《操作系统》实验三内容要求
- 格式:doc
- 大小:31.00 KB
- 文档页数:3
操作系统实验操作系统实验是计算机科学与技术领域非常重要的一门实验课程。
通过操作系统实验,学生可以深入了解操作系统的基本原理和实践技巧,掌握操作系统的设计和开发方法。
本文将介绍操作系统实验的一般内容和实验室环境要求,并详细说明一些常见的操作系统实验内容。
一、实验内容1. 实验环境搭建:操作系统实验通常在实验室中进行。
为了完成实验,学生需要搭建一个操作系统实验环境。
实验环境通常由一个或多个计算机节点组成,每个计算机节点需要安装操作系统实验所需要的软件和驱动程序。
2. 操作系统整体结构分析:学生首先需要通过文献研究和课堂学习,了解操作系统的整体结构和基本原理。
在实验中,学生需要分析和理解操作系统的各个模块之间的功能和相互关系。
3. 进程管理实验:进程是操作系统中最基本的运行单位。
在这个实验中,学生可以通过编写程序并使用系统调用来实现进程的创建、销毁和调度。
学生需要熟悉进程状态转换和调度算法,理解进程间通信和同步机制。
4. 内存管理实验:内存管理是操作系统中非常重要的一个模块。
学生需要实现虚拟内存管理、页面置换算法以及内存分配和回收策略。
通过这个实验,学生可以深入了解虚拟内存管理的原理和实际应用。
5. 文件系统实验:文件系统是操作系统中负责管理文件和目录的模块。
在这个实验中,学生需要实现基本的文件系统功能,如文件的创建、读取和修改。
学生还可以实现进程间的文件共享和保护机制。
6. 设备管理实验:设备管理是操作系统中与硬件设备交互的一个重要模块。
在这个实验中,学生需要实现设备的初始化、打开和关闭功能。
学生还可以实现设备驱动程序,完成对硬件设备的控制。
二、实验室环境要求1. 计算机硬件:实验室需要配备一定数量的计算机节点。
每个计算机节点需要具备足够的计算能力和内存容量,以满足操作系统实验的要求。
2. 操作系统软件:实验室中的计算机节点需要安装操作系统软件,通常使用Linux或者Windows操作系统。
此外,还需要安装相关的开发工具和编程语言环境。
操作系统实验报告计算机0703班200729实验3 进程同步和通信-生产者和消费者问题模拟1. 目的:调试、修改、运行模拟程序,通过形象化的状态显示,使学生理解进程的概念,了解同步和通信的过程,掌握进程通信和同步的机制,特别是利用缓冲区进行同步和通信的过程。
通过补充新功能,使学生能灵活运用相关知识,培养创新能力。
2. 内容及要求:1) 调试、运行模拟程序。
2) 发现并修改程序中不完善的地方。
3) 修改程序,使用随机数控制创建生产者和消费者的过程。
4) 在原来程序的基础上,加入缓冲区的写互斥控制功能,模拟多个进程存取一个公共缓冲区,当有进程正在写缓冲区时,其他要访问该缓冲区的进程必须等待,当有进程正在读取缓冲区时,其他要求读取的进程可以访问,而要求写的进程应该等待。
5) 完成1)、2)、3)功能的,得基本分,完成4)功能的加2分,有其它功能改进的再加2分3. 程序说明:本程序是模拟两个进程,生产者(producer)和消费者(Consumer)工作。
生产者每次产生一个数据,送入缓冲区中。
消费者每次从缓冲区中取走一个数据。
缓冲区可以容纳8个数据。
因为缓冲区是有限的,因此当其满了时生产者进程应该等待,而空时,消费者进程应该等待;当生产者向缓冲区放入了一个数据,应唤醒正在等待的消费者进程,同样,当消费者取走一个数据后,应唤醒正在等待的生产者进程。
就是生产者和消费者之间的同步。
每次写入和读出数据时,都将读和写指针加一。
当读写指针同样时,又一起退回起点。
当写指针指向最后时,生产者就等待。
当读指针为零时,再次要读取的消费者也应该等待。
为简单起见,每次产生的数据为0-99的整数,从0开始,顺序递增。
两个进程的调度是通过运行者使用键盘来实现的。
4. 程序使用的数据结构进程控制块:包括进程名,进程状态和执行次数。
缓冲区:一个整数数组。
缓冲区说明块:包括类型,读指针,写指针,读等待指针和写等待指针。
5. 程序使用说明启动程序后,如果使用'p'键则运行一次生产者进程,使用'c'键则运行一次消费者进程。
《操作系统》课内实验报告一、实验目的本次《操作系统》课内实验的主要目的是通过实际操作和观察,深入理解操作系统的基本原理和功能,掌握常见操作系统命令的使用,提高对操作系统的实际应用能力和问题解决能力。
二、实验环境本次实验在计算机实验室进行,使用的操作系统为 Windows 10 和Linux(Ubuntu 发行版)。
实验所使用的计算机配置为:Intel Core i5 处理器,8GB 内存,500GB 硬盘。
三、实验内容1、进程管理在 Windows 系统中,通过任务管理器观察进程的状态、优先级、CPU 使用率等信息,并进行进程的结束和优先级调整操作。
在 Linux 系统中,使用命令行工具(如 ps、kill 等)实现相同的功能。
2、内存管理使用 Windows 系统的性能监视器和资源监视器,查看内存的使用情况,包括物理内存、虚拟内存的占用和分配情况。
在 Linux 系统中,通过命令(如 free、vmstat 等)获取类似的内存信息,并分析内存的使用效率。
3、文件系统管理在 Windows 系统中,对文件和文件夹进行创建、复制、移动、删除等操作,了解文件的属性设置和权限管理。
在 Linux 系统中,使用命令(如 mkdir、cp、mv、rm 等)完成相同的任务,并熟悉文件的所有者、所属组和权限设置。
4、设备管理在 Windows 系统中,查看设备管理器中的硬件设备信息,安装和卸载设备驱动程序。
在 Linux 系统中,使用命令(如 lspci、lsusb 等)查看硬件设备,并通过安装内核模块来支持特定设备。
四、实验步骤1、进程管理实验(1)打开 Windows 系统的任务管理器,切换到“进程”选项卡,可以看到当前系统中正在运行的进程列表。
(2)选择一个进程,右键点击可以查看其属性,包括进程 ID、CPU 使用率、内存使用情况等。
(3)通过“结束任务”按钮可以结束指定的进程,但要注意不要随意结束系统关键进程,以免导致系统不稳定。
实验三进程同步一、实验目的:1.了解进程和线程的同步方法,学会运用进程和线程同步方法来解决实际问题;2.了解windows系统下Win32 API或Pthread信号量机制的使用方法;二、实验预备内容:1.对书上所说基于信号量的有限缓冲的生产者-消费者问题;2.对于信号量的概念有大概的了解,知道如何用信号量的wiat()和signal()函数如何取消应用程序进入临界区的忙等;三、实验环境说明:此实验在Win7(32位) CodeBlocks环境下实现,采用WinAPI的信号量机制。
四、实验内容:设计一个程序解决有限缓冲问题,其中的生产者与消费者进程如下图所示。
在Bounded-Buffer Problem(6.6.1节)中使用了三个信号量:empty (记录有多少空位)、full(记录有多少满位)以及mutex(二进制信号量或互斥信号量,以保护对缓冲区插入与删除的操作)。
对于本项目,empty和full将采用标准计数信号量,而mutex将采用二进制信号量。
生产者与消费者作为独立线程,在empty、full、mutex的同步前提下,对缓冲区进行插入与删除。
本项目可采用Pthread或Win32 API。
(本实验采用Win32 API)五、程序设计说明:1.全局变量:定义缓冲区数组及其环形队列表达方式,定义mutex、empty、full 三个信号量。
empty记录缓冲区有多少个空位;full记录缓冲区有多少个满位;mutex作为互斥信号量,保护对缓冲区插入或删除的操作。
具体定义如下:定义生产者、消费者线程结构和包含的信息:(由于题目中没有要求,因此只定义了编号一个变量)2.缓冲区:缓冲区是一个元数据类型为buffer_item(可通过typedef定义)的固定大小的数组,按环形队列处理。
buffer_item的定义及缓冲区大小可保存在头文件中:A.insert_item():先判断缓冲区是否已满,不满则向缓冲区中插入元素;B.remove_item()先判断缓冲区是否为空,不空则从缓冲区中删除元素;3.生产者线程:生产者线程交替执行如下两个阶段:睡眠一段随机事件,向缓冲中插入一个随机数。
《操作系统原理》实验教学大纲一、实验教学内容与基本要求实验一 批处理系统的作业调度1 目的要求1.加深对作业概念的理解;2.深入了解批处理系统如何组织作业、管理作业和调度作业。
2 实验内容编写程序完成批处理系统中的作业调度,要求采用响应比高者优先的作业调度算法。
实验具体包括:首先确定作业控制块的内容,作业控制块的组成方式;然后完成作业调度;最后编写主函数对所做工作进行测试。
3 所需实验设施设备PC、windows操作系统4 教学形式及过程演示、学生独立完成实验二 进程管理1 目的要求1.加深对进程概念的理解,明确进程和程序的区别。
2.深入了解系统如何组织进程、创建进程。
3.进一步认识如何实现处理器调度。
2 实验内容编写程序完成单处理机系统中的进程调度,要求采用时间片轮转调度算法。
实验具体包括:首先确定进程控制块的内容,进程控制块的组成方式;然后完成进程创建原语和进程调度原语;最后编写主函数对所做工作进行测试。
3 所需实验设施设备PC、windows操作系统4 教学形式及过程演示、学生独立完成实验三 动态分区存储管理方式的主存分配回收1 目的要求深入了解动态分区存储管理方式主存分配回收的实现。
2 实验内容编写程序完成动态分区存储管理方式的主存分配回收的实现。
实验具体包括:首先确定主存空间分配表;然后采用最优适应算法完成主存空间的分配和回收;最后编写主函数对所做工作进行测试。
3 所需实验设施设备PC、windows操作系统4 教学形式及过程演示、学生独立完成实验四 页式虚拟存储管理中地址转换和缺页中断1 目的要求1.深入了解页式存储管理如何实现地址转换;2.进一步认识页式虚拟存储管理中如何处理缺页中断。
2 实验内容编写程序完成页式存储管理中地址转换过程和模拟缺页中断的处理。
实验具体包括:首先对给定的地址进行地址转换工作,若发生缺页则先进行缺页中断处理,然后再进行地址转换;最后编写主函数对所做工作进行测试。
操作系统实验报告——实验三:进程管理(一)实验内容:1.分别从至少三个虚拟终端登录,以树状形式列出你的系统中当前运行的所有进程及其PID。
找出你当前运行进程的所有祖先进程,并说明其各自的作用。
分析Linux系统中的进程的家族关系。
●实验室里:当前运行进程的所有祖先进程是init进程,init是Linux系统操作中不可缺少的程序之一,是内核启动的用户级进程。
内核自行启动(已经被载入内存,开始运行,并已初始化所有的设备驱动程序和数据结构等)之后,就通过启动一个用户级程序init的方式,完成引导进程。
所以,init始终是第一个进程(其进程编号始终为1)。
init有许多很重要的任务,比如像启动getty(用于用户登录)、实现运行级别、以及处理孤立进程,用pstree 命令就看到进程之间的关系了,所有进程都是由最开始的init创建的,父进程逐个创建子进程。
●个人电脑:所有进程的祖先进程为systemd,其是linux下的一种init软件。
Systemd(系统管理守护进程),最开始以GNU GPL协议授权开发,现在已转为使用GNU LGPL协议,它是如今讨论最热烈的引导和服务管理程序。
Linux系统配置使用Systemd引导程序,取替了传统的SysV init,启动过程将交给systemd处理。
Systemd的一个核心功能是它同时支持SysV init的后开机启动脚本。
Systemd引入了并行启动的概念,它会为每个需要启动的守护进程建立一个套接字,这些套接字对于使用它们的进程来说是抽象的,这样它们可以允许不同守护进程之间进行交互。
Systemd会创建新进程并为每个进程分配一个控制组(cgroup)。
处于不同控制组的进程之间可以通过内核来互相通信。
systemd处理开机启动进程的方式非常漂亮,和传统基于init的系统比起来优化了太多。
终端一:tty3///在实验室的电脑上操作终端二:tty5///在实验室的电脑上操作终端三:tty1///在实验室的电脑上操作实验室三个终端:tty3 tty5 tty1终端四:tty4///在个人电脑上操作终端五:tty3 ///在个人电脑上操作个人电脑两个终端:tty3 tty5 tty12.执行下列命令和操作:解释命令的作用:$sleep180 //执行挂起(睡眠)180秒^Z(ctrl+Z)//强制当前进程转为后台,使之挂起(暂停)$jobs //查看后台运行的程序及运行状态$sleep 240& //以后台方式启动挂起(睡眠)240秒$sleep 300& //以后台方式启动挂起(睡眠)300秒$sleep 330& //以后台方式启动挂起(睡眠)330秒$sleep 630& //以后台方式启动挂起(睡眠)630秒$jobs //查看后台运行的程序及运行状态$fg 4 //将第四个任务切换到前台^C(ctrl+C)//强制结束当前进程$bg 1 //将第一个任务切换到后台运行$kill 5 //结束后台任务5执行结果截图:3.利用/proc文件系统,选择一个进程,如-bash,列出并解释/proc/$PID/cmdline, /proc/$PID/stat, /proc/$PID/status文件的内容。
实验三Linux操作系统安全一、实验目的及要求(一)实验目的通过实验熟悉Linux环境下的用户管理、进程管理以及文件管理的相关操作命令。
掌握linux操作系统中相关的系统安全配置方法,建立linux操作系统的基本安全框架。
(二)实验要求根据实验中介绍的Linux操作系统的各项安全性实验要求,详细观察记录设置前后系统的变化,给出分析报告。
使用RPM对系统的软件进行管理,验证系统内软件的完整性,并分析结果。
试比较Linux下网了服务安全设置与Windows下安全设置异同。
二、实验环境安装Red hat9.0操作系统的计算机一台三、实验内容1、账户和口令安全2、文件系统管理安全3、查看和更改PAM模块设置4、RPM软件管理5、系统安全配置四、实验步骤任务一账户和口令安全1、查看和添加账户(1)在X_Windows窗口中单击鼠标右键,选择“信件中断”,输入下面的命令行:[root@localhost root]#useradd mylist利用useradd命令新建名为mylist的新账户。
(2)输入命令行:[root@localhost root]#cat/etc/shadow利用cat查看系统中的账户列表。
用su命令切换到新建的账户,重复步骤(2),检查shadow文件的权限设置是否安全。
设置安全时,普通用户mylist应该没有查看该系统文件的权限。
在终端中出现如下的提示:Cat:/etc/shadow:权限不够2、添加和更改密码(1)在终端输入[root@localhost root]#passwd mylist为新建账户添加密码。
注意:系统管理员无需输入原来密码即可以利用passwd命令添加或改变任意用户的密码,但普通用户只能改变自己的密码。
(2)输入后依次出现如下提示:Changjing passwd for user mylist.New passwd:Retype new passwd:Passwd:all authentication tokens updated susscessfully.输入密码,Linux系统不会将输入显示出来。
《操作系统》实验三内容要求
【实验题目】:预防进程死锁的银行家算法
【实验学时】:4学时
【实验目的】
通过这次实验,加深对进程死锁的理解,进一步掌握进程资源的分配、死锁的检测和安全序列的生成方法。
【实验内容】
问题描述:
设计程序模拟预防进程死锁的银行家算法的工作过程。
假设有系统中有n个进程P1, …,P n,有m类可分配的资源R1, …,R m,在T0时刻,进程P i分配到的j类资源为Allocation ij个,它还需要j类资源Need ij个,系统目前剩余j类资源Work j个,现采用银行家算法进行进程资源分配预防死锁的发生。
程序要求如下:
1)判断当前状态是否安全,如果安全,给出安全序列;如果不安全给出理由。
2)对于下一个时刻T1,某个进程P k会提出请求Request(R1, … ,R m),判断分配给P k进程请求的资源之后。
3)输入:进程个数n,资源种类m,T0时刻各个进程的资源分配情况(可以运行输入,也可以在程序中设置);
4)输出:如果安全输出安全的进程序列,不安全提示信息。
实现提示:
用C++语言实现提示:
1)程序中进程调度时间变量描述如下:
int Available[MaxNumber];
int Max[MaxNumber][MaxNumber];
int Allocation[MaxNumber][MaxNumber];
int Need[MaxNumber][MaxNumber];
int Request[MaxNumber];
int SafeOrder[MaxNumber];
2)进程调度的实现过程如下:
变量初始化;
接收用户输入n,m,(输入或者默认的)Allocation ij,Need ij;
按照银行家算法判断当前状态安全与否,安全给出安全序列,不安全给出提示;
如果安全,提示用户输入下一时刻进程P k的资源请求Request(R1, … ,R m);
如果不安全或者无新请求则退出。
实验要求:
1)上机前认真复习银行家算法,熟悉资源分配和安全检查过程;
2)上机时独立编程、调试程序;
3)根据具体实验要求,完成好实验报告(包括实验的目的、内容、要求、源程序、实例运行结果截图)。
4)实验报告在6月18号前发到信箱4079145@,实验报告的文件名称为“实验三+班级+学号+姓名.doc”,邮件标题为“实验三+班级+学号+姓名”。