农作物秸秆热解气化技术与装备探讨
- 格式:pdf
- 大小:77.23 KB
- 文档页数:1
秸秆能源化利用技术探讨摘要:我国作为一个农业大国,拥有丰富的农作物秸秆资源,因此利用好秸秆资源对我国农村发展具有重要意义。
本文主要介绍了秸秆能源化利用技术,主要为秸秆沼气、秸秆气化、秸秆液化、秸秆发电、秸秆固化成型等,以期为科学、合理、高效地利用秸秆资源提供参考。
农作物秸秆是农业生产中的副产物,也是主要的生物质能源。
目前在世界上农作物秸秆是仅次于煤炭、石油和天然气之后的第四大能源,占全球能源消耗总量的14%[1]。
与煤炭、石油、天然气等能源相比,农作物秸秆具有分布广泛、可再生、来源丰富等特点;但由于其主要成分为纤维素、木质素等,因此导致使用除燃烧外的普通生物处理方法难以降解,因此无法提高利用率。
所以,探索和研究新方法,合理运用物理、化学、发酵等手段,实现秸秆资源的高效利用是当前的研究重点。
1秸秆能源化利用技术1.1秸秆沼气技术秸秆沼气技术是指以农作物秸秆为原料,利用特定的发酵池或设备,让其在隔绝空气的厌氧环境中,在适合温度、适量水分和合理的pH条件下,通过微生物厌氧发酵进而产生能够燃烧的气体(沼气)的技术[2]。
秸秆沼气技术根据处理工艺,可分为干法发酵和湿法发酵两类。
由于秸秆的高纤维素和木质素特性,难以被厌氧微生物等利用分解,因此在发酵前需对秸秆进行预处理,一般的处理方法有物理法、化学法、热处理法、生物法等。
物理法主要通过改变秸秆的形态或结构来提高发酵产气率,例如粉碎、浸泡秸秆;化学法主要是利用氨水或氢氧化钠等制剂破坏秸秆的纤维素和木质素来提高产气率,但该方法由于添加了化学试剂,会对环境造成污染;热处理法主要是运用高压水蒸气爆破法破坏秸秆的纤维组织,进而提高利用率,此方法的缺点是成本高;生物法主要是利用微生物进行处理,成本低,处理效果好,因此该方法是使用最广泛的秸秆处理方法。
此外,在发酵时添加碳酸氢铵或动物粪便等含氮素的原料,可以提高发酵效率。
秸秆预处理后,便可投入发酵池中加水封池后进行发酵,发酵一段时间后进行点火试气,进而投入使用。
农作物秸秆能源化利用技术模式多年来,辽宁地区以种植玉米、水稻等经济作物为主,农作物秸秆产量丰富。
2021年辽宁农作物秸秆年产量约2667.38万吨,可收集量约2387.37万吨,利用量约2194.40万吨,秸秆综合利用率达91%以上,燃料化利用约593.66万吨(约占比22%)。
在秸秆“五化”利用中,秸秆能源化在辽宁地区发展呈增长趋势,对比其他利用方式的“饱和”状态,消耗本地区剩余秸秆的潜力巨大。
为此,应通过发掘本地区适用技术模式,推动秸秆能源化利用,发挥生物质能在农业农村绿色低碳发展中的积极作用。
一、主要技术模式(一)秸秆固化成型技术秸秆固化成型技术是将秸秆等进行物理转化的技术。
在一定条件下,将秸秆等生物质收捡加工,压缩打捆成块(包)状、棒状、颗粒状等成型燃料,用于生物质户用采暖炊事炉具或专用集中供热锅炉使用。
秸秆固化成型技术主要流程为:秸秆→粉碎压块(捡拾捆包)→制备成型燃料(颗粒、圆包、方包)→燃烧(供热)→达标排放。
生物质固体成型燃料具有生物质资源丰富,制备技术成熟、成本适中;热值在3500~5000千卡,比传统燃料的燃烧效率高3~4倍,与散秸秆相比,体积缩小了6~8倍,密度可达到每立方米800~1400千克,便于存储和运输;污染物排放浓度较低,燃烧后剩下的灰分还可回收作肥料。
(二)秸秆热解气化技术秸秆热解气化技术是将秸秆等进行化学转化的技术。
秸秆等生物质燃料在高温及缺氧条件下,热解产生以一氧化碳、氢和甲烷为主要成分的可燃气体。
秸秆热解气化技术主要流程为:秸秆→热解气化制气→燃气二次燃烧→除尘净化处理→废气排放管→达标排放。
热解气化过程中温度在300~400℃时,生物质就可以释放出70%左右的挥发组分,主要产物是可燃的低分子化合物,经检测废气、烟气等均符合环保要求,生物质灰渣还可直接还田。
(三)秸秆沼气综合利用技术秸秆沼气综合利用技术是将秸秆等进行生物转秸秆打捆现场作业Copyright ©博看网. All Rights Reserved.化的技术。
农作物秸秆“五化”综合利用技术农作物秸秆是一类具有丰富氮、磷、钾及有机质养分的可再生生物质资源,是农业生产的主要副产品。
随着农业经济快速发展,农民生活条件和农村燃料结构改变,作物秸秆逐渐变为农产品废弃物,秸秆焚烧成为春秋两季农忙时节的标志性现象,同时因其所引发的强雾霾天气等环境问题已成为亟需解决的社会性问题.自1999 年国家环保总局与农业部等部委联合发布《秸秆焚烧和综合利用管理办法》、2008年国务院发布《关于加快推进农作物秸秆综合利用的意见》、2011 年国家发改委、农业部和财政部联合发布《“十二五”农作物秸秆综合利用实施方案》,2016 年国家秸秆产业技术创新战略联盟发行《中国秸秆产业蓝皮书》、至2017年农业部、国家发展改革委、财政部联合发《关于加快发展农业生产性服务业的指导意见》等一系列政策及著作相继对作物秸秆禁烧和综合利用进行界定,阐述总体目标、重点任务和技术措施,并将秸秆“五化”综合利用技术分解为20 余项小类技术,这对稳定农业生态平衡、促进农民增产增收、缓解能源、环境压力具有重要作用。
目前,中国各科研院校针对秸秆“五化”综合利用技术不断地进行研究,取得了丰硕成果。
作物秸秆肥料化利用技术01寒地玉米秸秆还田东北农业大学以玉米秸秆为原料,根据东北寒地垄作特点,将秸秆粉碎的细一些,春季秸秆绝大部分留在垄沟中,对垄顶(作物播种带)的土壤温度影响较小的原理,构建玉米秸秆还田技术模式。
工艺流程如下:玉米秋季机械收获、秸秆粉碎抛撒→沿原垄深松、灭茬→沿深松灭茬带播种玉米或大豆→播后化学封闭除草→苗期垄沟深松→苗期化学除草→中耕追肥→秋季机械收获、并粉碎秸秆. 以玉米秸秆还田现场为例,如下图所示:玉米秸秆还田现场图02秸秆菌糠生物有机肥南京农业大学以稻草、麦秸、玉米秸、大豆秸、甘蔗渣等农业废弃物作为原料,利用工厂化秸秆栽培食用菌的菌糠,经过粉碎、补料、发酵等流程,二次利用秸秆原料,增加了经济效益,减少了秸秆对环境的污染,延长了秸秆循环的链条,促进了秸秆物质的进一步循环利用。
农林剩余物多途径热解气化及联产炭材料关键技术开发农林剩余物多途径热解气化及联产炭材料关键技术开发一、引言在当今社会,环保和资源可持续利用已经成为人们关注的热点话题。
农林剩余物作为一种可再生资源,其有效利用对于推动可持续发展和缓解环境压力具有重要意义。
在这一背景下,农林剩余物的热解气化及联产炭材料关键技术开发备受关注。
本文将就该主题展开深入探讨。
二、农林剩余物的定义及特点1. 农林剩余物的定义农林剩余物是指农作物及林木加工后产生的剩余废弃物,主要包括秸秆、麦秆、木屑、树皮等。
这些废弃物大量存在于农村和林区,对于环境造成了一定的压力。
2. 农林剩余物的特点农林剩余物具有丰富的含碳量和少氧化性,其有效利用能够减少对传统化石能源的依赖,从而实现资源再利用和环境保护的双重效果。
三、热解气化技术的原理及应用1. 热解气化技术的原理热解气化是利用高温将固体供给热能,使其发生热解分解并释放气体,得到可再生能源的一种技术。
通过这一方法,农林剩余物可以转化为生物质炭、生物油和生物气。
2. 热解气化技术的应用热解气化技术已经在生活垃圾处理、工业余热利用和农林废弃物处理等方面得到了广泛应用。
通过热解气化技术,农林剩余物的废弃问题可以得到有效解决,同时也为生物质能源的开发利用提供了新的途径。
四、联产炭材料的生产及用途1. 联产炭材料的生产联产炭材料是指经过热解气化产生的生物质炭和生物质气混合而成的一种燃料。
其生产过程主要包括原料预处理、热解气化、气体净化等环节。
2. 联产炭材料的用途联产炭材料在冶金、化工等行业有着广泛的应用,可以替代传统的煤炭和天然气,从而减少对化石能源的依赖,实现节能减排的目标。
五、农林剩余物多途径热解气化及联产炭材料关键技术开发的意义1. 推动农林剩余物的资源化利用通过多途径的热解气化及联产炭材料关键技术开发,可以有效地将农林剩余物转化为有价值的能源产品,推动其资源化利用,从而减少对传统能源的消耗和环境污染。
秸秆气化原理秸秆气化是一种将秸秆等生物质材料转化为可再生能源的过程,其原理是通过高温和缺氧条件下,将生物质材料分解为可燃性气体和固体残渣的过程。
这种气化技术可以有效地利用农作物秸秆等农林废弃物资源,减少对化石能源的依赖,同时减少环境污染。
首先,秸秆气化的原理是基于生物质材料的热解和气化过程。
在高温条件下,生物质材料中的碳水化合物会发生热解反应,产生一系列气体和液体产物。
而在缺氧条件下,这些气体会继续发生气化反应,生成可燃性气体,如一氧化碳、氢气和甲烷等。
这些气体可以作为燃料,用于发电、供热或工业生产等领域。
其次,秸秆气化的原理还涉及到气化过程中的热力学和动力学特性。
在气化反应中,温度是一个重要的影响因素。
适当的高温可以促进生物质材料的热解和气化反应,提高气化产物的质量和产量。
此外,气化反应的速率也受到压力、气体组成、催化剂等因素的影响。
因此,通过控制气化反应的条件和参数,可以实现对气化过程的有效控制和优化。
最后,秸秆气化原理还包括了气化产物的利用和处理。
气化产物中的固体残渣可以作为生物质炭或肥料利用,减少对化石燃料的需求,同时减少了生物质材料的浪费。
而气化产生的可燃性气体可以用于发电或供热,实现能源的再生利用,减少对传统能源的消耗。
综上所述,秸秆气化是一种可持续发展的生物质能源利用技术,其原理基于生物质材料的热解和气化过程。
通过控制气化反应的条件和参数,可以实现对气化过程的有效控制和优化,最大限度地利用生物质资源。
同时,气化产物的利用和处理也是秸秆气化原理的重要组成部分,可以实现对生物质能源的高效利用和再生利用。
总的来说,秸秆气化原理的深入研究和应用将有助于推动生物质能源的发展,减少对化石能源的依赖,同时减少环境污染,促进可持续发展。
希望未来能有更多的技术和政策支持,推动秸秆气化技术的广泛应用,为能源和环境领域带来更多的益处。
科技成果——秸秆热解气化等气化技术技术类别秸秆燃料化利用技术技术内容秸秆热解气化技术是利用气化装置,以氧气(空气、富氧或纯氧)、水蒸汽或氢气等作为气化剂,在高温条件下,通过热化学反应,将秸秆部分转化为可燃气的过程。
可燃气的主要成分包括CO、H2、CH4。
气化炉是秸秆热解气化的主体设备。
按照运行方式的不同,秸秆气化炉可分为固定床气化炉和流化床气化炉。
技术特征秸秆热解气化的燃气用途广泛,可直接用于发电,或经过净化后为工业锅炉和居民小区锅炉提供燃气,也可用于村镇集中供气。
技术实施注意事项一是合理设定热解反应温度,提高燃气质量。
二是合理通风,保障燃气热值。
三是控制原料含水率,减少热量消耗。
四是选用挥发分低的秸秆,降低燃气焦油含量。
五是选用低灰分秸秆,提高秸秆气化率。
六是根据工艺需要进行秸秆粉碎,提高秸秆热解气化效率。
适用范围适用的秸秆主要有玉米秸、麦秸、稻秆、稻壳、棉秆、油菜秸秆等。
技术标准与规范《GB/T40113.1-2021生物质热解炭气油多联产工程技术规范第1部分:工艺设计》《GH/T1318-2020棉花热解气体产物测定方法》《NY/T1561-2007秸秆燃气灶》《NY/T443-2016生物气化供气系统技术条件及验收规范》《NY/T2908-2016生物质气化集中供气运行与管理规范》《NY/T3337-2018生物质气化集中供气站建设标准》《NY/T3898-2021生物质热解燃气质量评价》《NB/T34004-2011生物质气化集中供气净化装置性能测试方法》《NB/T34011-2012生物质气《DG/T226-2019生物质气化设备》化集中供气污水处理装置技术规范》《DB11/T1322.47-2018安全生产等级评定技术规范第47部分:生物质气化站》。
秸秆热解气化相关设备制造方案一、实施背景秸秆作为一种农业废弃物,其大量堆放和焚烧会对环境造成严重污染,同时也浪费了可再生资源。
为了解决这一问题,秸秆热解气化技术被提出并应用于能源利用和资源回收。
该技术可以将秸秆转化为高效清洁的气体燃料,用于取代传统的化石燃料,从而实现能源的可持续利用和环境的净化。
二、工作原理秸秆热解气化设备主要包括热解炉、气化炉和气体净化系统。
首先,秸秆通过热解炉进行热解反应,将秸秆转化为固体炭、液体油和气体。
然后,气化炉将产生的气体进行气化反应,生成可燃气体。
最后,气体净化系统对产生的气体进行净化处理,去除其中的杂质和污染物,使其达到燃烧要求。
三、实施计划步骤1. 设计和制造热解炉:根据秸秆的性质和产量,设计合适的热解炉,确保其具有高效的热解效果和稳定的运行性能。
2. 设计和制造气化炉:根据热解产生的气体特性,设计合适的气化炉,确保其具有高效的气化效果和稳定的气体产量。
3. 设计和制造气体净化系统:根据气体的成分和污染物的特性,设计合适的气体净化系统,确保其能够有效去除气体中的杂质和污染物。
4. 进行实验验证:在实际环境中对设备进行实验验证,测试其热解和气化效果以及气体净化效果。
5. 进行工业化推广:根据实验结果,对设备进行优化改进,并进行大规模生产和推广,以满足市场需求。
四、适用范围秸秆热解气化设备可广泛应用于农村和农业产业园区,用于处理秸秆等农业废弃物。
同时,该设备也可以应用于工业领域,用于处理其他废弃物和生物质资源。
五、创新要点1. 设备结构创新:通过优化热解炉、气化炉和气体净化系统的结构,提高设备的热效率和气体产量。
2. 控制系统创新:引入先进的自动控制系统,实现设备的自动化运行和优化控制,提高设备的稳定性和可靠性。
3. 能源回收创新:利用热解炉和气化炉产生的余热,进行能源回收和利用,提高能源利用效率。
六、预期效果1. 能源利用效率提高:通过秸秆热解气化技术,将秸秆转化为气体燃料,实现能源的可持续利用,提高能源利用效率。
秸秆气化炉原理及相关知识秸秆气化炉是一种利用生物质能源进行气化的设备,用于将秸秆等农作物废弃物转化为可再生的燃气或液体燃料。
秸秆气化炉的原理是在高温和缺氧环境下,将秸秆等生物质通过热氧化反应转化为可燃气体,同时产生的固体残渣可用作肥料。
下面将详细讨论秸秆气化炉的原理及相关知识。
1.秸秆气化炉的原理(1)干燥:首先将秸秆进行干燥,以降低其含水率。
干燥秸秆可提高气化效率,减少燃料在气化过程中的热损失。
(2)预热:将干燥的秸秆送入预热室,通过预热室中的热风对秸秆进行预热。
预热可提高秸秆的热值,减少后续气化过程中的外部热供应。
(3)气化:经过预热的秸秆进入气化炉,与燃烧剂(如空气、氧气等)在高温条件下发生气化反应。
气化过程中,秸秆的大分子有机物被裂解为小分子气体,并产生一定量的焦炭和灰渣。
(4)燃烧:气化产生的气体经过调整后可直接燃烧,提供热能或电能。
调整主要包括气体成分的调节、净化和燃烧控制等。
(5)残渣处理:气化过程中生成的固体残渣可以用作肥料,进一步实现资源的再利用。
2.秸秆气化炉的相关知识(1)气化温度:气化温度是指秸秆进入气化炉后的温度,一般在800-1,200摄氏度之间。
高温有利于有机物的裂解,并提高气化效率。
(2)气化剂:气化剂是气化过程中用于反应的介质,常见的有空气、氧气等。
选择适当的气化剂可以控制气化反应的速率和产物的组成。
(3)气化产物:气化产物主要包括合成气和焦油。
合成气由氢气、一氧化碳和少量的二氧化碳组成,可直接用作燃料或生产化学品。
焦油是气化过程中生成的液态有机物,可用于制备液体燃料。
(4)气化效率:气化效率是衡量气化炉性能的重要指标,可以通过产气量和热值来评估。
充分利用秸秆的能量可以提高气化效率,减少资源浪费。
(5)炉温控制:炉温是气化过程中重要的控制参数,过高的炉温可能导致秸秆的过燃,造成能量损失和环境污染。
适当的炉温有助于提高气化效率和产物质量。
综上所述,秸秆气化炉是一种将秸秆等农作物废弃物转化为可再生燃气或液体燃料的设备。