非晶材料的制备
- 格式:ppt
- 大小:1.89 MB
- 文档页数:35
非晶材料的制备技术探究非晶材料是指在一定条件下,由于快速冷却、激光熔凝、气相沉积等方式获得的无序和无规网络构型的材料。
与传统材料相比,非晶材料具有高硬度、高韧性、高强度、高耐腐蚀性、低磁滞、低摩擦等优良性能,因此在航空航天、电子、光学、光电、储能等领域有着广泛的应用前景。
非晶材料的制备技术有多种不同的途径,如快速凝固、激光熔凝、溅射、化学气相沉积、溶胶凝胶法等。
下面我们将针对这几种制备方法逐一做出探究。
1. 快速凝固快速凝固是一种将熔体迅速冷却成非晶态的技术。
其最早应用于金属材料,特别是在五十年代对铝、铜等金属材料进行了大量研究,发现在快速凝固条件下,晶粒尺度将减小至纳米级别,材料的性能也将得到显著提高。
随着快速凝固技术的不断发展,今天已经可制备出来有机、无机、生物、聚合物等非晶态材料。
目前,快速凝固技术被广泛用于铝合金、马氏体不锈钢、金属玻璃等材料的制备。
2. 激光熔凝激光熔凝制备非晶材料的原理为利用激光束对材料进行瞬间熔化和迅速冷却。
激光熔凝与快速凝固技术相比具有以下优点:①熔化时间较快,加工速度可达米每秒级别;②可控性强,适用于制备复杂形态的非晶材料;③制备的非晶材料具有优异的物理化学性能。
目前,激光熔凝技术主要应用于金属、合金等材料的制备,但由于其设备成本较高,制备周期较长等因素制约了其发展。
3. 溅射溅射是一种将材料中离子或原子打散,使其沉积在靶基底上形成薄膜的技术。
与其他制备技术相比,溅射具有非常高的低温开发率和重现性,并且可以制备具有高质量、厚度均匀度良好的材料。
但是,溅射技术的制备性能容易受到与靶材相同的元素的污染而受到影响。
因此,为了制备高质量、无缺陷的非晶材料,需要对溅射工艺进行优化和改进。
4. 化学气相沉积化学气相沉积是一种将材料进行热解反应,产生等离子体并使等离子体沉积在基底上形成单晶体或非晶体的技术。
化学气相沉积可以在低温下制备材料,并具有高加工效率和良好的重现性,因此被广泛应用于半导体器件和显示技术中。
一、La-Ga-Cu非晶制备1、性质:La:银白色的软金属,有延展性。
化学性质活泼。
能与水作用。
易溶于稀酸。
在空气中易氧化;加热能燃烧,生成氧化物和氮化物。
在氢气中加热生成氢化物。
Ga:银白色金属,在30℃时变为发光液体,冷却至0℃而不固化;在干燥空气中稳定,在潮湿空气中失去光泽;与碱反应放出氢气;能被冷浓盐酸浸蚀,对热硝酸钝性,高温时能与多数非金属反应;溶于酸和碱中,微溶于汞。
Cu:呈紫红色光泽的金属。
熔点1083.4±0.2℃,沸点2567℃。
常见化合价+1和+2(3价铜仅在少数不稳定的化合物中出现)。
铜是人类发现最早的金属之一,也是最好的纯金属之一,稍硬、极坚韧、耐磨损。
还有很好的延展性。
导热和导电性能较好。
铜和它的一些合金有较好的耐腐蚀能力,在干燥的空气里很稳定。
但在潮湿的空气里在其表面可以生成一层绿色的碱式碳酸铜[Cu2(OH)2CO3],这叫铜绿。
2、制备:a、用锯子锯下所需的镧,将表面打磨光滑,边角无毛刺,称重后为12.9814g。
之后将镧放入煤油,以防止氧化。
b、在电脑上用软件计算后得到所需的镓为1.002455g,铜为2.2841g。
c、锯下大于所需大小的铜,将表面打磨光滑,边角无毛刺,之后称重,重量大于所需重量,用锉刀稍微磨去部分铜,再次称重,直到重量为所需重量为止。
实际取铜2.2844g。
d、取镓,镓有毒,带一次性手套。
用镊子小心地划掉部分镓,直至所需重量,实际取镓1.0026g。
e、放入非自耗真空电弧熔炼及吸铸炉内,融点高的放在上边,熔点低的放在下面,按操作规程操作,得到合金。
f、经检验得,合金强度不够,剪切时无火花。
排除为非晶材料的可能,实验失败。
二、Ce-Ga-Cu-Ni非晶制备3、性质:Ce: 铈是一种银灰色的活泼金属,粉末在空气中易自燃,易溶于酸。
铈在地壳中的含量约0.0046%,是稀土元素中丰度最高的。
Ga:银白色金属,在30℃时变为发光液体,冷却至0℃而不固化;在干燥空气中稳定,在潮湿空气中失去光泽;与碱反应放出氢气;能被冷浓盐酸浸蚀,对热硝酸钝性,高温时能与多数非金属反应;溶于酸和碱中,微溶于汞。
非晶态材料的制备和性质随着科技的飞速发展,材料科学技术也随之不断进步。
作为一种新兴的材料,非晶态材料在各个领域都有广泛的应用,如电子、电工、力学、生物、化学等,因此其制备和性质研究备受关注。
一、非晶态材料的制备方法非晶态材料是一种没有长程有序结构的固体材料。
制备非晶态材料有多种方法,以下介绍其中几种。
1、快速凝固法快速凝固法是制备非晶态材料的最常用方法之一,其原理是通过快速冷却液态金属,使分子结构无法排列,从而形成非晶态材料。
快速凝固法分为多种,如单轴拉伸、液滴飞散、旋转坩埚等。
2、物理气相沉积法物理气相沉积法是在真空中通过鼓泡、溅射和蒸发等途径将材料沉积在基底上,形成非晶态材料。
常见的物理气相沉积法有热蒸发法、磁控溅射法和激光蒸发法等。
3、溶胶凝胶法溶胶凝胶法利用液相化学反应制备非晶态材料。
它的原理是通过在溶液中加入一定比例的试剂,使得所生成的凝胶液能够数十到数百度地加热固化,形成非晶态材料。
这种方法对于非晶金属氧化物材料的制备具有独特优势。
二、非晶态材料的性质由于非晶态材料的化学成分和物理结构的特殊性质,它具有很多独特的物理和化学性质。
以下将简要介绍几种常见的非晶态材料性质。
1、高热稳定性和良好的化学稳定性由于非晶态材料的结构更加紧密,非常难以发生物理和化学变化,因此非晶态材料具有高热稳定性和良好的化学稳定性。
这是一些化学储能和高温环境材料的理想选择。
2、优异的机械性能非晶态材料的内部结构类似于玻璃,在形变过程中,分子排列难以发生变化,从而使其具有优异的机械性能。
这种性质使得非晶态材料成为了开发高强度、高韧性和高导电性的材料的理想选择。
3、宽的电学响应范围由于非晶态材料中排列不规则,因此其电学响应范围非常宽。
这种特性使得非晶态材料在先进的光电技术中得到了广泛的应用。
4、特殊的磁性质一些非晶态材料具有特殊的磁性质,如低磁滞、高磁弛弦、高磁导率和高饱和磁感应强度等。
这使得非晶态材料成为了磁性储存器和传感器的重要材料。
非晶态材料制备及性能研究非晶态材料是一类独特的材料,其具有无序排列的结构,并且没有结晶性。
这种材料在实际应用中具有很大的潜力,因为它们可以在很多方面优于晶态材料。
在本文中,我们将重点探讨非晶态材料的制备方法及其性能研究。
1. 非晶态材料的制备方法非晶态材料的制备方法多种多样,其中较为常见的方法有:1.1 快速凝固法快速凝固法是一种常用的制备非晶态材料的方法。
该方法的原理是通过极快的固化速度,将材料的结晶过程阻止,使其保持在无序排列的状态。
快速凝固法有多种类型,包括基体法、轧制法、溅射法和熔滴法等。
其中基体法和轧制法是较为常见的制备非晶态材料的方法。
1.2 化学气相沉积法化学气相沉积法(Chemical Vapor Deposition,CVD)是一种在高温气氛下进行的化学反应过程,可以制备高质量的非晶态材料。
CVD法以气体为起始材料,通过化学反应沉积非晶态材料在基底上。
这种方法可以制备出很小颗粒的非晶态材料,并能够实现对其形貌和尺寸的精密控制。
1.3 溶胶–凝胶法溶胶–凝胶法是制备非晶态材料的一种简单有效的方法。
该方法通过以溶胶为基础,经过凝胶化和热处理等步骤来制备非晶态材料。
溶胶–凝胶法能够制备较大尺寸的非晶态材料,并且可以调控它们的成分和微观结构。
2. 非晶态材料的性能研究2.1 机械性能非晶态材料的机械性能是研究非晶态材料的重要指标。
相比较于晶态材料,非晶态材料具有更高的强度,更大的韧性和更好的抗腐蚀性。
这使得非晶态材料在各种领域中有着很广泛的应用,例如受力部件、压力容器和电子产品等。
2.2 导电性能非晶态材料的导电性能也是非常重要的。
自1982年发现金属玻璃以来,非晶态金属的导电性引起了研究人员的广泛关注。
非晶态金属电阻率通常比普通金属要高,但其导电性能也非常重要。
例如,在电池制造中,非晶态钴铁磁性材料常用作电动车辆的电池材料。
2.3 光学性能非晶态材料的光学性能也是非常重要的。
非晶态材料能够用于制造高质量的光学器件、传感器和显示器件等。
非晶态材料的制备及其特性与应用随着人类科技的不断进步,材料科学也在不断地发展和更新,而非晶态材料就是其中之一。
非晶态材料是一种新型材料,其具有许多独特的物理和化学性质,使其在许多领域具有广泛的应用前景。
本文将介绍非晶态材料的制备方法、特性和应用。
一、非晶态材料的制备非晶态材料(amorphous)可以理解为一种没有长程有序结构的材料,其结构是类似于未定型玻璃的随机分子排布。
目前,制备非晶态材料的方法主要有以下几种:1. 溅射法溅射法是利用高能离子轰击固体表面的原理,将固态材料弹射出来后,在气相当中沉积下来形成非晶态材料。
这种方法制备出的非晶态材料,粒径小、质量均一。
2. 快速冷却法快速冷却法也称为淬火法,是将材料熔融后,以极快的速度(大于10^5 K/s)冷却,从而形成非晶态材料。
这种方法制备出的非晶态材料具有优异的热稳定性和力学性能,适用于制备金属、合金和非晶态氧化物。
3. 液相冷却法液相冷却法是通过将材料熔化后,将其快速冷却到玻璃态,然后将玻璃态材料破碎成为微小颗粒。
这种方法制备出的非晶态材料,因其微小粒径和高比表面积,表现出极好的光催化活性。
二、非晶态材料的特性1. 非晶态材料具有高硬度和高强度,能承受较大的压力和拉伸。
2. 非晶态材料具有优良的耐磨性,适用于制造摩擦部件。
3. 非晶态材料较纯晶态材料具有更好的耐腐蚀性,可应用于化学和电子领域。
4. 非晶态材料在高温环境下表现出领先于晶体材料的耐腐蚀性和高温稳定性。
5. 非晶态材料具有优异的磁性和电学性质,适用于制造传感器和记录设备。
三、非晶态材料的应用1. 材料领域非晶态材料适用于制造多种材料,例如玻璃、金属和聚合物。
非晶态材料的制造成本较低、加工成形能力强,并且可以制造出复杂的外形。
2. 能源领域非晶态材料的应用在能源领域开始被越来越重视。
非晶态材料制成的太阳能电池具有响应时间短、转化效率高等优点。
3. 生物技术非晶态材料的应用在生物医学领域中,特别是在生物诊断和治疗方面。
第六章非晶态材料的制备非晶态材料是一种特殊的材料,其结构没有周期性的重复单元。
相比于晶态材料,非晶态材料具有更高的硬度、强度和韧性,并且具有较低的电阻率和光反射率。
因此,非晶态材料被广泛应用于电子、光学、磁性和结构材料等领域。
非晶态材料的制备方法有多种,下面将介绍其中的几种常用方法。
1.熔融冷却法:熔融冷却法是最常用的非晶态材料制备方法之一、通过将材料加热至高温状态,然后迅速冷却,使原子无法排列成有序的晶体结构,从而形成非晶态结构。
常见的熔融冷却方法包括快速凝固法、射频溅射法和脉冲激光沉积法等。
2.溅射法:溅射法是一种常用的非晶态材料制备方法。
通过将材料放置在溅射装置中,加入适量的惰性气体,然后通过施加高电压或射频功率,使阳极材料形成离子,从而在材料表面形成非晶态薄层。
3.电化学沉积法:电化学沉积法是一种利用电化学反应制备非晶态材料的方法。
通过将材料浸泡在含有金属离子的溶液中,然后通过施加电压或电流,使金属离子在材料表面电沉积,从而形成非晶态结构。
4.溶胶-凝胶法:溶胶-凝胶法是一种通过溶胶和凝胶过程制备非晶态材料的方法。
溶胶是材料的液体溶液,凝胶是材料的固体凝胶体。
通过适当控制溶胶和凝胶的浓度和温度,以及加入适量的络合剂和表面活性剂,可以形成均匀分散的溶胶体系,使材料在非晶态结构条件下凝胶。
5.软模板法:软模板法是一种利用有机分子作为模板制备非晶态材料的方法。
通过将有机分子溶液浸涂在基底上,在溶剂挥发的过程中,有机分子会形成一种有序排列的结构,然后利用热处理或化学反应将有机分子转化为非晶态材料。
以上是几种常用的非晶态材料制备方法,不同的方法适用于不同的材料和应用需求。
随着材料科学和制备技术的不断发展和创新,未来还会有更多的非晶态材料制备方法被发现和应用。
非晶态材料的制备方法的研究和改进将有助于提高材料的性能和应用范围,推动材料科学和工程领域的进步。
非晶态材料的制备与性质非晶态材料是一类具有特殊物理和化学性质的材料。
它们没有规则的晶体结构,而是由原子或分子之间的无序排列构成。
在非晶态材料中,原子和分子呈现出一定的局部有序性,同时还存在着显著的无序性。
作为一种新型的材料,非晶态材料在诸多领域都有着非常广泛的应用。
本文将介绍非晶态材料的制备方法和性质特点。
一、非晶态材料的制备方法非晶态材料的制备方法主要有几种,包括快速凝固法、物理气相沉积法和化学溶液法等。
1、快速凝固法快速凝固法是最早被应用于制备非晶态材料的方法之一。
其基本原理是通过极快的冷却速度来降低原子和分子的运动能力,进而在固态状态下形成无序状态的固体。
快速凝固法的操作方式较为简单,可以通过数种不同的方式进行,如液滴法、熔滴法、磁控溅射法等。
其中,液滴法是应用最为广泛的一种方法。
快速凝固法制备出的非晶态材料具有结构紧密、热稳定性高、力学强度大等优良性质。
2、物理气相沉积法物理气相沉积法是一种新兴的制备非晶态材料的方法。
其过程是通过高温的物理气相沉积,在表面上一层层地沉积原子或分子,在原子间相互作用力的作用下构成非晶态结构。
物理气相沉积法具有制备非晶态材料时需要的原材料少、过程简单等优点,而且可以很容易地控制沉积速度和表面形貌。
目前,物理气相沉积法已在电子学、光学、存储器材料、传感器等领域发挥了十分重要的作用。
3、化学溶液法化学溶液法是一种制备非晶态材料的化学方法。
其过程是通过将所需材料加入适当的溶剂中,进行溶解、反应、沉淀等步骤,形成非晶态材料。
化学溶液法不仅可以制备出各种类型的非晶态材料,而且还可以制备出多层复合材料以及空心微球等高级复杂结构的纳米材料。
二、非晶态材料的性质特点非晶态材料具有许多特殊的性质,与晶体材料相比具有以下几个方面的不同。
1、无定形性非晶态材料中的原子或分子呈无定形态,不同原子之间的成键方式和断裂方式不同。
因此,非晶态材料的结构复杂,存在比较广泛的局部有序性和无序性。
非晶态材料的制备与研究进展非晶态材料是指无序结构的金属、合金、陶瓷、聚合物等材料,也称为非晶合金、非晶陶瓷、非晶聚合物等。
与传统的晶体材料相比,非晶态材料具有独特的物理、化学性能,例如高硬度、高韧性、高弹性模量、低磁滞损耗等。
由于这些特性,非晶态材料在电子、化工、磁性、能源等领域有着广泛的应用和研究价值。
本文将介绍非晶态材料的制备方法和研究进展。
一、非晶态材料的制备方法非晶态材料的制备方法包括几种基本方法:快速凝固法、溅射法、化学气相沉积法、溶胶凝胶法、高压方法等。
其中,快速凝固法是最常用的方法之一。
快速凝固法又称为淬火法或快速凝固淬火法。
该方法的关键在于“快速”,即使物质在熔融的状态下以极快的速度冷却,可以形成非晶态。
其主要原理是通过快速冷却抑制原子的有序排列,以形成无序结构。
快速凝固法中最常用的技术是毛细管铸造(spin casting)、单向凝固(unidirectional solidification)和三辊式轧制(three-roll mill)。
毛细管铸造主要是将铜轮(铜圆柱)等材料熔化后,在高速旋转的铜轮上斜着流动,由于冷却速度极快,从而形成非晶态材料。
溅射法是将目标材料置于真空室中,通过气体放电及离子轰击达到脱离目标材料的目的。
被离子轰击的目标材料脱离后,将沉积在表面的离子及原子进行深层交换,形成非晶结晶。
化学气相沉积法是在高温和真空条件下将单质或化合物输入到沉积室中,在沉积室中经过化学反应和热反应得到所需的薄膜。
二、非晶态材料的研究进展随着材料科学的发展,非晶态材料的研究也得到了迅速发展。
目前,非晶态材料的研究重点主要是在材料力学性能、磁性、光学性能、防腐性、耐高温性等方面。
1. 材料力学性能非晶态金属材料相比于晶态材料具有更高的硬度和韧性,因此在减震、液压缓冲、磨损等领域具有更好的应用前景。
近年来,人们开始对非晶态金属材料的力学性能进行系统研究,例如压缩、拉伸、切削和疲劳等基本工程性能指标。
非晶态材料的制备及性质研究一、引言非晶态材料是一类在凝固时没有形成规则结晶结构的物质。
它们具有许多特殊的物理和化学特性,例如高密度、超强硬度和高力学阻尼性能。
这些特性使得非晶态材料被广泛应用于制造高性能材料和微电子器件等领域。
本文将介绍非晶态材料的制备方法,探讨其性质研究现状及未来发展方向。
二、四种制备非晶态材料的方法1. 熔融淬火法熔融淬火法是较为常用的制备非晶态材料的方法。
它的基本原理是将金属或合金加热至高于其熔点,然后迅速冷却到室温以下。
在快速冷却的过程中,金属或合金没有足够的时间来形成晶体结构,从而形成非晶态结构。
熔融淬火法的优点在于可以在室温下制备大面积的非晶态薄膜和多组分玻璃材料。
然而,这种方法对于高熔点的合金和易氧化金属的制备较为困难。
2. 溅射法溅射法是另一种常见的非晶态材料制备方法,它的基本原理是将金属或合金靶材置于真空室内,然后利用离子轰击或电子轰击等手段将靶材表面原子溅射出来。
这些原子以极高速度沉积到衬底上,形成非晶态薄膜。
溅射法可以制备多种材料的非晶态薄膜,具有优良的化学均匀性和结晶性能。
但是,由于需要真空设备和高昂的成本,溅射法一般只用于小面积的薄膜制备。
3. 机械合金化法机械合金化法是一种将原材料粉末混合并经高强度机械碾压形成非晶态钎料的方法。
这种方法的基本原理是通过机械碾压将原材料粉末混合均匀,然后控制碾压时间和碾压力度以制造非晶态钎料。
机械合金化法可以制备许多非晶态合金,具有良好的热稳定性和化学稳定性。
然而,由于合金中添加的原材料粉末数量有限,因此机械合金化法仅适用于小规模的制备。
4. 其他方法除了以上三种制备非晶态材料的方法外,还有一些较为新颖的制备方法,例如分子束外延法、热化学气相沉积法和激光凝固法等。
这些方法具有不同的优势和限制,可以根据不同的需求和材料特性进行选择。
三、非晶态材料的性质研究1. 机械性能非晶态材料的机械性能是其最显著的特点之一。
由于其无晶体结构,非晶态材料通常具有非常高的硬度和强度,同时具有良好的弹性模量和塑性形变能力。