微积分在线课堂大纲四
- 格式:doc
- 大小:21.00 KB
- 文档页数:1
《微积分》课程教学大纲学 时 数:126学 分 数:7适用专业:经济类本科执 笔:吴赣昌 编写日期:2006年6月课程的性质、目的和任务 本课程是高等学校经济类本科各专业学生的一门必修的重要基础理论课,它是为培养我国社会主义现代化建设所需要的高质量建设人才服务的。
是为培养我国社会主义现代化建设所需要的高质量建设人才服务的。
通过本课程的学习,要使学生获得一元函数微积分学、多元函数微积分学、无穷级数、常微分方程与差分方程等方面的基本概念、基本理论和基本运算技能,为后续课程的学习奠定必要的数学基础。
为后续课程的学习奠定必要的数学基础。
在课程的教学过程中,要通过各个教学环节逐步培养学生的抽象思维能力、逻辑推理能力、空间想象能力、数学运算能力、综合解题能力、数学建模与实践能力以及自学能力。
能力以及自学能力。
课程教学的主要内容与基本要求一、函数、极限与连续 主要内容:函数的概念及其表示法,函数的有界性、单调性、周期性和奇偶性;反函数、复合函数和隐函数,基本初等函数的性质及其图形特征,初等函数,简单应用问题的函数关系的建立;常用经济函数;数列极限与函数极限的定义和性质,函数的左、右极限,无穷小与无穷大;无穷小的比较;极限的四则运算;极限存在的两个准则和两个重要极限; 连续函数的概念,函数间断点的分类;初等函数的连续性,闭区间上连续函数的性质(最大值最小值定理和介值定理)。
基本要求:1、理解函数的概念,掌握函数的表示法;、理解函数的概念,掌握函数的表示法;2、了解函数的有界性、单调性、周期性与奇偶性;、了解函数的有界性、单调性、周期性与奇偶性;3、理解复合函数、反函数、隐函数和分段函数的概念;、理解复合函数、反函数、隐函数和分段函数的概念;4、掌握基本初等函数的性质及其图形,理解初等函数的概念;、掌握基本初等函数的性质及其图形,理解初等函数的概念;5、会建立简单应用问题的函数关系,熟悉几种常用经济函数;、会建立简单应用问题的函数关系,熟悉几种常用经济函数;6、了解数列极限和函数极限(包括左、右极限)的概念;、了解数列极限和函数极限(包括左、右极限)的概念;7、了解无穷小的概念和基本性质,掌握无穷小的阶的比较方法。
《微积分》课程教学大纲课程类型: 公共基础课课程代码: 0140026 课程学时: 75 学分: 5 适用专业:经济学专业(金融方向)开课时间:一年级一学期开课单位: 基础部数学教研室大纲执笔人: 兰星大纲审定人: 王培颖一、课程性质、任务课程性质:微积分已经被广泛应用于各种经济活动之中,并且与其他经济学分支互相渗透或结合。
微积分即是掌握现代化科学知识必不可少的基础知识和基本工具,也是后继课程《概率论与数理统计》《计量经济学》等的基础课程,所经,微积分已经成为经济学专业学生必修的一门专业基础课。
教学目的与任务:首先要使学生掌握经济学专业所必须的微积分知识和方法,迸一步培养学生正确、熟练的计算能力,同时还要通过微积分课程的教学,对学生进行数学思想和方法的教育训练,进一步培养学生正确、深刻的思维能力,及独立的分析解决实际问题的能力。
备注:本教学大纲以赵树嫄等主编的《微积分》为编写标准。
二、课程教学内容(一)教学内容、目标与学时分配教学内容教学目标学时分配理论教学部分 751、函数(第一章) 6 1.1集合了解1/21.2实数集理解 1 1.3函数关系理解1/21.4分段函数了解1/21.5建立函数关系的例题掌握1/21.6函数的几种简单性质了解 1 1.7反函数与复合函数了解 11.8函数的几种简单性质掌握 1 2、极限与连续(第二章)17 2.1数列极限理解 22.2函数极限理解 22.3变量极限理解 22.4无穷大与无穷小理解 12.5极限的运算法则掌握 32.6两个重要极限了解 32.7利用等价无穷小量代换求极限掌握 2 2.8函数的连续性了解 2 3、导数与微分(第三章) 93.1引出导数概念的例题理解 1 3.2导数的概念理解 2 3.3导数的基本公式与运算法则掌握 2 3.4高阶导数了解 2 3.5微分了解 2 4、中值定理与导数应用(第四章)134.1中值定理理解 2 4.2洛必达法则掌握 2 4.3函数的增减性掌握 2 4.4函数的极值掌握 1 4.5最大值与最小值\极值的应用问题了解 1 4.6曲线的拐点了解 2 4.7函数图形的作法了解 1 4.8变化率及相对变化率在经济学中的应用——边了解 2 际分析与弹性分析介绍5、不定积分(第五章) 65.1不定积分的概念掌握 1 5.2不定积分的性质掌握1/2 5.3不定积分的性质掌握1/2 5.4换元积分法掌握 2 5.5分部积分法掌握 1 5.6综合杂题掌握 1 6、定积分(第六章)126.1引出定积分概念了解 1 6.2定积分的定义理解 1 6.3定积分的基本性质掌握 1 6.4微积分基本定理掌握 1 6.5定积分的换元积分法掌握 2 6.6定积分的分部积分法掌握 1 6.7定积分的应用掌握 4 6.8广义积分了解 1 7、多元函数(第八章)127.1空间解析几何简介了解 1 7.2多元函数的概念了解 17.3二元函数的极限与连续了解 17.4偏导数与全微分理解 27.5复合函数的微分法与隐函数的微分法掌握 27.6二元函数的极值了解 17.7二重积分了解 4总学时:75学时(二)教学重点和难点1、重点:函数关系、极限概念、微积分、定积分、不定积分、多元函数2、难点:偏导函数全微分、二重积分、广义积分、多元函数。
微积分课程教学大纲一、课程简介微积分课程是大学数学的基础课程之一,旨在培养学生分析、解决实际问题的能力,以及为后续数学课程和科学类课程奠定基础。
本大纲将介绍微积分课程的教学目标、教学内容、教学方法和评估方式。
二、教学目标1、掌握微积分的基本概念、原理和方法,了解微积分的实际应用。
2、培养学生的数学思维、逻辑推理和解决问题的能力。
3、培养学生的创新意识和团队协作能力。
三、教学内容1、极限与连续:极限的定义与性质,极限的运算,连续函数的概念与性质。
2、导数与微分:导数的定义与计算,微分的定义与计算,导数与微分的应用。
3、不定积分与定积分:不定积分的定义与计算,定积分的定义与计算,定积分的应用。
4、多元微积分:多元函数的极限、导数与微分,以及偏导数与全微分的应用。
5、无穷级数与常微分方程:无穷级数的概念与性质,常微分方程的基本概念与求解方法。
四、教学方法1、理论教学:通过课堂讲解、推导和证明,使学生深入理解微积分的原理和方法。
2、实践教学:通过例题讲解、课堂练习、课后作业和实验等方式,加强学生的实际操作能力。
3、多媒体教学:利用多媒体课件、教学视频等手段,提高教学效果和学生学习效率。
4、团队协作:通过小组讨论、合作解决问题等方式,培养学生的团队协作能力。
五、评估方式1、平时成绩:包括课堂表现、作业完成情况、实验报告等。
2、期中考试:以闭卷形式进行,主要考察学生对基本概念和方法的掌握情况。
3、期末考试:以闭卷形式进行,主要考察学生对整个课程内容的理解和应用能力。
4、总评成绩:结合平时成绩、期中考试和期末考试的成绩进行综合评价。
六、教学进度安排本课程总计学时,具体分配如下:5、极限与连续:学时;6、导数与微分:学时;7、不定积分与定积分:学时;8、多元微积分:学时;9、无穷级数与常微分方程:学时;10、总复习与答疑:学时。
微积分教学大纲一、课程简介微积分是高等数学的一个分支,研究函数的微分和积分以及相关的概念和应用。
《高等数学(微积分)》教学大纲课程代码:执行日期:许可部门:上海商学院教务处适用专业:公共必修课有效期限:2009.9—2012.7上海商学院基础学院高等数学(微积分)教学大纲课程名称:高等数学(微积分)课程编码:英文名称:Advanced Mathematics(Calculus)学时:144 学分:8开课学期:第一学年第一、第二学期适用专业:财经类本科课程类别:公共必修课先修课程:完成高中阶段的数学课程建议教材:21世纪高等学校经济数学教材《微积分》杨爱珍主编复旦大学出版社一、课程目的、任务数学向社会科学渗透及社会的数字化是当今科技发展的一般趋势。
它是一门研究客观世界数量关系和空间形式的科学,也是一种思维模式和文化素养。
数学教育在培养高素质经济管理人才中具有其独特的、不可替代的重要作用。
《高等数学》是高等学校经管类专业本科生必修的重要基础理论课程。
通过课程的教学,应使学生获得一元函数微积分、多元函数微积分、无穷级数、常微分方程及其经济应用方面的基本概念、基本理论、基本方法和运算技能,为学习各类后继课程和今后从事科研活动、阅读或撰写科技论文奠定必要的数学基础。
在教学过程中要注意培养学生的抽象思维和逻辑推理能力,综合运用所学知识分析解决问题的能力和较强的自主学习能力,逐步培养学生的探索精神和创新能力。
二、课程教学基本要求本课程按不同教学内容分为两个层次。
文中用粗体字排印的内容,应使学生深入领会和掌握,并能熟练运用。
其中,概念、理论用“理解”一词表述,方法、运算的要求用“掌握”一词表述。
非黑体字排印的内容,也是必不可少的,只是在教学要求上低于前者。
其中,概念、理论的要求用“了解”一词表述,方法、运算的要求用“会”或“了解”一词表述。
(一)函数、极限、连续(18学时)1.理解函数的概念,了解函数的基本性态(奇偶性、周期性、单调性、有界性)。
2.理解复合函数的概念,了解反函数的概念,理解初等函数的概念。
《微积分》教学大纲一、使用说明(一)课程性质《微积分》是高等学校财经、管理类专业核心课程经济数学基础之一,它有着深刻的实际背景,在自然科学、社会科学、工程技术、军事和工农业生产等领域中有广泛的应用。
微积分作为一学年的课程,是为财经类、管理类等非数学专业本科生开设的,制定大纲的原则是具有一定数学基础的学生对该领域的基础知识、背景有所了解,为进一步学习专业课打下坚实的基础。
(二)教学目的通过本课程的学习,使学生较好地掌握微积分特有的分析思想,并在一定程度上掌握利用微积分认识问题、解决问题的方法;对微积分的基本概念、基本方法、基本结果有所了解,并能运用其手法解决实际问题中的简单课题。
(三)教学时数本课程共132学时,8学分。
(四)教学方法采用课堂讲授、多媒体课件等方法和形式。
(五)面向专业经济学、管理学所有本科专业。
二、教学内容第一章函数(一)教学目的与要求[教学目的]使学生正确理解函数的定义。
理解函数的各种表示法,特别是分析表示法。
了解函数的几何特性及图形特征,了解反函数、复合函数概念。
熟练掌握基本初等函数的性质及图形,掌握初等函数的结构并能确定其定义域,能列出简单的实际问题中的函数关系。
[基本要求]1、理解实数与实数的绝对值的概念。
2、理解函数、函数的定义域和值域,熟悉函数的表示法。
3、了解函数的几何特性并掌握各几何特性的图形特征。
4、了解反函数概念;知道函数与其反函数的几何关系;给定函数会求其反函数。
5、理解复合函数的概念;了解函数能构成复合函数的条件;掌握将一个复合函数分解为较简单函数的方法。
6、基本初等函数及定义域、值域等概念;掌握基本初等函数的基本性质。
7、了解分段函数的概念。
8、会建立简单应用问题的函数关系。
(二)教学内容函数的定义,函数的几何特性,反函数,复合函数,初等函数,经济中的常用函数。
教学重点:1、五个基本初等函数的分析表达式、定义域、值域及其图形。
、初等函数的概念,复合函数的复合步骤的分解方法。
《微积分》学习大纲一、本课程所学主要内容、各内容之间的相互联系本课程包含了一元函数及多元函数微分学和积分学、微分方程和差分方程、无穷级数四部分,它们是几乎所有专业必学内容。
各部分之间的相互联系如下:第一部分,一元函数微积分,主要包括一元函数微分学和积分学两部分。
其中最为重要的是极限与连续、导数与微分、不定积分与定积分等概念和计算方法,还有它们的一些应用。
一元函数微积分是高等数学的基础部分和重要支柱。
第二部分,多元函数微积分,主要包括二元函数微分学和重积分两部分。
其中最为重要的是偏导数、全微分及二重积分的概念和计算方法,还有它们的一些应用。
多元函数微积分是在第一部分基础上的拓展,其应用范围更为广泛。
第三部分,微分方程和差分方程,主要介绍微分方程和差分方程以它们的应用,其中最为重要的是一阶、二阶微分方程的求解方法,还有它们的一些应用。
微分方程的基础是一元函数微积分。
第四部分,无穷级数,是利用极限理论以及微积分等知识将“有限个常数求和”的问题拓展为“无穷多个常数求和或无穷多个函数求和”,即常数项级数和函数项级数。
从“有限”到“无限”其实就是量变引起质变的一个过程,这一点在第一部分极限和定积分中已经有所体现。
请读者在学习中仔细体会。
需要特别说明的是,极限是贯穿于微积分始终的一个最基本的概念,同时也是应用最为广泛、最重要的工具。
许多概念都是利用极限定义的,比如,连续、导数和偏导数、定积分和重积分、级数收敛和发散等等。
因此,可以说极限是整个高等数学这座高楼大厦的根基。
二、各部分学习要求第一部分一元函数微积分(第一~ 六章)通过一元函数微积分的学习,读者应该:1.正确理解以下概念并了解它们之间的联系:●函数—反函数—复合函数—初等函数●数列极限—函数极限●无穷小—无穷大—无穷小的比较●连续—间断(点)—可导—可微●原函数—不定积分—定积分—广义积分2.牢固掌握并能熟练使用以下公式:●导数基本公式●微分基本公式●积分基本公式●牛顿—莱布尼滋公式3.熟练掌握以下法则和方法:●求极限的各种法则和方法●求导数的各种法则和方法●求微分的各种法则和方法●求积分的各种法则和方法4.能够利用所学知识解决以下实际问题:●求平面曲线上某点处的切线方程和法线方程●求变速直线运动的瞬时速度与加速度●求物体转动的角速度●求电流强度和线密度●经济中边际分析与弹性分析●函数单调性、凹凸性的判断●求函数的极值与最值●求函数增量或某点附近函数值的近似值●求平面图形的面积、平面曲线段的弧长●连续函数的平均值●求旋转体或已知截面表达式的立体体积●求变力沿直线作功●求液体的侧压力●求非均匀细杆的质量5.能够利用所学知识,进行有关的讨论或证明:●方程根的讨论或证明●某些等式或不等式的证明第二部分多元函数微积分(第七~ 九章)通过多元函数微积分的学习,读者应该:1.正确理解以下概念并了解它们之间的联系:●多元函数—二重极限—连续—间断(点或线)●偏导数—全微分●二重积分2.熟练掌握以下方法:●求偏导数的各种方法●求全微分的各种方法●求二重积分的各种方法3.能够利用所学知识解决以下实际问题:●求空间曲线上某点处的切线方程和法平面方程●求空间曲面上某点处的切平面方程和法线方程●经济中偏边际分析与偏弹性分析●求二元函数的极值与最值●求二元函数全增量的近似值●求立体的体积●求非均匀平面薄板的质量第三部分微分方程与差分方程(财大版第十三章;高教版第十章)通过微分方程与差分方程的学习,读者应该:1.正确理解以下概念并了解它们之间的联系:●微分方程—微分方程的阶—微分方程的解、通解、特解●差分方程—差分方程的阶—差分方程的解、通解、特解2.熟练掌握以下方法:●求各种一阶微分方程的通解和特解(主要包括可分离变量、齐次、一阶线性、贝努利微分方程)的方法;●求高阶微分方程的通解和特解(主要包括可降阶、二阶常系数线性微分方程)的方法;●一阶常系数线性差分方程的求解方法。
经济数学微积分----教学大纲一.函数极限与连续1.理解函数地概念,掌握函数地表示法,会建立应用问题地函数关系.2.了解函数地有界性,单调性,周期性与奇偶性.3.理解复合函数与分段函数地概念,了解反函数与隐函数地概念.4.掌握基本初等函数地性质与其图形,了解初等函数地概念.5.理解极限地概念,理解函数左极限与右极限地概念以与函数极限存在与左极限,右极限之间地关系.6.了解极限地性质与极限存在地两个准则,掌握极限地四则运算法则,掌握利用两个重要极限求极限地方法.7.理解无穷小量,无穷大量地概念,掌握无穷小量地比较方法会用等价无穷小量求极限.8.理解函数连续性地概念(含左连续与右连续),会判别函数间断点地类型.9.了解连续函数地性质与初等函数地连续性,理解闭区间上连续函数地性质(有界性,最大值与最小值定理,介值定理),并会应用这些性质.二.一元函数微分学1.理解导数地概念与可导性与连续性之间地关系,了解导数地几何意义与经济意义(含边际与弹性地概念),会求平面曲线地切线方程与法线方程.2.掌握基本初等函数地导数公式,导数地四则运算法则与复合函数地求导法则,会求分段函数地导数,会求反函数与隐函数地导数.3.了解高阶导数地概念,会求简单函数地高阶导数.4.了解微分地概念,导数与微分之间地关系以与一阶微分形式地不变性,会求函数地微分.5.理解并会用罗尔(Rolle )定理,拉格朗日( Lagrange)中值定理与泰勒(Taylor )定理,了解并会用柯西(Cauchy)中值定理.6.掌握用洛必达法则求未定式极限地方法.7.掌握函数单调性地判别方法,了解函数极值地概念,掌握函数极值,最大值与最小值地求法与其应用.8.会用导数判断函数图形地凹凸性(注:在区间(,)a b 内,设函数()f x 具有二阶导数.当()0f x ''>时,()f x 地图形是凹地;当()0f x ''<时,()f x 地图形是凸地),会求函数图形地拐点以与水平,铅直与斜渐近线,会描绘函数地图形.三.一元函数积分学1.理解原函数与不定积分地概念,掌握不定积分地基本性质与基本积分公式,掌握计算不定积分地换元积分法与分部积分法.2.了解定积分地概念与基本性质,了解定积分中值定理,理解积分上限地函数并会求它地导数,掌握牛顿一莱布尼茨公式以与定积分地换元积分法与分部积分法.3.会利用定积分计算平面图形地面积,旋转体地体积与函数地平均值,会利用定积分求解简单地经济应用问题.4.理解反常积分地概念,了解反常积分收敛地比较判别法,会计算反常积分.四.多元函数微积分学1.了解多元函数地概念,了解二元函数地几何意义.2.了解二元函数地极限与连续地概念,了解有界闭区域上二元连续函数地性质.3.了解多元函数偏导数与全微分地概念,会求多元复合函数一阶,二阶偏导数,会求全微分,了解隐函数存在定理,会求多元隐函数地偏导数.4.了解多元函数极值与条件极值地概念,掌握多元函数极值存在地必要条件,了解二元函数极值存在地充分条件,会求二元函数地极值,会用拉格朗日乘数法求条件极值,会求简单多元函数地最大值与最小值,并会解决一些简单地应用问题.5.理解二重积分地概念,了解二重积分地基本性质,了解二重积分地中值定理,掌握二重积分地计算方法(直角坐标,极坐标).了解无界区域上较简单地反常二重积分并会计算.五.无穷级数1.理解常数项级数收敛,发散以与收敛级数地与地概念,掌握级数地基本性质与收敛地必要条件.2.掌握几何级数与p 级数地收敛与发散地条件.3.掌握正项级数收敛性地比较判别法,比值判别法,根值判别法,会用积分判别法.4.掌握交错级数地莱布尼茨判别法5.了解任意项级数绝对收敛与条件收敛地概念以与绝对收敛与收敛地关系.6.理解幂级数地收敛半径地概念,并掌握幂级数地收敛半径,收敛区间与收敛域地求法.7.了解幂级数在其收敛区间内地基本性质(与函数地连续性,逐项求导与逐项积分),会求一些幂级数在收敛区间内地与函数,并会由此求出某些数项级数地与.8.掌握e x ,sin x ,cos x ,ln(1)x +与(1)x α+地麦克劳林(Maclaurin )展开式,会用它们将一些简单函数间接展开为幂级数.六.常微分方程与差分方程1.了解微分方程与其阶,解,通解,初始条件与特解等概念.2.掌握变量可分离地微分方程,齐次微分方程与一阶线性微分方程地求解方法.3.理解线性微分方程解地性质与解地结构4.掌握二阶常系数齐次线性微分方程地解法,并会解某些高于二阶地常系数齐次线性微分方程.5.会解自由项为多项式,指数函数,正弦函数,余弦函数以与它们地与与积地二阶常系数非齐次线性微分方程.6.了解差分与差分方程与其通解与特解等概念.7.掌握一阶常系数线性差分方程地求解方法.8.会用微分方程求解简单地经济应用问题.。
微积分教学大纲HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】《微积分》教学大纲课程代码:名称:微积分学授课专业:工业设计专业学时数:100一、课程的目的和要求学生能够通过本课程的学习,获得一元函数微积分学、多元函数微分学方面比较系统的知识。
同时,这些知识的掌握也会给后续课程的学习打下基础。
更重要的是,在教学过程中使学生加深高等数学的辩证统一思想的理解,并利用这一思想解决一些实际问题。
通过这门课程的学习,提高学生的空间想象能力、逻辑思维和创造性思维能力,全面提高学生的数学素质。
二、课程教学内容第一部分函数主要内容:函数的概念与性质,复合函数、初等函数的概念。
要求:1、理解函数的概念,能列出简单实际问题中的函数关系。
2、理解函数的单调性、周期性、有界性和奇偶性;3、理解反函数和复合函数的概念;4、理解初等函数的概念和性质。
重点:函数的的概念与性质。
难点:列出问题中的函数关系,反函数和复合函数的概念。
第二部分极限与连续主要内容:极限的概念,极限四则运算,无穷小、无穷大的概念,函数连续的概念。
要求:1、了解数列极限、函数极限的概念(对极限的精确定义、证明不作要求);2、掌握极限四则运算法则,会用两个重要极限求极限;3、理解解无穷小与无穷大、高阶无穷小、同阶无穷小和等价无穷小的概念;4、理解函数在一点连续和在一区间连续概念,了解函数间断的概念;5、了解初等函数的连续性,了解在闭区间上连续函数的性质.重点:极限的四则运算法则。
难点:极限的概念,连续的概念。
第三部分导数与微分主要内容:导数和微分的概念,导数和微分的运算。
要求:1、理解导数和微分的概念,理解导数的几何意义,了解函数的可导与连续之间的关系;2、熟练掌握导数和微分的运算法则、导数的基本公式,了解高阶导数概念,能熟练求初等函数的一阶、二阶导数(n>2阶导数不作要求);3、掌握复合函数和隐函数的求导法;4、会求曲线的切线与法线方程,了解微分在近似计算中的应用。