历年高考排列组合试题及其答案
- 格式:doc
- 大小:125.33 KB
- 文档页数:59
二项式定理历年高考试题荟萃(三))102 分共计24 题, ( 一、填空题本大题共52的系数是________.(用数字作答)(1+2x)的展开式中x、1的展开式中的第5项为常数项,那么、2的值是正整数.已知,则、3 .(的值等于28的展开式中常数项为)+x(1+2)(1。
、4(用数字作答).展开式中含、5的整数次幂的项的系数之和为(用数字作答).28的展开式中常数项为)。
1+2(x()x-、6(用数字作答)的二项展开式中常数项是( 用数字作、7).答.26的展开式中常数项是).(x (+用数字、8)作答.若的二项展开式中、9的系数为,则.(用数字作答)______3n的展开式中含有常数项,x(2则+)若、10.n最小的正整数等于39)+(x.x展开式中的系数是(用、11数字作答).若、12展开式的各项系数之和为32,则n= ,其展开式中的常数项为。
(用数字作答)的展开式中、13的系数为.(用数字作答)55432+ax+a,则a+a+a+a+a若(x-2)x=a=__________.+ax+ax+ax、1450453212314243的系数为(1-x xx(1+2展开式中)).、15; 各项系数之的展开式中常数项为、16和为.(用数字作答)25的系数是x的二项展开式中)(x、17)用数字作答____________.( 36展开式中的常数项为)(x+(1+x )、18_____________.则若x0,>、19+(2.)(2-)-4.(x-)=______________.268k=______________.则120,的系数小于,x的展开式中)是正整数(k)(1+kx已知、20.n的展开式中第m)项的系数记(2x+、21n2,若为bb=b,则=.4m335的系数为)的二项展开式中x(x+、22)用数字作答_____________.(2n的展开式中没有常(1+x+x))(x+已知、23*且2≤n≤8,则n=_____________.数项,n∈N展开式中x的系数为.、24二项式定理历年高考试题荟萃(三)答案)分102 共计, 题24 共本大题( 一、填空题.2,∴系数为x(2)C=解析:40T、132=40.C·2.解:∵的展开式中的第5项为、2,且常数项,∴,得-256.令x=1,则有a+a+a+x+aa+ax+a+a=0,x++:(1解析-x)=aaxax+a514423235010即、352345(a+a+a)+(a+a+a)=0; ①5123405,=2aa+-a-+a=令x-1,则有-aa5302145②a++a)-(+a+(即aaa. )=2531420.联立①②有(a+a+a)(a+a+a)=-∴54021382=256.-=57.×1+2×1:解析57、4.答案:72解析:∵T= 、5r+1(=,.∴r=0,4,8时展开式中的项为整数次幂,所求系数和为++=72.答案:-42解析:的通项、6T=r+1.2)x(1+2∴=,展开式中常数项为42.-=15解析:、87、--r)2(6xTx=r+1.,令12-3xr==0,得r=4,∴T=15.=4.-312rr答案:2解析:∵、9==2.a∴,.)x(2C=T解析答案:7:、10+1rrr=2()C.-n3xx=2.Cx令3n-r=0,则有6n=7r,由展开式中有常7.最小值为n所以,数项.84 T=,∴9-2r=3.∴r=3.∴、11r+184.n=32.2可得展开式中各项系数之和为x=1令:解析5 10、12.∴n=5.而展开式中通项为2r()T(x=r+1.5-r=)5r-15.令5r-15=0,∴xr=3.3T∴常数项为=C=10.54.7展开式中的)由二项式定理得84 (1-、13项为3第·T(-=3.2=84)·,即84.的系数为5=-32.=(-2)令x=0,则a由二项式定理中的赋值法31 解析:,、140令x=1,则a+a+a+a+a+a=-1.∴a+a+a+a+a=-1-a=31.0514232453012的项x解析:展开式中含-6、1530·1·(2x)·m=22·+(-x)·1.21·1(2x)·31+1(-x)··12·(2x)1.402222的系展开式中=x1(-x)=6x-24x+12x2数为∴系数为-6.,-6x展开式中通项为10 32()T(x=r+1.、1625-rr=)其中常数项为,.T==10;令x=1,可得各项系数之和为35=32.2∵:解析40、173·(·)(x22222的系数为∴(-2)1)=10××·x=40x,x40.6展开式中的项)35 (x+答案:、18的系数与常数项的系数之和即为所求,由.T=·(r+1r=)6-3r r=2∴当,x·.时,=15.当r=3=20.,时15+20=35.故原展开式中的常数项为答案:-23 原式、193-4-3=4+4=-23.844,∵=15k解析答案:1:x的系数为k、20+44k=1.∴,Z∈8,k<120,k<15kn的展开式中第m项为)5 记(2x+、21n-m+1m-1==Tab mn-m+1·(·(2x).m-1,则)n-m+1.又∵b=2b,=b∴2·43mn-2×=22·.n-32·.=n=5.解得,.答案:10··x2=10.×=5.、224n展开式中不含)5解析:(x+答案:、23-2-10项即可,xx、x、由n-r(xF=r+1.r=)n-4.时成立n=5可以验证8,≤n≤2∵r.x2 展开式中含x的项、2430·1·(2x)·n=31·+(-x)·1.21·(2x)1·04·=-4x+6x=2x,1(-x)∴展开式中x的系数为2.。
高中排列组合试题及答案一、选择题1. 从5个人中选出3个人参加比赛,不同的选法有()种。
A. 10B. 15C. 20D. 60答案:B2. 有3个不同的球和3个不同的盒子,每个盒子只能放一个球,不同的放法有()种。
A. 3B. 6C. 9D. 27答案:D3. 从6本不同的书中选3本送给3个不同的人,每人一本,不同的送法有()种。
A. 20B. 60C. 120D. 720答案:B二、填空题4. 一个班级有20名学生,需要选出5名学生组成一个小组,那么不同的选法有______种。
答案:15,5045. 从10个人中选出3个人担任班长、副班长和学习委员,不同的选法有______种。
答案:720三、解答题6. 某学校有5个不同学科的竞赛,每个学生可以选择参加1个或多个竞赛,求至少参加一个竞赛的学生的选法总数。
答案:首先,每个学生有6种选择:不参加任何竞赛,只参加一个竞赛,参加两个竞赛,参加三个竞赛,参加四个竞赛,参加所有五个竞赛。
对于每个学科,学生有两种选择:参加或不参加,所以总共有2^5=32种可能的组合。
但是,我们需要排除不参加任何竞赛的情况,所以选法总数为32-1=31种。
7. 一个班级有30名学生,需要选出一个5人的篮球队,其中必须包括1名队长和4名队员。
如果队长和队员可以是同一个人,那么不同的选法有多少种?答案:首先,选择队长有30种可能,然后从剩下的29人中选择4名队员,有C(29,4)种可能。
但是,由于队长和队员可以是同一个人,我们需要减去只选了4名队员的情况,即C(30,4)种。
所以,总的选法为30*C(29,4) - C(30,4) = 30*1911 - 27,405 = 57,330种。
四、计算题8. 一个数字密码由5个不同的数字组成,每位数字可以是0-9中的任意一个,求这个密码的所有可能组合。
答案:每位数字有10种可能,所以总的组合数为10^5 = 100,000种。
9. 一个班级有15名学生,需要选出一个7人的足球队,不同的选法有多少种?答案:从15名学生中选出7人,不同的选法有C(15,7) = 6,435种。
历年高考数学真题精选(按考点分类)专题45 排列组合(学生版)一.选择题(共20小题)1.(2009•全国卷Ⅰ)甲组有5名男同学,3名女同学;乙组有6名男同学、2名女同学.若从甲、乙两组中各选出2名同学,则选出的4人中恰有1名女同学的不同选法共有( )A.150种B.180种C.300种D.345种2.(2010•广东)为了迎接2010年广州亚运会,某大楼安装5个彩灯,它们闪亮的顺序不固定.每个彩灯闪亮只能是红、橙、黄、绿、蓝中的一种颜色,且这5个彩灯闪亮的颜色各不相同,记这5个彩灯有序地闪亮一次为一个闪烁.在每个闪烁中,每秒钟有且只有一个彩灯闪亮,而相邻两个闪烁的时间间隔均为5秒.如果要实现所有不同的闪烁,那么需要的时间至少是()A.1205秒B.1200秒C.1195秒D.1190秒3.(2007•全国卷Ⅱ)5位同学报名参加两个课外活动小组,每位同学限报其中的一个小组,则不同的报名方法共有()A.10种B.20种C.25种D.32种4.(2006•湖南)在数字1,2,3与符号+,-五个元素的所有全排列中,任意两个数字都不相邻的全排列个数是()A.6B.12C.24D.18 5.(2009•陕西)从1,2,3,4,5,6,7这七个数字中任取两个奇数和两个偶数,组成没有重复数字的四位数,其中奇数的个数为()A.432B.288C.216D.108 6.(2014•辽宁)6把椅子排成一排,3人随机就座,任何两人不相邻的坐法种数为() A.144B.120C.72D.24 7.(2012•浙江)若从1,2,3,⋯,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有()A.60种B.63种C.65种D.66种8.(2012•北京)从0、2中选一个数字.从1、3、5中选两个数字,组成无重复数字的三位数.其中奇数的个数为()A .24B .18C .12D .69.(2008•全国卷Ⅰ)将1,2,3填入33⨯的方格中,要求每行、每列都没有重复数字,下面是一种填法,则不同的填写方法共有( )A .6种B .12种C .24种D .48种10.(2010•重庆)某单位安排7位员工在10月1日至7日值班,每天1人,每人值班1天,若7位员工中的甲、乙排在相邻两天,丙不排在10月1日,丁不排在10月7日,则不同的安排方案共有( )A .504种B .960种C .1008种D .1108种11.(2015•上海)组合数122(2m m m nn n C C C n m --++,m ,*)n N ∈恒等于( ) A .2m n C + B .12m n C ++ C .1m n C + D .11m n C ++12.(2010•重庆)某单位拟安排6位员工在今年6月14日至16日(端午节假期)值班,每天安排2人,每人值班1天.若6位员工中的甲不值14日,乙不值16日,则不同的安排方法共有( )A .30种B .36种C .42种D .48种13.(2009•黑龙江)甲、乙两人从4门课程中各选修2门,则甲、乙所选的课程中恰有1门相同的选法有( )A .6种B .12种C .24种D .30种14.(2007•全国卷Ⅰ)甲、乙、丙3位同学选修课程,从4门课程中,甲选修2门,乙、丙各选修3门,则不同的选修方案共有( )A .36种B .48种C .96种D .192种15.(2006•全国卷Ⅰ)设集合{1I =,2,3,4,5}.选择I 的两个非空子集A 和B ,要使B中最小的数大于A 中最大的数,则不同的选择方法共有( )A .50种B .49种C .48种D .47种16.(2017•全国)4个数字1和4个数字2可以组成不同的8位数共有( )A .16个B .70个C .140个D .256个17.(2017•新课标Ⅱ)安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有( )A.12种B.18种C.24种D.36种18.(2016•全国)从1,2,3,4,5,6中任取三个不同的数相加,则不同的结果共有( )A.6种B.9种C.10种D.15种19.(2016•新课标Ⅱ)如图,小明从街道的E处出发,先到F处与小红会合,再一起到位于G处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为( )A.24B.18C.12D.9 20.(2013•全国)3位男同学与2位女同学排成一列,其中女同学相邻的不同排法共有( )A.48种B.36种C.24种D.18种二.填空题(共5小题)21.(2007•陕西)安排3名支教教师去4所学校任教,每校至多2人,则不同的分配方案共有种.(用数字作答)22.(2010•全国大纲版Ⅰ)某学校开设A类选修课3门,B类选修课4门,一位同学从中共选3门,若要求两类课程中各至少选一门,则不同的选法共有种.(用数字作答)23.(2007•重庆)某校要求每位学生从7门课程中选修4门,其中甲、乙两门课程不能都选,则不同的选课方案有种.(以数字作答)24.(2019•上海)首届中国国际进口博览会在上海举行,某高校拟派4人参加连续5天的志愿者活动,其中甲连续参加2天,其他人各参加1天,则不同的安排方法有种(结果用数值表示)25.(2018•新课标Ⅰ)从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有种.(用数字填写答案)历年高考数学真题精选(按考点分类)专题45 排列组合(教师版)一.选择题(共20小题)1.(2009•全国卷Ⅰ)甲组有5名男同学,3名女同学;乙组有6名男同学、2名女同学.若从甲、乙两组中各选出2名同学,则选出的4人中恰有1名女同学的不同选法共有( )A.150种B.180种C.300种D.345种【答案】D【解析】分两类(1)甲组中选出一名女生有112536225C C C=种选法;(2)乙组中选出一名女生有211562120C C C=种选法.故共有345种选法.2.(2010•广东)为了迎接2010年广州亚运会,某大楼安装5个彩灯,它们闪亮的顺序不固定.每个彩灯闪亮只能是红、橙、黄、绿、蓝中的一种颜色,且这5个彩灯闪亮的颜色各不相同,记这5个彩灯有序地闪亮一次为一个闪烁.在每个闪烁中,每秒钟有且只有一个彩灯闪亮,而相邻两个闪烁的时间间隔均为5秒.如果要实现所有不同的闪烁,那么需要的时间至少是()A.1205秒B.1200秒C.1195秒D.1190秒【答案】C【解析】由题意知共有5!120=个不同的闪烁,每个闪烁时间为5秒,共5120600⨯=秒;每两个闪烁之间的间隔为5秒,共5(1201)595⨯-=秒.那么需要的时间至少是6005951195+=秒.3.(2007•全国卷Ⅱ)5位同学报名参加两个课外活动小组,每位同学限报其中的一个小组,则不同的报名方法共有()A.10种B.20种C.25种D.32种【答案】D【解析】5位同学报名参加两个课外活动小组,每位同学限报其中的一个小组,则不同的报名方法共有5232=种.4.(2006•湖南)在数字1,2,3与符号+,-五个元素的所有全排列中,任意两个数字都不相邻的全排列个数是( )A .6B .12C .24D .18【答案】B【解析】在数字1,2,3与符号“+”,“ -”五个元素的所有全排列中,先排列1,2,3,有336A =种排法,再将“+”,“ -”两个符号插入, 有222A =种方法,共有12种方法,故选B . 5.(2009•陕西)从1,2,3,4,5,6,7这七个数字中任取两个奇数和两个偶数,组成没有重复数字的四位数,其中奇数的个数为( )A .432B .288C .216D .108【答案】C 【解析】由题意知本题是一个分步计数原理,第一步先从4个奇数中取2个再从3个偶数中取2个共224318C C =种, 第二步再把4个数排列,其中是奇数的共132312A A =种, ∴所求奇数的个数共有1812216⨯=种.6.(2014•辽宁)6把椅子排成一排,3人随机就座,任何两人不相邻的坐法种数为( )A .144B .120C .72D .24【答案】D【解析】使用“插空法“.第一步,三个人先坐成一排,有33A 种,即全排,6种;第二步,由于三个人必须隔开,因此必须先在1号位置与2号位置之间摆放一张凳子,2号位置与3号位置之间摆放一张凳子,剩余一张凳子可以选择三个人的左右共4个空挡,随便摆放即可,即有14C 种办法.根据分步计数原理,6424⨯=. 7.(2012•浙江)若从1,2,3,⋯,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有( )A .60种B .63种C .65种D .66种【答案】D【解析】由题意知本题是一个分类计数问题,要得到四个数字的和是偶数,需要分成三种不同的情况,当取得4个偶数时,有441C =种结果, 当取得4个奇数时,有455C =种结果,当取得2奇2偶时有224561060C C =⨯= ∴共有156066++=种结果8.(2012•北京)从0、2中选一个数字.从1、3、5中选两个数字,组成无重复数字的三位数.其中奇数的个数为( )A .24B .18C .12D .6【答案】B【解析】从0、2中选一个数字0,则0只能排在十位,从1、3、5中选两个数字排在个位与百位,共有236A =种;从0、2中选一个数字2,则2排在十位,从1、3、5中选两个数字排在个位与百位,共有236A =种;2排在百位,从1、3、5中选两个数字排在个位与十位,共有236A =种;故共有23318A =种9.(2008•全国卷Ⅰ)将1,2,3填入33⨯的方格中,要求每行、每列都没有重复数字,下面是一种填法,则不同的填写方法共有( )A .6种B .12种C .24种D .48种【答案】B【解析】填好第一行和第一列,其他的行和列就确定,323212A A ∴= 10.(2010•重庆)某单位安排7位员工在10月1日至7日值班,每天1人,每人值班1天,若7位员工中的甲、乙排在相邻两天,丙不排在10月1日,丁不排在10月7日,则不同的安排方案共有( )A .504种B .960种C .1008种D .1108种【答案】C【解析】分两类:第一类:甲乙相邻排1、2号或6、7号,这时先排甲和乙,有222A ⨯种,然后排丁,有14A 种,剩下其他四个人全排列有44A 种,因此共有2142442384A A A ⨯=种方法 第二类:甲乙相邻排中间,若丙排7号,先排甲和乙,因为相邻且在中间,则有224A ⨯种,然后丙在7号,剩下四个人全排列有44A 种,若丙不排7号,先排甲和乙,因为相邻且在中间,则有224A ⨯种,然后排丙,丙不再1号和7号,有13A 种,接着排丁,丁不排在10月7日,有13A 种,剩下3个人全排列,有33A 种,因此共有242113242333(44)624A A A A A A +=种方法,故共有1008种不同的排法 11.(2015•上海)组合数122(2m m m nn n C C C n m --++,m ,*)n N ∈恒等于( ) A .2m n C +B .12m nC ++ C .1m n C +D .11m n C ++【答案】A 【解析】组合数1211211122m m m m m m m m m m n n n n n n n n n n C C C C C C C C C C ------+++++=+++=+=.12.(2010•重庆)某单位拟安排6位员工在今年6月14日至16日(端午节假期)值班,每天安排2人,每人值班1天.若6位员工中的甲不值14日,乙不值16日,则不同的安排方法共有( )A .30种B .36种C .42种D .48种【答案】C【解析】根据题意,不同的安排方法的数目等于所有排法减去甲值14日或乙值16日的排法数,再加上甲值14日且乙值16日的排法,即221211645443242C C C C C C -⨯+= 13.(2009•黑龙江)甲、乙两人从4门课程中各选修2门,则甲、乙所选的课程中恰有1门相同的选法有( )A .6种B .12种C .24种D .30种【答案】C【解析】根据题意,分两步,①由题意可得,所有两人各选修2门的种数224436C C =, ②两人所选两门都相同的有为246C =种,都不同的种数为246C = 14.(2007•全国卷Ⅰ)甲、乙、丙3位同学选修课程,从4门课程中,甲选修2门,乙、丙各选修3门,则不同的选修方案共有( )A .36种B .48种C .96种D .192种【答案】C【解析】根据题意,甲、乙、丙3位同学选修课程,从4门课程中,甲选修2门,有24C 种,乙、丙各选修3门,有3344C C 种,则不同的选修方案共有23344496C C C =种 15.(2006•全国卷Ⅰ)设集合{1I =,2,3,4,5}.选择I 的两个非空子集A 和B ,要使B中最小的数大于A 中最大的数,则不同的选择方法共有( )A .50种B .49种C .48种D .47种【答案】B【解析】集合A 、B 中没有相同的元素,且都不是空集,从5个元素中选出2个元素,有2510C =种选法,小的给A 集合,大的给B 集合;从5个元素中选出3个元素,有3510C =种选法,再分成1、2两组,较小元素的一组给A 集合,较大元素的一组的给B 集合,共有21020⨯=种方法;从5个元素中选出4个元素,有455C =种选法,再分成1、3;2、2;3、1两组,较小元素的一组给A 集合,较大元素的一组的给B 集合,共有3515⨯=种方法;从5个元素中选出5个元素,有551C =种选法,再分成1、4;2、3;3、2;4、1两组,较小元素的一组给A 集合,较大元素的一组的给B 集合,共有414⨯=种方法;总计为102015449+++=种方法.16.(2017•全国)4个数字1和4个数字2可以组成不同的8位数共有( )A .16个B .70个C .140个D .256个【答案】B【解析】4个数字1和4个数字2可以组成不同的8位数共有:88444470A A A =. 17.(2017•新课标Ⅱ)安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有( )A .12种B .18种C .24种D .36种【答案】D【解析】4项工作分成3组,可得:246C =, 安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,可得:33636A ⨯=种. 18.(2016•全国)从1,2,3,4,5,6中任取三个不同的数相加,则不同的结果共有()A .6种B .9种C .10种D .15种【答案】C【解析】从1,2,3,4,5,6中任取三个不同的数相加,所得的最小值为1236++=,最大值为45615++=,1236++=,1247++=,1251348++=++=,1261352349++=++=++=,136********++=++=++=,14623624511++=++=++=,156********++=++=++=,34613++=,35614++=,45615++=共有:10种不同结果. 19.(2016•新课标Ⅱ)如图,小明从街道的E 处出发,先到F 处与小红会合,再一起到位于G 处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数( )A .24B .18C .12D .9【答案】B【解析】从E 到F ,每条东西向的街道被分成2段,每条南北向的街道被分成2段, 从E 到F 最短的走法,无论怎样走,一定包括4段,其中2段方向相同,另2段方向相同,每种最短走法,即是从4段中选出2段走东向的,选出2段走北向的,故共有22426C C =种走法.同理从F 到G ,最短的走法,有12323C C =种走法. ∴小明到老年公寓可以选择的最短路径条数为6318⨯=种走法.20.(2013•全国)3位男同学与2位女同学排成一列,其中女同学相邻的不同排法共有()A .48种B .36种C .24种D .18种【答案】A 【解析】3位男同学与2位女同学排成一列,其中女同学相邻的不同排法共有:424248A A =种.二.填空题(共5小题)21.(2007•陕西)安排3名支教教师去4所学校任教,每校至多2人,则不同的分配方案共有 种.(用数字作答)【答案】60【解析】分2类:(1)每校最多1人:3424A =; (2)每校至多2人,把3人分两组,再分到学校:223436C A =,共有60种 22.(2010•全国大纲版Ⅰ)某学校开设A 类选修课3门,B 类选修课4门,一位同学从中共选3门,若要求两类课程中各至少选一门,则不同的选法共有 种.(用数字作答)【答案】30【解析】分以下2种情况:(1)A 类选修课选1门,B 类选修课选2门,有1234C C 种不同的选法;(2)A 类选修课选2门,B 类选修课选1门,有2134C C 种不同的选法.所以不同的选法共有12213434181230C C C C +=+=种. 23.(2007•重庆)某校要求每位学生从7门课程中选修4门,其中甲、乙两门课程不能都选,则不同的选课方案有 种.(以数字作答)【答案】25【解析】所有的选法数为47C ,两门都选的方法为2225C C , 故共有选法数为422725351025C C C -=-=. 24.(2019•上海)首届中国国际进口博览会在上海举行,某高校拟派4人参加连续5天的志愿者活动,其中甲连续参加2天,其他人各参加1天,则不同的安排方法有 种(结果用数值表示)【答案】24【解析】在五天里,连续的2天,一共有4种,剩下的3人排列,故有33424A =种 25.(2018•新课标Ⅰ)从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有16种.(用数字填写答案)【答案】16【解析】1女2男,有122412C C=,2女1男,有21244C C=根据分类计数原理可得,共有12416+=种,故答案为:16第11页(共11页)。
经典题库-排列组合练习题注:排列数公式m n P 亦可记为mn A 。
一、选择题1.从0,1,3,4,5,6六个数字中,选出一个偶数和两个奇数,组成一个没有重复数字的三位数,这样的三位数共有( )A 、24个B 、36个C 、48个D 、54个【答案】C【解析】若包括0,则还需要两个奇数,且0不能排在最高位,有C 32A 21A 22=3×2×2=12个若不包括0,则有C 21C 32A 33=3×2×6=36个共计12+36=48个考点:排列组合2.某学生制定了数学问题解决方案: 星期一和星期日分别解决4个数学问题, 且从星期二开始, 每天所解决问题的个数与前一天相比, 要么“多一个”要么“持平”要么“少一个”.在一周中每天所解决问题个数的不同方案共有( )A.50种B.51种C.140种D.141种【答案】D【解析】试题分析:因为星期一和星期日分别解决4个数学问题,所以从这周的第二天开始后六天中“多一个”或“少一个”的天数必须相同,所以后面六天中解决问题个数“多一个”或“少一个”的天数可能是0、1、2、3天,共四种情况,所以共有01122336656463141C C C C C C C +++=种考点:排列组合问题3.有10件不同的电子产品,其中有2件产品运行不稳定。
技术人员对它们进行一一测试,直到2件不稳定的产品全部找出后测试结束,则恰好3次就结束测试的方法种数是( )A .16B .24C .32D .48【答案】C【解析】试题分析:前两次测试的是一件稳定的,一件不稳定的,第三件是不稳定的,共有21122832A C C = 种方法.考点:排列与组合公式.4.一个袋中有6个同样大小的黑球,编号为1、2、3、4、5、6,现从中随机取出3个球,以X 表示取出球的最大号码. 则X 所有可能取值的个数是( )A .6B .5C .4D .3【答案】C【解析】试题分析:随机变量X 的可能取值为6,5,4,3取值个数为4.考点:离散型随机变量的取值.5.在1,2,3,4,5,6这六个数字组成的没有重复数字的三位数中,各位数字之和为偶数的共有( )A .60个B .36个C .24个D .18个【答案】A【解析】依题意,所选的三位数字有两种情况:(1)3个数字都是偶数,有33P 种方法;(2)3个数字中有2个是奇数,1个是偶数,有23C 13C 33P 种方法,故共有33P +23C 13C 33P =60种方法,故选A .6.将A ,B ,C ,D ,E 排成一列,要求A ,B ,C 在排列中顺序为“A,B ,C”或“C,B ,A”(可以不相邻),这样的排列数有( )A .12种B .20种C .40种D .60种【答案】C【解析】五个元素没有限制全排列数为55P ,由于要求A ,B ,C 的次序一定(按A ,B ,C 或C ,B ,A)故除以这三个元素的全排列33P ,可得5533P P ×2=40. 7.将7支不同的笔全部放入两个不同的笔筒中,每个笔筒中至少放2支,则不同的放法有( )A .56种B .84种C .112种D .28种【答案】C【解析】根据题意先将7支不同的笔分成两组,若一组2支,另一组5支,有27C 种分组方法;若一组3支,另一组4支,有37C 种分组方法.然后分配到2个不同的笔筒中,故共有(27C +37C )22P =112种放法.8.两家夫妇各带一个小孩一起到动物园游玩,购票后排队依次入园,为安全起见,首尾一定要排两位爸爸,另外,两个小孩一定要排在一起,则这6人的入园顺序排法种数为( )A .48种B .36种C .24种D .12种【答案】C【解析】爸爸排法为22A 种,两个小孩排在一起故看成一体有22P 种排法.妈妈和孩子共有33P 种排法,∴排法种数共有22A 22A 33A =24种.故选C .9.运动会举行.某运动队有男运动员6名,女运动员4名,选派5人参加比赛,则至少有1名女运动员的选派方法有( )A .128种B .196种C .246种D .720种【答案】C【解析】“至少有1名女运动员”的反面为“全是男运动员”.从10人中任选5人,有510C 种选法,其中全是男运动员的选法有56C 种.所以“至少有1名女运动员”的选法有510C -56C =246种.10.三张卡片的正反面分别写有1和2,3和4,5和6,若将三张卡片并列,可得到不同的三位数(6不能作9用)的个数为( )A .8B .6C .14D .48【答案】D【解析】先排首位6种可能,十位数从剩下2张卡中任取一数有4种可能,个位数1张卡片有2种可能,∴一共有6×4×2=48(种).11.某城市的街道如图,某人要从A 地前往B 地,则路程最短的走法有( )A .8种B .10种C .12种D .32种【答案】B【解析】从A 到B 若路程最短,需要走三段横线段和两段竖线段,可转化为三个a 和两个b 的不同排法,第一步:先排a 有35C 种排法,第二步:再排b 有1种排法,共有10种排法,选B 项.12.某校要求每位学生从7门课程中选修4门,其中甲、乙两门课程不能都选,则不同的选课方案有( )A .35种B .16种C .20种D .25种【答案】D【解析】试题分析:学生从7门课程中选修4门,其中甲、乙两门课程不能都选,有三种方法,一是不选甲乙共有45C 种方法,二是选甲,共有35C 种方法,三是选乙,共有35C 种方法,把这3个数相加可得结果为25 考点:排列组合公式13.用0到9这10个数字,可以组成没有重复数字的三位偶数的个数为( )A .324B .648C .328D .360【答案】C【解析】试题分析:首先应考虑“0”是特殊元素,当0排在个位时,有=9×8=72(个),当0不排在个位时,有=4×8×8=256(个),于是由分类加法计数原理,得符合题意的偶数共有72+256=328(个).考点:排列组合知识14.学校计划利用周五下午第一、二、三节课举办语文、数学、英语、理综4科的专题讲座,每科一节课,每节至少有一科,且数学、理综不安排在同一节,则不同的安排方法共有 ( )A.36种B.30种C.24种D.6种【答案】B【解析】试题分析:先将语文、数学、英语、理综4科分成3组,每组至少1科,则不同的分法种数为24C ,其中数学、理综安排在同一节的分法种数为1,故数学、理综不安排在同一节的分法种数为24C -1,再将这3组分给3节课有33A 种不同的分配方法,根据分步计数原理知,不同的安排方法共有(24C -1)33A =30,故选B.考点:分步计数原理,排列组合知识15.现有4名教师参加说课比赛,共有4道备选题目,若每位教师从中有放回地随机选出一道题目进行说课,其中恰有一道题目没有被这4位教师选中的情况有( )A .288种B .144种C .72种D .36种【答案】B【解析】试题分析:从4题种选一道作为不被选中的题有4种,从4位教师中选2位,这两位是选同样题目的有2 46C=种,被选中两次的题目有3种方案,剩下的两位教师分别选走剩下的2题,共4632=144⨯⨯⨯种.考点:排列组合.16.用红、黄、蓝等6种颜色给如图所示的五连圆涂色,要求相邻两个圆所涂颜色不能相同,且红色至少要涂两个圆,则不同的涂色方案种数为()A.610 B.630 C.950 D.1280【答案】B【解析】试题分析:采用分类原理:第一类:涂两个红色圆,共有1111111111 4554555544605A A A A A A A A A A++=种;第二类:涂三个红色圆,共有115525A A=种;故共有630种.17.如图,用四种不同颜色给图中的A,B,C,D,E,F六个点涂色,要求每个点涂一种颜色,且图中每条线段的两个端点涂不同颜色,则不同的涂色方法有(??? )A.288种B.264种C.240种D.168种【答案】B【解析】先分步再排列先涂点E,有4种涂法,再涂点B,有两种可能:(1)B与E相同时,依次涂点F,C,D,A,涂法分别有3,2,2,2种;(2)B与E不相同时有3种涂法,再依次涂F、C、D、A点,涂F有2种涂法,涂C点时又有两种可能:(2.1)C与E相同,有1种涂法,再涂点D,有两种可能:①D与B相同,有1种涂法,最后涂A有2种涂法;②D与B不相同,有2种涂法,最后涂A有1种涂法.(2.2)C与E不相同,有1种涂法,再涂点D,有两种可能:①D与B相同,有1种涂法,最后涂A有2种涂法;②D与B不相同,有2种涂法,最后涂A有1种涂法.所以不同的涂色方法有4×{3×2×2×2+3×2×[1×(1×2+1×2)+1×(1×2+1×1)]}=4×(24+42)=264.18.将6名男生、4名女生分成两组,每组5人,参加两项不同的活动,每组3名男生和2名女生,则不同的分配方法有()A.240种 B.120种 C.60种 D.180种【答案】B【解析】试题分析:从6名男生中选3人,从4名女生中选2人组成一组,剩下的组成一组,则3264120C C=.19.现安排甲、乙、丙、丁、戊5名同学参加上海世博会志愿者服务活动,每人从事翻译、导游、礼仪、司机四项工作之一,每项工作至少有一人参加.甲、乙、丙不会开车但能从事其他三项工作,丁、戊都能胜四项工作,则不同安排方案的种数是()A.240 B.126 C.78 D.72【答案】C试题分析:根据题意,分情况讨论,①甲、乙、丙三人中有两人在一起参加除了开车的三项工作之一,有2112332236C C C A ⨯=种;②甲、乙、丙三人各自1人参加除了开车的三项工作之一即丁、戌两人一起参加开车工作时,有336A =种;③甲、乙、丙三人中有一1人与丁、戌中的一人一起参加除开车的三项工作之一,有11123232136C C C A ⨯=种,由分类计数原理,可得共有3663678++=种,故选C.20.六名大四学生(其中4名男生、2名女生)被安排到A ,B ,C 三所学校实习,每所学校2人,且2名女生不能到同一学校,也不能到C 学校,男生甲不能到A 学校,则不同的安排方法为( )A .24B .36C .16D .18【答案】D【解析】女生的安排方法有22A =2种.若男生甲到B 学校,则只需再选一名男生到A 学校,方法数是13C =3;若男生甲到C 学校,则剩余男生在三个学校进行全排列,方法数是33A =6.根据两个基本原理,总的安排方法数是2×(3+6)=18.21.某班班会准备从含甲、乙的7人中选取4人发言,要求甲、乙两人至少有一人参加,且若甲、乙同时参加,则他们发言时顺序不能相邻,那么不同的发言顺序有( ).A .720种B .520种C .600种D .360种【答案】C【解析】分两类:第一类,甲、乙两人只有一人参加,则不同的发言顺序有134254C C A 种;第二类:甲、乙同时参加,则不同的发言顺序有22222523C C A A 种.共有:134254C C A +22222523C C A A =600(种).二、填空题(题型注释)22.设ABCDEF 为正六边形,一只青蛙开始在顶点A 处,它每次可随意地跳到相邻两顶点之一。
排列组合典型题大全一.可重复的排列求幂法:重复排列问题要区分两类元素:一类可以重复,另一类不能重复,把不能重复的元素看作“客”,能重复的元素看作“店”,则通过“住店法”可顺利解题,在这类问题使用住店处理的策略中,关键是在正确判断哪个底数,哪个是指数【例1】(1)有4名学生报名参加数学、物理、化学竞赛,每人限报一科,有多少种不同的报名方法?(2)有4名学生参加争夺数学、物理、化学竞赛冠军,有多少种不同的结果?(3)将3封不同的信投入4个不同的邮筒,则有多少种不同投法?【解析】:(1)43(2)34(3)34【例2】把6名实习生分配到7个车间实习共有多少种不同方法?【解析】:完成此事共分6步,第一步;将第一名实习生分配到车间有7种不同方案,第二步:将第二名实习生分配到车间也有7种不同方案,依次类推,由分步计数原理知共有67种不同方案.【例3】8名同学争夺3项冠军,获得冠军的可能性有()A 、38 B、83 C、38A D 、38C 【解析】:冠军不能重复,但同一个学生可获得多项冠军,把8名学生看作8家“店”,3项冠军看作3个“客”,他们都可能住进任意一家“店”,每个“客”有8种可能,因此共有38种不同的结果。
所以选A1、4封信投到3个信箱当中,有多少种投法?2、4个人争夺3项冠军,要求冠军不能并列,每个人可以夺得多项冠军也可以空手而还,问最后有多少种情况?3、4个同学参加3项不同的比赛(1)每位同学必须参加一项比赛,有多少种不同的结果?(2)每项竞赛只许一名同学参加,有多少种不同的结果?4、5名学生报名参加4项比赛,每人限报1项,报名方法的种数有多少?又他们争夺这4项比赛的冠军,获得冠军的可能性有多少?5、甲乙丙分10瓶汽水的方法有多少种?6、(全国II 文)5位同学报名参加两个课外活动小组,每位同学限报其中的一个小组,则不同的报名方法共(A)10种(B) 20种(C) 25种(D) 32种7、5位同学报名参加并负责两个课外活动小组,每个兴趣小组只能有一个人来负责,负责人可以兼职,则不同的负责方法有多少种?8、4名不同科目的实习教师被分配到3个班级,不同的分法有多少种?思考:4名不同科目的实习教师被分配到3个班级,每班至少一个人的不同的分法有多少种?二.相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列.【例1】,,,,A B C D E 五人并排站成一排,如果,A B 必须相邻且B 在A 的右边,那么不同的排法种数有【解析】:把,A B 视为一人,且B 固定在A 的右边,则本题相当于4人的全排列,4424A种例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法. 解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。
排 列 组 合1. 【 2009年. 浙江卷. 理16】甲、乙、丙3 人站到共有7 的台 上,若每 台 最多站2 人,同一 台上的人不区分站的位置, 不同的站法种数是(用数字作答) .2. 【 2008 年 . 浙江卷 . 理 16】用 1, 2,3, 4, 5, 6 成六位数(没有重复数字) ,要求任何相 两个数字的奇偶性不同,且 1 和 2 相 , 的六位数的个数是 (用数字作答 ).3. 【 2007 年 . 浙江卷 . 理 14】某 店有 11 种 志, 2 元 1 本的 8 种, 1 元 1 本的 3 种,小 有 10 元志(每种至多 一本, 10 元 好用完) , 不同 法的种数是 __________(用数字作答)4. 【 2005 年 . 浙江卷 . 理 9】 从集合 { O , P ,Q , R , S } 与 {0 , 1, 2, 3,4, 5,6, 7,8, 9} 中各任取 2 个元素排成一排 ( 字母和数字均不能重复 ) .每排中字母 O , Q 和数字 0 至多只能出 一个的不同排法种数是_________. ( 用数字作答 ) .5.【 2017 年. 浙江卷 .16 】从 6 男 2 女共 8 名学生中 出 1 人,副1 人,普通2 人 成 4 人服 ,要求服 中至少有1 名女生,共有 ______种不同的 法.(用数字作答)6.【 2018 年 . 浙江卷 .16 】从 1, 3, 5,7, 9 中任取 2 个数字,从 0, 2, 4,6 中任取 2 个数字,一共可以 成___________个没有重复数字的四位数 .( 用数字作答 )7. 【 2014 年 . 浙江卷 . 理 14】在 8 券中有一、二、三等 各 1 ,其余5 无 . 将 8 券分配 4个人,每人2 ,不同的 情况有_____种(用数字作答) .8. 【 2013 年 . 浙江卷 . 理 14】将 A , B , C ,D , E ,F 六个字母排成一排,且 A ,B 均在 C 的同 , 不同的排法共有 __________ 种( 用数字作答 ) .9. 【 2012 年 . 浙江卷 . 理 6】若从 1,2,3 ,⋯, 9 9 个整数中同 取 4 个不同的数,其和 偶数, 不同的取法共有 ()A . 60 种B . 63 种C . 65 种D . 66 种10. 【 2010 年 . 浙江卷 . 理 17】有 4 位同学在同一天的上、 下午参加 “身高与体重” 、“立定跳 ” 、“肺活量”、“握力”、“台 ”五个 目的 ,每位同学上、下午各 一个 目,且不重复 . 若上午不 “握力”目,下午不 “台 ” 目,其余 目上、下午都各 一人 . 不同的安排方式共有______________种(用数字作答) .11. 【 2011 年 . 浙江卷 . 理 9】有 5 本不同的 ,其中 文 2 本,数学 2 本,物理1 本. 若将其随机的并排 放到 架的同一 上, 同一科目的 都不相 的概率(A )1( B )2( C )3D455 55答案:33640 266 【答案】 8424660 126060 480 D264 48/120=2/5。
排列组合的试题及答案高中一、选择题1. 从5个不同的小球中取出3个进行排列,共有多少种不同的排列方式?A. 20种B. 60种C. 120种D. 240种2. 有5个人排成一排,其中甲乙两人必须相邻,共有多少种不同的排法?A. 48种B. 60种C. 120种D. 240种二、填空题3. 用0,1,2,3,4这五个数字组成没有重复数字的三位数,其中个位数字为1的共有多少个?4. 某班有10名同学,需要选出3名代表,有多少种不同的选法?三、解答题5. 某公司有10名员工,需要选出5名员工组成一个工作小组,要求其中至少有1名女性员工。
如果公司中有5名女性员工和5名男性员工,问有多少种不同的组合方式?6. 某校有5个社团,每个学生最多可以参加2个社团,问有多少种不同的参加方式?答案一、选择题1. 答案:B解析:从5个不同的小球中取出3个进行排列,使用排列公式A_{5}^{3} = 5 × 4 × 3 = 60。
2. 答案:A解析:将甲乙两人看作一个整体,有4!种排法,再将甲乙两人内部排列,有2!种排法,所以总共有4! × 2! = 48种排法。
二、填空题3. 答案:18解析:首先确定百位,有4种选择(不能选0和1),然后确定十位,有3种选择(不能与百位相同),最后确定个位为1,所以共有 4 × 3 = 12种。
但是,由于0不能作为百位,所以需要减去3种情况,最终答案为 12 - 3 = 9种。
4. 答案:120解析:从10个人中选出3个人,使用组合公式 C_{10}^{3} = 10! / (3! × (10 - 3)!) = 120。
三、解答题5. 答案:252种解析:首先计算所有可能的组合数,即 C_{10}^{5} = 252。
然后计算没有女性员工的组合数,即 C_{5}^{5} = 1。
所以至少有1名女性员工的组合数为 252 - 1 = 251。
1 .[高考全国卷Ⅰ(河南,河北,广西等)理第12 题]设集合I= 1,2,3,4,5}。
选择 I 的两个非空子集 A 和B,要使 B 中最小的数大于 A 中最大的数,则不同的选择方法共有A.50种 B.49种 C.48种 D.47种2.[高考全国卷Ⅰ(河南,河北,广西等)理第15 题,文第16 题]安排 7 位工作人员在 5 月 1 日到 5 月 7 日值班,每人值班一天,其中甲、乙二人都不安排在 5 月 1 日和 2 日,不同的安排方法共有__________种。
(用数字作答)3.[高考全国卷Ⅱ(吉林,黑龙江, 内蒙,贵州,云南等)文第12 题] 5名志愿者分到3所学校支教,每个学校至少去一名志愿者,则不同的分派方法共有(A) 150种 (B)180种 (C)200种 (D)280种4.[高考北京卷文第4 题]在 1,2,3,4,5 这五个数字组成的没有重复数字的三位数中,各位数字之和为偶数共有(A) 36 个 (B) 24 个(C) 18 个 (D) 6 个5.[高考北京卷理第3 题]在1,2,3,4,5 这五个数字组成的没有重复数字的三位数中,各位数字之和为奇数的共有(A) 36 个 (B) 24 个(C) 18 个 (D) 6 个6.[高考天津卷理第5 题]将 4 个颜色互不相同球全部放入编号为 1 和 2 的两个盒子里,使得放入每个盒子里的球的个数不小于该盒子的编号,则不同的放球方法有( )A .10 种B .20 种C .36 种D .52 种7 .[高考天津卷文第16 题]用数字0 ,1 ,2,3,4 组成没有重复数字的五位数,则其中数字1,2 相邻的偶数有个(用数字作答).8 .[高考重庆卷理第8 题]将 5 名实习教师分配到高一年级的3个班实习,每班至少1名,最多2名,则不同的分配方案有(A)30种(B)90种(C)180种(D)270种9 .[高考重庆卷文第9 题]高三(一)班学要安排毕业晚会的 4 各音乐节目, 2 个舞蹈节目和 1 个曲艺节目的演出顺序,要求两个舞蹈节目不连排,则不同排法的种数是(A) 1800 (B) 3600 (C) 4320 (D) 504010 .(高考辽宁卷理第15 题,文第16 题)5 名乒乓球队员中,有2 名老队员和3 名新队员.现从中选出3 名队员排成1,2,3 号参加团体比赛,则入选的3 名队员中至少有1 名老队员,且1,2 号中至少有1 名新队员的排法有________种. (以数作答)11.[高考山东卷理第9 题,文第11 题]已知集集合A= {5},B={1,2},C={1,3,4},从这三个集合中各取一个元素构成空间直角坐标系中点的坐标,则确定的不同点的个数为(A)33 (B)34 (C)35 (D)3612 .[高考湖南卷理第6 题]某外商计划在四个候选城市投资 3 个不同的项目,且在同一个城市投资项目不超过 2 个, 则该外商不同的投资方案有 ( )A.16 种B.36 种C.42 种D.60 种13 .[高考湖南卷文第6 题]在数字 1,2,3 与符号+,-五个元素的所有全排列中,任意两个数字都不相邻的全排列个数是A .6 B. 12 C. 18 D. 2414 .[高考湖北卷理第14 题]某工程队有6 项工程需要单独完成,其中工程乙须在工程甲完成后才能进行,工程丙必须在工程乙完成后才能进行,有工程丁必须在工程丙完成后立即进行。
1•将标号为1, 2, 3, 4, 5, 6的6张卡片放入3个不同的信圭寸中.若每个 信封放2张,其中标号为1, 2的卡片放入同一信封,则不同的方法共有 【命题意图】本试题主要考察排列组合知识,考察考生分析问题的能力 .【解析】标号1,2的卡片放入同一封信有4种方法;其他四封信放入两个信 封,每个信封两个有圧’种方法,共有'M “ 种,故选B.2.某单位拟安排6位员工在今年6月14日至16日(端午节假期)值班,每 天安排2人,每人值班1天.若6位员工中的甲不值14日,乙不值16日, 则不同的安排方法共有(A ) 30 种 (C ) 42 种 解析:法一:所有排法减去甲值 14日或乙值16日,再加上甲值14日且乙值16日的排法即 C ;C : 2 C ;C : C :C 3=42法二:分两类甲、乙同组,贝y 只能排在15日,有C :=6种排法3.某单位安排7位员工在10月1日至7日值班,每天1人,每人值班1天, 若7位员工中的甲、乙排在相邻两天,丙不排在 10月1日,丁不排在10月 7日,则不同的安排方案共有(A 12 种种【答案】B(B ) 18 种 (C ) 36 种 (D )54 (B ) 36种(D ) 48 种A. 504 种B. 960 种C. 1008 种D.1108种解析:分两类:甲乙排1、2号或6、7号共有2 A2A4A:种方法甲乙排中间, 丙排7 号或不排7 号,共有4A22( A44A31A31A33)种方法故共有1008 种不同的排法4.8 名学生和2 位第师站成一排合影,2 位老师不相邻的排法种数为(A)A88A92(B)A88C92(C)A88A72(D)A88C72答案:A5. 由1、2、3、4、5、6 组成没有重复数字且1、3 都不与5 相邻的六位偶数的个数是(A)72 (B)96 (C)108 (D)144解析:先选一个偶数字排个位,有3 种选法①若5在十位或十万位,则1、3有三个位置可排,3A;A; = 24个②若5排在百位、千位或万位,则1、3只有两个位置可排,共3A|A2 =12个算上个位偶数字的排法,共计3(24 + 12)= 108个答案:C6. 如图,用四种不同颜色给图中的A,B,C,D,E,F 六个点涂色,要求每个点涂一种颜色,且图中每条线段的两个端点涂不同颜色,则不同的涂色方法用(A)288 种(B)264 种(C)240 种(D)168 种【答案】D【解析】本题主要考查排列组合的基础知识与分类讨论思想,属于难题。
历年高考试题荟萃之――――排列组合(一)一、选择题1、从正方体的6个面中选取3个面,其中有2个面不相邻的选法共有( )A.8种B.12种C.16种D.20种2、12名同学分别到三个不同的路口进行车流量的调查,若每个路口4人,则不同的安排方案共有….()(A)(B)3 种(C)(D)种3、从6名志愿者中选出4人分别从事翻译、导游、导购、保洁四项不同工作,若其中甲、乙两名志愿者都不能从事翻译工作,则选派方案共有()(A)280种B)240种C)180种D)96种4、某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.假如将这两个新节目插入原节目单中,且两个新节目不相邻,则不同插法的种数为.()A.6B.12C.15D.305、某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.假如将这两个节目插入原节目单中,则不同插法的种数为()A.42B.30C.20D.126、从黄瓜、白菜、油菜、扁豆4种蔬菜品种中选出3种,分别种在不同土质的三块土地上,其中黄瓜必需种值.不同的种植方法共有()A.24种B.18种C.12种D.6种7、从5位男老师和4位女老师中选出3位老师,派到3个班担当班主任(每班1位班主任),要求这3位班主任中男、女老师都要有,则不同的选派方案共有.()A.210种B.420种C.630种 D.840种8、在由数字1,2,3,4,5组成的全部没有重复数字的5位数中,大于23145且小于43521的数共有.()A.56个B.57个C.58个 D.60个9、直角坐标平面上,平行直线x=n(n=0,1,2,…,5)与平行直线y=n(n=0,1,2,…,5)组成的图形中,矩形共有 ( )A.25个B.36个C.100个D.225个10、从正方体的八个顶点中任取三个点为顶点作三角形,其中直角三角形的个数为()A.56B.52C.48D.4012、某校高二年级共有六个班级,现从外地转入4名学生,要支配到该年级的两个班级且每班支配2名,则不同的支配方案种数为…()(A)A C (B) A C (C)A A (D)2A13、将4名老师安排到3所中学任教,每所中学至少1名老师,则不同的安排方案共有.()A.12种B.24种C.36种D.48种14、在由数字1,2,3,4,5组成的全部没有重复数字的5位数中,大于23145且小于43521的数共有.()A.56个B.57个C.58个D.60个15、将标号1,2,…,10的10个球放入标号为1,2,…,10的10个盒子内,每个盒内放一个球,恰好有3个球的标号与其所在盒子的标号不一样的放入方法种数为. ( )(A)120 (B)240 (C)360 (D)72016、有两排座位,前排11个座位,后排12个座位.现支配2人就座,规定前排中间的3个座位不能坐,并且这2人不左右相邻,则不同排法的种数是A.234B.346C.350D.36318、在100件产品中有6件次品,现从中任取3件产品,至少有1件次品的不同取法的种数是.()C C -C -P19、从5位男老师和4位女老师中选出3位老师,派到3个班担当班主任(每班1位班主任),要求这3位班主任中男、女老师都要有,则不同的选派方案共有..……()A.210种B.420种C.630种 D.840种20、从4名男生和3名女生中选出4人参与某个座谈会,若这4人中必需既有男生又有女生,则不同的选法共有. ( )A.140种B.120种C.35种D.34种21、从6人中选4人分别到巴黎、伦敦、悉尼、莫斯科四个城市巡游,要求每个城市有一人巡游,每人只巡游一个城市,且这6人中甲、乙两人不去巴黎巡游,则不同的选择方案共有A.300种B.240种 C.144种D.96种22、把一同排6张座位编号为1,2,3,4,5,6的电影票全每人至少分1张,至多分2张,且这两张票具有连续的编号,则不同的分法种数是()A.168B.96C.72D.14423、(5分)将9个人(含甲、乙)平均分成三组,甲、乙分在同一组,则不同分组方法的种数为()A.70B.140C.280D.84024、五个工程队承建某项工程的5个不同的子项目,每个工程队承建1项,其中甲工程队不能承建1号子项目,则不同的承建方案共有(A)种(B)种(C)种(D)种26、从6人中选出4人分别到巴黎、伦敦、悉尼、莫斯科四个城市巡游,要求每个城市有一人巡游,每人只巡游一个城市,且这6人中甲、乙两人不去巴黎巡游,则不同的选择方案共有()A.300种B.240种C.144种D.96种27、北京《财宝》全球论坛期间,某高校有14名志愿者参与接待工作.若每天排早、中、晚三班,每班4人,每人每天最多值一班,则开幕式当天不同的排班种数为(A)(B)(C)(D)28、4位同学参与某种形式的竞赛,竞赛规则规定:每位同学必需从甲、乙两道题中任选一题作答,选甲题答对得100分,答错得-100分;选乙题答对得90分,答错得-90分。
二项式定理历年高考试题荟萃(三)
一、填空题 ( 本大题共 24 题, 共计 102 分)
1、 (1+2x)5的展开式中x2的系数是________.(用数字作答)
2、的展开式中的第5项为常数项,那么
正整数的值
是 .
3、已知,则
(的值等
于 .
4、(1+2x2)(1+)8的展开式中常数项为。
(用数字作答)
5、展开式中含
的整数次幂的项的系数之和为(用数字作答).
6、(1+2x2)(x-)8的展开式中常数项为。
(用数字作答)
7、的二项展开式中常数项
是 (用数字作答).
8、 (x2+)6的展开式中常数项是 .(用数字作答)
9、若的二项展开式中
的系数为
,则
______(用数字作答).
10、若(2x3+)n的展开式中含有常数项,则最小的正整数n等于.
11、(x+)9展开式中x3的系数
是 .(用数字作答)
12、若
展开式的各项系数之和为32,则n= ,其展开式中的常数项为。
(用数字作答)
13、的展开式中
的系数为.(用数字作答)
14、若(x-2)5=a5x5+a4x4+a3x3+a2x2+a1x+a0,则a1+a2+a3+a4+a5=__________.
15、(1+2x)3(1-x)4展开式中x2的系数为 .
16、的展开式中常数项
为 ; 各项系数之和为.(用数字作答)
17、 (x)5的二项展开式中x2的系数是____________.(用数字作答)
18、 (1+x3)(x+)6展开式中的常数项为_____________.
19、若x>0,则
(2+
)(2 -)-4
(x-
)=______________.
20、已知(1+kx2)6(k是正整数)的展开式中,x8的系数小于120,则
k=______________.
21、记(2x+)n的展开式中第m项的系数为b m,若b3=2b4,则n= .
22、 (x+)5的二项展开式中x3的系数为_____________.(用数字作答)
23、已知(1+x+x2)(x+)n的展开式中没有常数项,n∈N*且2≤n≤8,则n=_____________.
24、展开式中x的系数
为.
二项式定理历年高考试题荟萃(三)答案
一、填空题 ( 本大题共 24 题, 共计 102 分)
1、40解析:T3=C(2x)2,∴系数为22·C=40.
2、解:∵的展开式中的第5项为
,且常数项,
∴,得
3、-256
解析:(1-x)5=a0+a1x+a2x2+a3x3+a4x4+a5x5.令x=1,则有a0+a1+a2+a3+a4+a5=0,
即
(a0+a2+a4)+(a1+a3+a5)=0;
①
令x=-1,则有a0-a1+a2-a3+a4-a5=25,
即
(a0+a2+a4)-(a1+a3+a5)=25.
②
联立①②有∴(a0+a2+a4)(a1+a3+a5)=-28=-256.
4、57解析:1×1+2×=57.
5、答案:72解析:∵T r+1=
(
= ,
∴r=0,4,8时展开式中的项为整数次幂,所求系数和为
+
+
=72.
6、答案:-42解析:的通项T
=
r+1
=,∴(1+2x2)
展开式中常数项为
=-42.
7、8、15解析:
=x2(6-r)x-
T
r+1
r=x12-3r,令12-3r=0,得r=4,∴T
==15.
4
精品文档9、答案:2解析:∵
=
,∴a=2.
10、答案:7解析:T r+1=C(2x3)n-r()r=2
C
x x =2
C x
令3n-r=0,则有6n=7r,由展开式中有常数项,所以n最小值为7.
11、84 T r+1=,∴9-2r=3.∴r=3.∴
84.
12、5 10 解析:令x=1可得展开式中各项系数之和为2n=32.
精品文档∴n=5.而展开式中通项为
=(x2)r(
T
r+1
)5-r=
x5r-15.令5r-15=0,∴r=3.
∴常数项为T
4=C3
5
=10.
13、84 由二项式定理得(1-)7展开式中的第3项为
=·(-
T
3
)2=84·
,即
的系数为84.
14、31 解析:由二项式定理中的赋值法,令x=0,则a0=(-2)5=-32.
令x=1,则a
0+a
1
+a
2
+a
3
+a
4
+a
5
=-1.∴a
1
+a
2
+a
3
+a
4
+a
5
=-1-a
=31.
15、-6解析:展开式中含x2的项
m=·13·(2x)0·
·12·(-x)2+
·12(2x)1··13·(-x)1+ 11(2x)2·
14(-x)0=6x2-24x2+12x2=展开式中x2的系数为-6x2,∴系数为-6.
16、10 32 展开式中通项为
T
=(x2)5-r(
r+1
)r=
,其中常数项为
T
==10;令x=1,可得各项系数之和为3
25=32.
17、40解析:∵
·(x3)·(
)2=10×1×(-2)2·x2=40x2,∴x2的系数为40.
18、答案:35 (x+)6展开式中的项
的系数与常数项的系数之和即为所求,由
T
=·(
r+1
)r=
·x6-3r,∴当r=2
时,=15.当r=3
时,=20.
故原展开式中的常数项为15+20=35.
精品文档19、答案:-23 原式
=4-33-4
+4=-23.
精品文档
20、答案:1解析:x8的系数为k4=15k4,∵15k4<120,k4<8,k∈Z+,∴k=1.。