,求a +b 的最小值.22.利用计算器,求下列各式的值(结果精确到万分位)(1 (2.参考答案1.B2.B3.C4.A5.A6.D7.D8.C9.C10.D11.A12.C 13.)).14.1000015π等,答案不唯一.16.>171 或 118.319.20.(1)13-,0,2,22-,0.3;(2)π- 2.121121112⋯⋯(两个 2 之间依次多一个 1);(3)13-,0,2,22-;(4)0.3 . 21.422.(1)28.2843;(2)1.6386。
第六章 实数 6.3 实数 同步练习题1. 下列实数中的无理数是( ) A .0.7 B.12C . -8D .π2. 在2,-1,-3,0这四个实数中,最小的是( ) A. 2 B .-3 C .0 D .-13. 下列说法错误的是( )A .无理数的相反数还是无理数B .无理数都是无限小数C .正数、负数统称有理数D .实数与数轴上的点一一对应 4. 下列各组数中,把两数相乘,积为1的是( )A.2和-2B.-2和C.和D.和-5. 若<a<,则下列结论中正确的是( )A.1<a<3B.1<a<4C.2<a<3D.2<a<46. 如图,在数轴上标注了四段范围,则表示8的点落在( )A .①段B .②段C .③段D .④段7. 若(a-1)2与|b+|互为相反数,则a+b 的绝对值是( ) A.1- -1 B.C.+1 D.8. 16的平方根是_______9. 25的算术平方根的相反数是________ 10. 绝对值最小的实数是______.11. 设n 为整数,且n<20<n +1,则n =_____.12. 已知|x|=6,y 是4的平方根,且|y -x|=x -y ,则x +y 的值为__________. 13. 知a ,b 分别是6-的整数部分与小数部分,则2a-b=________.14. 若的整数部分是a ,小数部分是b ,计算a+b 的值为__________.15. 观察下列等式:2+23=223,3+38=338,4+415=4415,5+524=5524……对于一般的自然数n ,将有等式____________________. 16. 分别写出-6,π-3.14的相反数17. 指出-5,1-33分别是什么数的相反数18. 求3-64的绝对值;19. 已知一个数的绝对值是3,求这个数.20. 计算下列各式的值:(1) (3+2)-2;(2)33+2 3.21. 计算(结果保留小数点后两位):(1)5+π;(2)3· 2.22. 已知:=0,求实数a,b的值.23. 已知和互为相反数,且x-y+4的平方根是它本身,求x,y的值.24. 在数轴上点A表示的数是 5.(1)若把点A向左平移2个单位得到点B,则点B表示的数是什么?(2)点C和(1)中的点B所表示的数互为相反数,点C表示的数是什么?(3)求出线段OA,OB,OC的长度之和.25. 如图,一只蚂蚁从点A沿数轴向右直向爬行2个单位长度到达点B,点A表示-,设点B所表示的数为m,求|m-1|-(m+6)的值.26. 如图,每个小正方形的边长均为1,可以得到每个小正方形的面积为1.(1)图中阴影部分的面积是多少?(2)阴影部分正方形的边长是多少?(3)估计边长的值在哪两个整数之间?答案:1---7 DBCCB CA8. ±49. - 510. 011. 412. 6+2或6-213.14. 3-215.n +nn 2-1=n n n 2-116. -6,π-3.14的相反数分别为6,3.14-π. 17. -5,1-33分别是5,33-1的相反数. 18. 3-64|=|-4|=4.19. 因为|3|=3,|-3|=3,所以绝对值为3的数是3或- 3. 20. (1) (3+2)-2=3+(2-2)=3+0= 3 (2) 33+23=(3+2)3=5 3 21. (1)5+π≈2.236+3.142≈5.38 (2)3·2≈1.732×1.414≈2.45 22. 由题意得:+(a 2-49)=0且a+7≠0,解得a=7,b=21.23. 由题意,得y-1+3-2x-y=0且x-y+4=0,解得x=1,y=5. 24. 解:(1)点B 表示的数是5-2. (2)点C 表示的数是2- 5.(3)由题可知,点A 表示5,点B 表示5-2,点C 表示2-5, ∴OA =5,OB =5-2,OC =|2-5|=5-2, ∴OA +OB +OC =5+5-2+5-2=35-4. 25. 由题意可得m=2-,把m 的值代入得|m-1|-(m+6)=|2--1|-(2-+6)=|1-|-(8-)=-1-8+=2-9.26. 解:(1)S阴影=S正方形A′B′C′D′+S三角形BCC′+S三角形ABB′+S三角形ADA′+S三角形DCD′=2×2+12×4×(1×3)=4+6=10.(2)阴影部分正方形的边长为10.(3)∵9<10<16,∴3<10<4,即边长的值在3与4之间.。
6.3 实数一、选择题1.在下列各数中8;0;3π;327;722;1.1010010001…,无理数的个数是( )A . 5B . 4C . 3D . 2 2.下列各数中,既不是正数也不是负数的是( ). A. 0 B. —1 C. 3 D. 23.在下列语句中:①无理数的相反数是无理数; ②一个数的绝对值一定是非负数; ③有理数比无理数小; ④无限小数不一定是无理数. 其中正确的是( )A. ②③B. ②③④C. ①②④D. ②④ 4.和数轴上的点一一对应的是( )A. 整数B. 有理数C. 无理数D. 实数 5. 下列各组数中互为相反数的一组是( )A. -|-2|与3-8 B. -4与-(-4)2 C. -32与|3-2| D. -2与126. 有一个数值转换器,原理如下:当输入的x 为4时,输出的y 是( )A. 4B. 2C. 2D. -27.计算32-2的值是()A.2 B.3 C. 2 D.228.计算364+(-16)的结果是()A.4 B.0 C.8 D.12 9.下列四个实数中最大的是()A.-5 B.0 C.π D.310.下列等式一定成立的是()A.9-4= 5B.||1-3=3-1C.9=±3 D.-(-9)2=9二、填空题11.在下列各数中,选择合适的数填入相应的集合中.-15,39,π2,3.14,-327,0,-5.123 45…,0.25,-32.(1)有理数集合:{ };(2)无理数集合:{ };(3)正实数集合:{ };(4)负实数集合:{ }.12.2的相反数是,绝对值是.13.写出下列各数的相反数与绝对值.3.5,-6,π3,2-3.解:14.点A在数轴上和原点相距3个单位,点B在数轴上和原点相距5个单位,则A,B两点之间的距离是.15.直径为1个单位长度的圆从原点开始沿数轴的负方向滚动2周(不滑动),圆上的一点由原点到达O′,点O′所对应的实数是.三、解答题16.求下列各式中的实数x.(1)|x|=4 5;(2)|x-2|= 5.17.计算:(1)23+32-53-32;(2)|3-2|+|3-1|.18. 已知实数a,b,c,d,e,f,且a,b互为倒数,c,d互为相反数,e的绝对值为2,f的算术平方根是8,求12ab+c+d5+e2+3f的值.19.我们知道:3是一个无理数,它是一个无限不循环小数,且1<3<2,我们把1叫做3的整数部分,3-1叫做3的小数部分.利用上面的知识,你能确定下列无理数的整数部分和小数部分吗?(1)10;(2)88.20.观察:2-25=85=4×25=225,即2-25=225;3-310=2710=9×310=3310,即3-310=3310;猜想:5-526等于什么,并通过计算验证你的猜想.参考答案1.在下列各数中;0;3π;;;1.1010010001…,无理数的个数是(C )A.5 B.4 C.3 D.22.下列各数中,既不是正数也不是负数的是(A).A. 0B. —1C.D. 23.在下列语句中:①无理数的相反数是无理数;②一个数的绝对值一定是非负数;③有理数比无理数小;④无限小数不一定是无理数.其中正确的是(C)A. ②③B. ②③④C. ①②④D. ②④4.和数轴上的点一一对应的是( D )A. 整数B. 有理数C. 无理数D. 实数5. 下列各组数中互为相反数的一组是( C )A. -|-2|与3-8 B. -4与-(-4)2C. -32与|3-2| D. -2与126. 有一个数值转换器,原理如下:当输入的x为4时,输出的y是( C )A. 4B. 2C. 2D. -2832772237.计算32-2的值是(D)A.2 B.3 C. 2 D.228.计算364+(-16)的结果是(B)A.4 B.0 C.8 D.12 9.下列四个实数中最大的是(C)A.-5 B.0 C.π D.310.下列等式一定成立的是(B)A.9-4= 5B.||1-3=3-1C.9=±3 D.-(-9)2=9二、填空题11.在下列各数中,选择合适的数填入相应的集合中.-15,39,π2,3.14,-327,0,-5.123 45…,0.25,-32.(1)有理数集合:{-15,3.14,-327,0,0.25,…};(2)无理数集合:{39,π2,-5.123 45…,-32,…};(3)正实数集合:{39,π2,3.14,0.25,…};(4)负实数集合:{-15,-327,-5.123 45…,-32,…}.12.213.写出下列各数的相反数与绝对值.3.5,-6,π3,2-3.解:14.点A 在数轴上和原点相距3个单位,点B 在数轴上和原点相距5个单位,则A ,B 两点之间的距离是15.直径为1个单位长度的圆从原点开始沿数轴的负方向滚动2周(不滑动),圆上的一点由原点到达O′,点O′所对应的实数是-2π.三、解答题16.求下列各式中的实数x. (1)|x|=45; 解:x =±45.(2)|x -2|= 5. 解:x =2± 5.17.计算:(1)23+32-53-32;解:原式=(2-5)3+(3-3)2=-3 3.(2)|3-2|+|3-1|.解:原式=2-3+3-1=1.18. 已知实数a,b,c,d,e,f,且a,b互为倒数,c,d互为相反数,e的绝对值为2,f的算术平方根是8,求12ab+c+d5+e2+3f的值.解:由题意可知:ab=1,c+d=0,e=±2,f=64,e2=(±2)2=2,∴3 f=364=4. ∴12ab+c+d5+e2+3f=12+0+2+4=612.19.我们知道:3是一个无理数,它是一个无限不循环小数,且1<3<2,我们把1叫做3的整数部分,3-1叫做3的小数部分.利用上面的知识,你能确定下列无理数的整数部分和小数部分吗?(1)10;(2)88.解:(1)∵3<10<4,∴10的整数部分是3,小数部分是10-3.(2)∵9<88<10,∴88的整数部分是9,小数部分是88-9.20.观察:2-25=85=4×25=225,即2-25=225;3-310=2710=9×310=3310,即3-310=3310;猜想:5-526等于什么,并通过计算验证你的猜想.解:猜想:5-526=5526.5 26=12526=25×526=5526.验证:5-。
6.3实数1.在3.14,,﹣,π,中,无理数的个数有()A.1个B.2个C.3个D.4个2.下列各数中是无理数的是()1.,,,0.020020002…,6.57896.A.2个B.3个C.4个D.5个3.下列几个数中有理数有()个,,,,π,A.4 B.3 C.1 D.24.下列实数,,0,,0.123456,0.1010010001,﹣,,﹣中,无理数的个数有()A.2个B.3个C.4个D. 5个5.下列说法正确的是()A.带根号的数是无理数B.无理数就是开方开不尽而产生的数C.无理数是无限小数 D.无限小数是无理数6.下列说法正确的有()个(1)无限小数是无理数(2)不循环小数是无理数(3)无理数的相反数还是无理数(4)两个无理数的和还是无理数(5)16的立方根是.A. 1 B. 2 C. 3 D.47.(2008•宜昌)从实数﹣,﹣,0,π,4中,挑选出的两个数都是无理数的为()A.﹣,0 B.π,4 C.﹣,4 D.﹣,π8.比较数,,,的共同点,它们都是()A.分数B.有理数C.无理数D.正数9.下列说法:①无理数是无限小数;②带根号的数不一定是无理数;③任何实数都可以开立方;④有理数都是实数,其中正确的是()A.1个B.2个C.3个D.4个10.下列说法正确的是()A.只有正数才有平方根B.带根号的数都是无理数C.不带根号的数都是有理数 D.任何数都有立方根11.(2004•杭州)有下列说法:①有理数和数轴上的点一一对应;②不带根号的数一定是有理数;③负数没有立方根;④是17的平方根.其中正确的有()A. 0个B. 1个C. 2个D. 3个12.下列说法中正确的是()A.实数﹣a2是负数B. C. |﹣a|一定是正数 D.实数﹣a的绝对值是a13.下列说法正确的是()A.是最小的无理数B.的绝对值是C.的相反数是 D.比大14.下列说法中正确的是()A.有理数可分为正数和负数B.实数可分为有理数,零和无理数C.整数和小数统称有理数 D.实数可分为负数和非负数15.以下判断正确的个数有()个(1)有理数和无理数统称实数.(2)无理数是带根号的数.(3)π是无理数.(4)是无理数.A. 0 B. 1 C. 2 D. 316.下面4种说法:其中,正确的说法个数为()A. 1 B. 2 C. 3 D.4(1)一个有理数与一个无理数的和一定是无理数;(2)一个有理数与一个无理数的积一定是无理数;(3)两个无理数的和一定是无理数;(4)两个无理数的积一定是无理数.17.下列说法正确的是()A.实数包括有理数、无理数和0 B.平方根是本身的数是0、1C.无限不循环小数是无限小数D.两个无理数的和是无理数18.有下列说法:①0.64的算术平方根是0.8;②;③单项式﹣ab2的次数是3;④是单项式;⑤是2的平方根;⑥代数式a2+1的值永远是正的.其中正确的个数是()A.3 B.4 C.5 D.619.下列说法正确的是()A.﹣81平方根是﹣9 B.的平方根是±9 C.D.一定是负数20.有下列说法:①任何无理数都是无限小数;②有理数与数轴上的点一一对应;③在1和3之间的无理数有且只有这4个;④是分数,它是有理数.⑤近似数7.30所表示的准确数a的范围是:7.295≤a<7.305.其中正确的个数是()A. 1 B. 2 C. 3 D. 421.若a为实数,下列代数式中,一定是负数的是()A.﹣a2B.﹣(a+1)2C.﹣D.﹣(|﹣a|+1)22.a是实数,则下列四个式的值一定是正数的是()A.a2B.(a+1)2C.|a| D.a2+123.对于“”,下面说法不正确的是()A.它是一个无理数B.它的整数部位上的数为3C.它表示一个平方等于7的正数 D.它表示面积为7的正方形的边长24.下列数中﹣7.2、5、、4、、、0.31、、、1.23223222322223…,3.141414…无理数有_________ 个,负实数有_________ .25.写出和为6的两个无理数_________ (只需写出一对).26.两个不相等的无理数,它们的乘积为有理数,这两个数可以是_________ .27.写出一个大于3且小于4的无理数_________ .28.1,2,3…,100这100个自然数的算术平方根和立方根中,无理数的个数有_________ 个.29.写出一个无理数,使它与的积是有理数:_________ .30._________ 分数(填“是”或者填“不是”).6.3实数参考答案与试题解析1.在3.14,,﹣,π,中,无理数的个数有()A.1个B.2个C.3个D.4个解:3.14是有限小数,是有理数;是分数,是有理数;无理数有:﹣,π,共有3个.故选C.2.下列各数中是无理数的是()1.,,,0.020020002…,6.57896.A.2个B.3个C.4个D.5个解:无理数有﹣,π,0.020020002…,共3个,故选B.3.下列几个数中有理数有()个,,,,π,A.4B.3C.1D.2解:下列几个数,,,,π,中,有理数有,,=﹣2,共3个.故选B.4.下列实数,,0,,0.123456,0.1010010001,﹣,,﹣中,无理数的个数有()A.2个B.3个C.4个D.5个解:下列实数,,0,,0.123456,0.1010010001,﹣,,﹣中,无理数是,,﹣.故选B.5.下列说法正确的是()A.带根号的数是无理数B.无理数就是开方开不尽而产生的数C.无理数是无限小数D.无限小数是无理数解:A、带根号的数不一定是无理数,例如,故选项错误;B、无理数不一定是开方开不尽而产生的数,如π,故选项错误;C、无理数是无限小数,故选项正确;D、无限小数不一定是无理数,例如无限循环小数,故选项错误.故选C.6.下列说法正确的有()个(1)无限小数是无理数(2)不循环小数是无理数(3)无理数的相反数还是无理数(4)两个无理数的和还是无理数(5)16的立方根是.A. 1 B. 2 C. 3 D.4解:因为无限不循环小数是无理数,所以(1)错误;因为无理数是指无限不循环小数,所以(2)错误;如0.12345是有理数,不是无理数;无理数的相反数还是无理数,如:的相反数﹣,也是无理数,π的相反数﹣π,也是无理数等,所以(3)正确;因为+(﹣)=0,0不是无理数,所以(4)错误;因为16的立方根是,所以(5)正确;即正确的有2个,故选B.7.(2008•宜昌)从实数﹣,﹣,0,π,4中,挑选出的两个数都是无理数的为()A.﹣,0 B.π,4 C.﹣,4 D.﹣,π解:在实数﹣,﹣,0,π,4中,无理数是﹣,π.故选D.8.比较数,,,的共同点,它们都是()A.分数B.有理数C.无理数D.正数解:A、不是分数,故本选项错误;B、和是无理数,不是有理数,故本选项错误;C、,是有理数,不是无理数,故本选项错误;D、,,,的共同点时都是正数,故本选项正确;故选D.9.下列说法:①无理数是无限小数;②带根号的数不一定是无理数;③任何实数都可以开立方;④有理数都是实数,其中正确的是()A.1个B.2个C.3个D.4个解:∵无理数是指无限不循环小数,是无限小数∴①正确;∵带根号的数不一定是无理数如=2是有理数,不是无理数,∴②正确;∵正数有一个正的立方根,负数有一个负的立方根,0的立方根是0,∴③正确;∵实数包括无理数和有理数,即有理数都是实数,∴④正确;正确的有4个,故选D.10.下列说法正确的是()A.只有正数才有平方根B.带根号的数都是无理数C.不带根号的数都是有理数 D.任何数都有立方根解:A、0有平方根,0的平方根是0,故本选项错误;B、如是有理数,故本选项错误;C、如π不带根号,但π是无理数,不是有理数,故本选项错误;D、正数有一个正的立方根,负数有一个负的立方根,0的立方根是0,故本选项正确;故选D.11.(2004•杭州)有下列说法:①有理数和数轴上的点一一对应;②不带根号的数一定是有理数;③负数没有立方根;④是17的平方根.其中正确的有()A.0个B.1个C.2个D.3个解:①实数和数轴上的点一一对应,故说法错误;②不带根号的数不一定是有理数,如π,故说法错误;③负数有立方根,故说法错误;④∵17的平方根±,∴是17的一个平方根.故说法正确.故选B.12.下列说法中正确的是()A.实数﹣a2是负数B. C.|﹣a|一定是正数D.实数﹣a的绝对值是a解:A、实数﹣a2是负数,a=0时不成立,故选项错误;B、,符合二次根式的意义,故选项正确,C、|﹣a|一定不一定是正数,a=0时不成立,故选项错误;D、实数﹣a的绝对值不一定是a,a为负数时不成立,故选项错误.故选B.13.下列说法正确的是()A.是最小的无理数 B.的绝对值是C.的相反数是D.比大解:A、没有最小的无理数,故本选项错误;B、||=|﹣|=,故本选项正确;C、的相反数是﹣,故本选项错误;D、同一个正数的立方根小于其算术平方根,故选B.14.下列说法中正确的是()A.有理数可分为正数和负数 B.实数可分为有理数,零和无理数C.整数和小数统称有理数D.实数可分为负数和非负数解:A、有理数可分为正有理数、负有理数和0,故本选项错误;B、实数分无理数和有理数,故本选项错误;C、整数和分数统称有理数,故本选项错误;D、符合实数的分类,故本选项正确.故选D.15.以下判断正确的个数有()个(1)有理数和无理数统称实数.(2)无理数是带根号的数.(3)π是无理数.(4)是无理数.A.0B.1C.2D.3解:有理数和无理数统称实数,∴(1)正确;无理数是指无限不循环小数,除开方开不尽的数外,还有π等,∴(2)错误;π是无理数,∴(3)正确;是有理数,∴(4)错误;正确的有2个,故选C.16.下面4种说法:(1)一个有理数与一个无理数的和一定是无理数;(2)一个有理数与一个无理数的积一定是无理数;(3)两个无理数的和一定是无理数;(4)两个无理数的积一定是无理数.其中,正确的说法个数为()A.1B.2C.3D.4解:(1)因为无理数是无限不循环小数,所以一个有理数与其相加必为无理数,故本小题正确;(2)例如:0×=0,0是有理数,故本小题错误;(3)例如:+(﹣)=0,0是有理数,故本小题错误;(4)例如:×(﹣)=﹣2,﹣2是有理数,故本小题错误;故选A.17.下列说法正确的是()A.实数包括有理数、无理数和0 B.平方根是本身的数是0、1C.无限不循环小数是无限小数D.两个无理数的和是无理数解:A、实数包括无理数和有理数,0是有理数,故本选项错误;B、1的平方根是±1,0的平方根是0,即平方根是它本身的数只有0一个数,故本选项错误;C、无限小数包括无限循环小数和无限不循环小数,即无限循环小数和无限不循环小数都是无限小数,故本选项正确;D、如=0,0是有理数,故本选项错误;故选C.18.有下列说法:①0.64的算术平方根是0.8;②;③单项式﹣ab2的次数是3;④是单项式;⑤是2的平方根;⑥代数式a2+1的值永远是正的.其中正确的个数是()A.3B.4C.5D.6解:①=0.8,故本选项正确;②,故本选项错误;③数字或字母乘积叫单项式(单独的一个数字或字母也是单项式).故本选项正确;④单项式中所有字母的指数之和叫做这个单项式的次数.所以本选项正确;⑤2的平方根是±,故本选项错误;⑥a2+1≥1,故本选项正确;所以,正确的有①③④⑥共4个.故选B.19.下列说法正确的是()A.﹣81平方根是﹣9 B.的平方根是±9 C.D.一定是负数解:A、因为负数没有平方根,故本选项错误;B、∵=9,∴的平方根是,即±3,故本选项错误;C、∵=|x|,∴x+=2x或0,故本选项错误;D、∵a2+1>0,∴<0,故本选项正确.20.有下列说法:①任何无理数都是无限小数;②有理数与数轴上的点一一对应;③在1和3之间的无理数有且只有这4个;④是分数,它是有理数.⑤近似数7.30所表示的准确数a的范围是:7.295≤a<7.305.其中正确的个数是()A.1B.2C.3D.4解:①任何无理数都是无限小数,故说法正确;②实数与数轴上的点一一对应,故说法错误;③在1和3之间的无理数有无数个,故说法错误;④不是分数,它不是有理数,故说法错误.⑤近似数7.30所表示的准确数a的范围是:7.295≤a<7.305,故说法正确.故选B.21.若a为实数,下列代数式中,一定是负数的是()A.﹣a2B.﹣(a+1)2C.﹣D.﹣(|﹣a|+1)解:A、当a=0时,﹣a2=0,不是负数,故选项错误;B、当a=﹣1时,﹣(a+1)2=0,不是负数,故选项错误;C、当a=0时,﹣=0,不是负数,故选项错误;D、∵|﹣a|≥0,∴|﹣a|+1>0,∴﹣(|﹣a|+1)一定是负数,故选项正确.故选D.22.a是实数,则下列四个式的值一定是正数的是()A.a2B.(a+1)2C.|a| D.a2+1解:A、当a=0时,a2=0,故选项错误;B、当a=﹣1时,(a+1)2=0,故选项错误;C、当a=0时,|a|=0,故选项错误;D、无论a取何值,a2+1>0,故选项正确.故选D.23.对于“”,下面说法不正确的是()A.它是一个无理数B.它的整数部位上的数为3C.它表示一个平方等于7的正数 D.它表示面积为7的正方形的边长解:A、无理数,即非有理数之实数,不能写作两整数之比.若将它写成小数形式,小数点之后的数字有无限多个,并且不会循环.常见的无理数有大部分的平方根、π和e(其中后两者同时为超越数)等.故是无理数;故本选项正确;B、∵4<7<9,2<<3,∴的整数部分是2;故本选项错误;C、它表示一个数的算术平方根是,即它表示一个平方等于7的正数;故本选项正确;D、∵正方形的面积=边长×边长=7,∴边长=,故本选项正确.故选B.24.下列数中﹣7.2、5、、4、、、0.31、、、1.23223222322223…,3.141414…无理数有 3 个,负实数有 3 .解:无理数有,,1.23223222322223…,共3个;负实数有﹣7.2,,,共3个.故答案为:3,3.25.写出和为6的两个无理数π,6﹣π(答案不唯一)(只需写出一对).解:可以先任意写出一个无理数如π,根据和是6,就可以写出另一个无理数就是6﹣π.(答案不唯一)26.两个不相等的无理数,它们的乘积为有理数,这两个数可以是和﹣(答案不唯一).解:∵两个不相等的无理数,它们的乘积为有理数,这两个数可以是和﹣.(答案不唯一).27.(2011•淄博)写出一个大于3且小于4的无理数π(答案不唯一).解:∵π≈3.14…,∴3<π<4,故答案为:π(答案不唯一).28. 1,2,3…,100这100个自然数的算术平方根和立方根中,无理数的个数有186 个.解:∵12=1,22=4,32=9,…,102=100,∴1,2,3…,100这100个自然数的算术平方根中,有理数有10个,∴无理数有90个;∵13=1,23=8,33=27,43=64<100,53=125>100,∴1,2,3…,100这100个自然数的立方根中,有理数有4个,∴无理数有96个;∴1,2,3…,100这100个自然数的算术平方根和立方根中,无理数共有90+96=186个.故答案为:186.29.写出一个无理数,使它与的积是有理数:.解:∵无理数的平方是有理数,∴3,4,﹣5…等与相乘,结果都是有理数.30.不是分数(填“是”或者填“不是”).解:∵有理数包括整数和分数,而是无理数,∴此数不是分数.故答案为:不是.。