矩阵及方程组求解
- 格式:doc
- 大小:415.00 KB
- 文档页数:61
如何利用数学中的矩阵进行线性方程组的求解线性方程组在数学中具有重要的应用价值,求解线性方程组是数学中的基本问题之一。
矩阵是求解线性方程组的有力工具,能够简化计算过程并提高求解效率。
本文将介绍如何利用数学中的矩阵进行线性方程组的求解。
一、矩阵的定义和基本性质矩阵是由数个数按一定规则排列形成的矩形数组。
矩阵可以表示为一个大写字母加上两个下标,例如A,其中A是矩阵的名称,下标表示矩阵的行数和列数。
矩阵的加法和乘法是指对应元素的加法和乘法运算。
矩阵加法要求两个矩阵具有相同的行数和列数;矩阵乘法要求第一个矩阵的列数等于第二个矩阵的行数。
二、线性方程组和矩阵表示线性方程组是一组线性等式的集合。
一个线性方程组可以用矩阵表示,其中系数矩阵是一个m行n列的矩阵,m表示方程组的数量,n 表示未知数的数量;向量b是一个m行1列的矩阵,称为常数向量;向量x是一个n行1列的矩阵,称为未知向量。
线性方程组可以写成Ax=b的形式。
三、矩阵求解线性方程组的方法1. 列主元高斯消元法列主元高斯消元法是一种求解线性方程组的基本方法。
具体步骤如下:(1) 首先将线性方程组写成增广矩阵的形式[A|b]。
(2) 选择第一列中绝对值最大的元素作为主元所在行,将该行与第一行交换。
(3) 将第一行乘以一个系数,使得主元所在列的其他元素都变为0。
(4) 重复第二步和第三步,直到将整个矩阵化为上三角矩阵。
(5) 从最后一行开始,倒序回代求解线性方程组。
2. 矩阵逆的方法如果矩阵A可逆,则可以用逆矩阵来求解线性方程组。
逆矩阵是指与原矩阵相乘得到单位矩阵的矩阵。
具体步骤如下:(1) 首先求出矩阵A的逆矩阵A^(-1)。
(2) 将线性方程组写成矩阵形式Ax=b。
(3) 两边同时左乘A^(-1),得到x=A^(-1)b。
3. 矩阵的LU分解LU分解是将矩阵A分解为两个矩阵L和U的乘积的过程。
L是一个下三角矩阵,U是一个上三角矩阵。
具体步骤如下:(1) 首先将矩阵A写成增广矩阵的形式[A|b]。
线性代数中的矩阵方法在方程组求解中有什么特点?2023年,矩阵方法在方程组求解中仍然占据着重要的地位。
矩阵方法是线性代数中最为重要的方法之一,其在各个领域都有广泛的应用,特别是在方程组求解、图像处理、信号处理、优化等方面,都发挥着至关重要的作用。
在本文中,我们将重点探讨线性代数中的矩阵方法在方程组求解中的特点。
一、矩阵方法的定义矩阵法是一种基于矩阵运算的数学方法,它将一个线性方程组表示为一个矩阵形式,然后通过对该矩阵进行特定的运算来求解方程组的解。
二、矩阵方法的优点相对于传统的计算方法,矩阵方法有以下几个优点:1. 矩阵法的表达形式清晰明了。
将方程组表示为矩阵形式后,计算过程更加简单明了,不易出错。
2. 矩阵法的计算速度较快。
在使用计算机计算时,矩阵方法可以利用计算机的并行计算能力,同时进行多个运算,因此计算速度更快。
3. 矩阵法的应用广泛。
由于其优越的性能和广泛的应用领域,矩阵方法已经成为许多科学工程计算中不可或缺的一部分。
三、矩阵方法在方程组求解中的特点1. 矩阵方法可用于求解多个未知数的线性方程组。
当线性方程组中未知数的个数比较多时,传统的计算方法会变得很复杂,而矩阵方法则能够方便快捷地求解。
2. 矩阵方法可用于求解非线性方程组。
非线性方程组是许多科学工程计算中常见的一类问题,而矩阵方法可以将非线性方程组转化为矩阵形式,并通过矩阵运算求解。
3. 矩阵方法可用于求解矩阵方程。
矩阵方程是一种形式为AX=B 的方程,其中A、X、B均为矩阵,求解矩阵方程的目的是求出矩阵X。
矩阵方法通过对矩阵进行变形和运算,可以求解出矩阵方程的解。
4. 矩阵方法可用于求解特殊类型的方程组。
例如对称矩阵方程组、对称正定矩阵方程组、三对角矩阵方程组等,矩阵方法都有较好的求解效果。
四、总结矩阵方法是线性代数中最为重要的方法之一,在方程组求解中具有独特的优点。
矩阵方法的出现,使得我们在解决一些复杂的数学问题时变得更加简单、快捷和高效。
附录Ⅰ大学数学实验指导书项目五矩阵运算与方程组求解实验1 行列式与矩阵实验目的把握矩阵的输入方式. 把握利用Mathematica 以上版本) 对矩阵进行转置、加、减、数乘、相乘、乘方等运算, 并能求矩阵的逆矩阵和计算方阵的行列式.大体命令在Mathematica中, 向量和矩阵是以表的形式给出的.1. 表在形式上是用花括号括起来的假设干表达式, 表达式之间用逗号隔开.如输入{2,4,8,16}{x,x+1,y,Sqrt[2]}那么输入了两个向量.2. 表的生成函数(1)最简单的数值表生成函数Range, 其命令格式如下:Range[正整数n]—生成表{1,2,3,4,…,n};Range[m, n]—生成表{m,…,n};Range[m, n, dx]—生成表{m,…,n}, 步长为d x.2. 通用表的生成函数Table. 例如,输入命令Table[n^3,{n,1,20,2}]那么输出{1,27,125,343,729,1331,2197,3375,4913,6859}输入Table[x*y,{x,3},{y,3}]那么输出{{1,2,3},{2,4,6},{3,6,9}}3. 表作为向量和矩阵一层表在线性代数中表示向量, 二层表表示矩阵. 例如,矩阵⎪⎪⎭⎫ ⎝⎛5432 能够用数表{{2,3},{4,5}}表示.输入A={{2,3},{4,5}}那么输出 {{2,3},{4,5}}命令MatrixForm[A]把矩阵A 显示成通常的矩阵形式. 例如,输入命令:MatrixForm[A]那么输出 ⎪⎪⎭⎫⎝⎛5432注:一样情形下,MatrixForm[A]所代表的矩阵A 不能参与运算. 下面是一个生成抽象矩阵的例子. 输入Table[a[i,j],{i,4},{j,3}] MatrixForm[%]那么输出⎪⎪⎪⎪⎪⎭⎫⎝⎛]3,4[]2,4[]1,4[]3,3[]2,3[]1,3[]3,2[]2,2[]1,2[]3,1[]2,1[]1,1[a a a a a a a a a a a a 注:那个矩阵也能够用命令Array 生成,如输入Array[a,{4,3}]4. 命令IdentityMatrix[n]生成n 阶单位矩阵. 例如,输入IdentityMatrix[5]那么输出一个5阶单位矩阵(输出略).5. 命令DiagonalMatrix[…]生成n 阶对角矩阵. 例如,输入DiagonalMatrix[{b[1],b[2],b[3]}]那么输出 {{b[1],0,0},{0,b[2],0},{0,0,b[3]}}它是一个以b[1], b[2], b[3]为主对角线元素的3阶对角矩阵.6. 矩阵的线性运算:A+B 表示矩阵A 与B 的加法;k*A 表示数k 与矩阵A 的乘法; 或 Dot[A,B]表示矩阵A 与矩阵B 的乘法.7. 求矩阵A 的转置的命令:Transpose[A]. 8. 求方阵A 的n 次幂的命令:MatrixPower[A,n]. 9. 求方阵A 的逆的命令:Inverse[A]. 10.求向量a 与b 的内积的命令:Dot[a,b].实验举例矩阵的运算例 设,421140123,321111111⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎭⎫ ⎝⎛--=B A 求A AB 23-及.B A T输入A={{-1,1,1},{1,-1,1},{1,2,3}} MatrixForm[A]B={{3,2,1},{0,4,1},{-1,2,-4}} MatrixForm[B]-2A AAB 23-BA T ⎪⎪⎪⎭⎫⎝⎛-----334421424141010⎪⎪⎪⎭⎫⎝⎛----10120821444,5123641033252312⎪⎪⎪⎪⎪⎭⎫⎝⎛=A .1-A ⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--------1652116114581081218192829211161121162147.11111111111122222222ddd d c c c c b b b b a a a a D ++++=2222)1)()()()()()((dc b a abcd d c d b d a c b c a b a +--------,60975738723965110249746273⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----=A .),(|,|3A A tr A 3),(|,|AA tr A ⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛---12574547726668013841222451984174340410063122181713228151626315018483582949442062726,150421321,111111111⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎭⎫ ⎝⎛--=B A 求A AB 23-及.B A '2.设,001001⎪⎪⎪⎭⎫⎝⎛=λλλA 求.10A 一样地?=k A (k 是正整数).3.求⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+++++a a a aa1111111111111111111111111的逆.4.设,321011324⎪⎪⎪⎭⎫ ⎝⎛-=A 且,2B A AB +=求.B5.利用逆矩阵解线性方程组⎪⎩⎪⎨⎧=++=++=++.353,2522,132321321321x x x x x x x x x实验2 矩阵的秩与向量组的最大无关组实验目的 学习利用Mathematica 以上版本)求矩阵的秩,作矩阵的初等行变换; 求向 量组的秩与最大无关组.大体命令1. 求矩阵M 的所有可能的k 阶子式组成的矩阵的命令:Minors[M,k].2. 把矩阵A 化作行最简形的命令:RowReduce[A].3. 把数表1,数表2, …,归并成一个数表的命令:Join[list1,list2,…]. 例如输入Join[{{1,0,-1},{3,2,1}},{{1,5},{4,6}}]那么输出 {{1,0,-1},{3,2,1},{1,5},{4,6}}实验举例求矩阵的秩例 设,815073*********⎪⎪⎪⎭⎫⎝⎛-------=M 求矩阵M 的秩.输入Clear[M];M={{3,2,-1,-3,-2},{2,-1,3,1,-3},{7,0,5,-1,-8}}; Minors[M,2]那么输出{{-7,11,9,-5,5,-1,-8,8,9,11},{-14,22,18,-10,10,-2, -16,16,18,22},{7,-11,-9,5,-5,1,8,-8,-9,-11}}可见矩阵M 有不为0的二阶子式. 再输入Minors[M,3]那么输出{{0,0,0,0,0,0,0,0,0,0}}可见矩阵M 的三阶子式都为0. 因此.2)(=M r例 求矩阵⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----3224211631095114047116的行最简形及其秩.输入A={{6,1,1,7},{4,0,4,1},{1,2,-9,0},{-1,3,-16,-1},{2,-4,22,3}} MatrixForm[A]RowReduce[A]⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-00000000100005100101矩阵的初等行变换例 用初等变换法求矩阵.343122321⎪⎪⎪⎭⎫ ⎝⎛的逆矩阵.输入 A={{1,2,3},{2,2,1},{3,4,3}}MatrixForm[A]Transpose[Join[Transpose[A],IdentityMatrix[3]]]⎪⎪⎪⎭⎫ ⎝⎛---1112/532/3231)7,5,1,3(),5,4,3,1(),1,1,1,1(),3,2,1,1(4321==-==αααα⎪⎪⎪⎪⎪⎭⎫⎝⎛0000010010102001向量组的最大无关组 例 求向量组)0,5,1,2(),0,2,1,1(),14,7,0,3(),2,1,3,0(),4,2,1,1(54321=-===-=ααααα的最大无关组, 并将其它向量用最大无关组线性表示.输入Clear[A,B];A={{1,-1,2,4},{0,3,1,2},{3,0,7,14},{1,-1,2,0},{2,1,5,0}}; B=Transpose[A];RowReduce[B]⎪⎪⎪⎪⎪⎭⎫⎝⎛-000002/51000101102/10301非零行的首元素位于第一、二、四列,因此421,,ααα是向量组的一个最大无关组. 第三列的前两个元素别离是3,1,于是.3213ααα+=第五列的前三个元素别离是,25,1,21-于是.25214215αααα++-=实验习题1.求矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛----=12412116030242201211A 的秩.2.求t , 使得矩阵⎪⎪⎪⎭⎫⎝⎛-=t A 23312231的秩等于2.3.求向量组)0,0,1(),1,1,1(),1,1,0(),1,0,0(4321====αααα的秩.4.当t 取何值时, 向量组),3,1(),3,2,1(),1,1,1(321t ===ααα的秩最小?5.向量组)1,1,1,1(),1,1,1,1(),1,1,1,1(),1,1,1,1(4321-=--=--==αααα是不是线性相关?6.求向量组)6,5,4,3(),5,4,3,2(),4,3,2,1(321===ααα的最大线性无关组. 并用最大无关 组线性表示其它向量.7.设向量),6,3,3,2(),6,3,0,3(),18,3,3,8(),0,6,3,1(2121=-=-=-=ββαα求证:向量组21,αα 与21,ββ等价.实验3 线性方程组实验目的 熟悉求解线性方程组的经常使用命令,能利用Mathematica 命令各类求线性方程组的解. 明白得运算机求解的有效意义.大体命令1.命令NullSpace []A ,给出齐次方程组0=AX 的解空间的一个基.2.命令LinearSolve []b A ,,给出非齐次线性方程组b AX =的一个特解.3.解一样方程或方程组的命令Solve 见Mathematica 入门.实验举例求齐次线性方程组的解空间设A 为n m ⨯矩阵,X 为n 维列向量,那么齐次线性方程组0=AX 必然有解. 假设矩阵A 的秩等于n ,那么只有零解;假设矩阵A 的秩小于n ,那么有非零解,且所有解组成一贯量空间. 命令NullSpace 给出齐次线性方程组0=AX 的解空间的一个基.例 求解线性方程组⎪⎪⎩⎪⎪⎨⎧=---=++=+--=--+.0532,0375,023,02432143243214321x x x x x x x x x x x x x x x输入Clear[A];A={{1,1,-2,-1},{3,-2,-1,2},{0,5,7,3},{2,-3,-5,-1}}; NullSpace[A]那么输出{{-2,1,-2,3}}说明该齐次线性方程组的解空间是一维向量空间,且向量(-2,1,-2,3)是解空间的基. 注:若是输出为空集{ },那么说明解空间的基是一个空集,该方程组只有零解.例 向量组)7,5,1,3(),5,4,3,1(),1,1,1,1(),3,2,1,1(4321==-==αααα是不是线性相关? 依照概念,若是向量组线性相关,那么齐次线性方程组044332211='+'+'+'ααααx x x x 有非零解.输入Clear[A,B];A={{1,1,2,3},{1,-1,1,1},{1,3,4,5},{3,1,5,7}}; B=Transpose[A]; NullSpace[B]输出为{{-2,-1,0,1}}说明向量组线性相关,且02421=+--ααα非齐次线性方程组的特解例 求线性方程组⎪⎪⎩⎪⎪⎨⎧=----=++=+--=--+45322375222342432143243214321x x x x x x x x x x x x x x x 的特解.输入Clear[A,b];A={{1,1,-2,-1},{3,-2,-1,2},{0,5,7,3},{2,-3,-5,-1}}; b={4,2,-2,4} LinearSolve[A,b]输出为{1,1,-1,0}注: 命令LinearSolve 只给出线性方程组的一个特解.例 求出通过平面上三点(0,7),(1,6)和(2,9)的二次多项式,2c bx ax ++并画出其图形.依照题设条件有 ,924611700⎪⎩⎪⎨⎧=+⋅+⋅=+⋅+⋅=+⋅+⋅c b a c b a c b a 输入Clear[x];A={{0,0,1},{1,1,1},{4,2,1}} y={7,6,9}p=LinearSolve[A,y]Clear[a,b,c,r,s,t];{a,b,c}.{r,s,t} f[x_]=p.{x^2,x,1};Plot[f[x],{x,0,2},GridLines ->Automatic,PlotRange ->All];那么输出c b a ,,的值为 {2,-3,7}并画出二次多项式7322+-x x 的图形(略).非齐次线性方程组的通解用命令Solve 求非齐次线性方程组的通解.例当a 为何值时,方程组⎪⎩⎪⎨⎧=++=++=++111321321321ax x x x ax x x x ax 无解、有唯一解、有无穷多解?当方程组有解时,求通解.先计算系数行列式,并求a ,使行列式等于0. 输入Clear[a];Det[{{a,1,1},{1,a,1},{1,1,a}}]; Solve[%==0,a]那么输出{{a →-2},{a →1},{a →1}} 当a 2-≠,a 1≠时,方程组有唯一解.输入Solve[{a*x +y +z ==1,x +a*y +z ==1,x +y +a*z ==1},{x,y,z}]则输出{{x →,21a + y →,21a+ z →a +21}}当a =-2时,输入Solve[{-2x+y+z==1,x -2y+z==1,x+y -2z==1},{x,y,z}]则输出{ }说明方程组无解. 当a =1时,输入Solve[{x+y+z==1,x+y+z==1,x+y+z==1},{x,y,z}]则输出{{x →1-y -z}}}说明有无穷多个解.非齐次线性方程组的特解为(1,0,0),对应的齐次线性方程组的基础解 系为为(-1,1,0)与(-1,0,1).例 求非齐次线性方程组 ⎪⎩⎪⎨⎧-=+-+=-+-=+-+2534422312432143214321x x x x x x x x x x x x 的通解.解法1输入A={{2,1,-1,1},{3,-2,1,-3},{1,4,-3,5}};b={1,4,-2}; particular=LinearSolve[A,b] nullspacebasis=NullSpace[A]generalsolution=t*nullspacebasis[[1]]+k*nullspacebasis[[2]]+Flatten[particular]generalsolution 其通解为⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛007/57/6107/97/1017/57/14321t k x x x x (k ,t 为任意常数)实验习题1.解方程组⎪⎩⎪⎨⎧=++=++=+-.024,02,032321321321x x x x x x x x x2.解方程组⎪⎩⎪⎨⎧=++-=++-=++-.0111784,02463,03542432143214321x x x x x x x x x x x x3. 解方程组⎪⎩⎪⎨⎧-=-+-=+-=-+-.22,3,44324314324321x x x x x x x x x x4.解方程组⎪⎩⎪⎨⎧=++-=+++=-++.254,32,22432143214321x x x x x x x x x x x x5.用三种方式求方程组⎪⎪⎩⎪⎪⎨⎧=-+=-+=-+=-+127875329934,8852321321321321x x x x x x x x x x x x 的唯一解.6.当b a ,为何值时,方程组⎪⎪⎩⎪⎪⎨⎧-=+++=--+-=++=+++1232)3(122043214324324321ax x x x b x x a x x x x x x x x 有唯一解、无解、有无穷多解?对后者求通解.实验4 投入产出模型(综合实验)实验目的 利用线性代数中向量和矩阵的运算, 线性方程组的求解等知识,成立在经济 分析中有重要应用的投入产出数学模型. 把握线性代数在经济分析方面的应用.应用举例假设某经济系统只分为五个物质生产部门:农业、轻工业、重工业、运输业和建筑业, 五个部门间某年生产分派关系的统计数据可列成下表1. 在该表的第一象限中,每一个部门都以生产者和消费者的双重身份显现. 从每一行看,该部门作为生产部门以自己的产品分派给各部门;从每一列看,该部门又作为消耗部门在生产进程中消耗各部门的产品. 行与列的交叉点是部门之间的流量,那个量也是以双重身份显现,它是行部门分派给列部门的产品量,也是列部门消耗行部门的产品量.表1投入产出平稳表(单位: 亿元)注: 最终产品舍去了净出口.(修改表:加双线区分为四个象限)在第二象限中,反映了各部门用于最终产品的部份. 从每一行来看,反映了该部门最终产 品的分派情形;从每一列看,反映了用于消费、积存等方面的最终产品别离由各部门提供的数 量情形.在第三象限中,反映了总产品中新制造的价值情形,从每一行来看,反映了各部门新制造 价值的组成情形;从每一列看,反映了该部门新制造的价值情形.采纳与第三章第七节完全相同的记号,可取得关于表1的产品平稳方程组y x A E =-)( (1)其中,A 为直接消耗系数矩阵,依照直接消耗系数的概念),,2,1,(n j i x x a jij ij ==,易求出表1所对应的直接消耗系数矩阵:⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛==⨯0603.00425.00372.00227.00371.00411.00250.00416.00240.00143.03425.02083.05013.01451.00923.00685.00417.00252.01438.00231.00329.00250.00462.02557.01709.01825110120051540620131297135101171825751200305406225312975351045182562512002505406271031294543510324182512512005054061363129450351081182560120030540625031298003510600)(55ij a A 利用Mathematica 软件(以下计算进程均用此软件实现,再也不重述),可计算出⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=--11036.10739105.00982964.00672149.00637761.00884203.005447.1100805.00594445.0035022.0859487.0529259.016653.2495145.032573.0122005.00752055.00006552.020166.10492156.0132248.00874144.015254.0402651.024175.1)(1A E 为方便分析,将上述列昂节夫逆矩阵列成表2.表2下面咱们来分析上表中各列诸元素的经济意义. 以第2列为例,假设轻工业部门提供的 最终产品为一个单位, 其余部门提供的最终产品均为零, 即最终产品的列向量为 ,)0,0,0,1,0(T y =于是,轻工业部门的单位最终产品对5个部门的直接消耗列向量为⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛==0227.00240.01451.01438.02557.0000100603.00425.00372.00227.00371.00411.00250.00416.00240.00143.03425.02083.05013.01451.00923.00685.00417.00252.01438.00231.00329.00250.00462.02557.01709.0)0(Ay x通过中间产品向量)0(x 产生的间接消耗为⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛==0205373.00146768.0129979.00327974.00885192.0)0()1(Ax x , ⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛==0107259.000867109.00881789.00120554.00305619.0)0(2)2(x A x⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛==00570305.000505222.0054254.000575796.00129491.0)0(3)3(x A x , ⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛==00318798.000294103.00322339.000309566.000650578.0)0(4)4(x A x于是,轻工业部门的单位最终产品对五个部门总产品的需求量为++++++=)4()3()2()1()0(x x x x x y x.0629.00553.04497.01975.13942.000318798.000294103.00322339.000309566.000650578.000570305.000505222.0054254.000575796.00129491.00107259.000867109.00881789.00120554.00305619.00205733.00146768.0129979.00327974.00885192.000010⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛≈+⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=其中向量x 为列昂惕夫逆矩阵1)(--A E 的第2列, 该列5个元素别离是部门2生产一个单位 最终产品对部门一、二、3、4、5总产品的需求量, 即总产品定额. 同理, 能够说明列昂节夫 逆矩阵中第一、3、4、5列别离是部门一、3、4、5生产一个单位最终产品对部门一、二、3、 4、5的总产品定额.对应于附表1的完全消耗系数矩阵⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=--=-11036.00739105.00982964.00672149.00637761.00884203.005447.0100805.00594445.0035022.0859487.0529259.016653.1495145.032573.0122005.00752055.00006552.020166.00492156.0132248.00874144.015254.0402651.024175.0)(1EA E B最终产品是外生变量, 即最终产品是由经济系统之外的因素决定的, 而内生变量是由经济系统内的因素决定的. 此刻假定政府部门依照社会进展和人民生活的需要对表1的最终产品作了修改, 最终产品的增加量别离为农业2%, 轻工业7%, 重工业5%, 运输业5%, 建筑业 4%, 写成最终产品增量的列向量为,)51,5.37,15.52,09.160,4.35(T y =∆那么产品的增加量x ∆可由式(8)近似计算到第5项, 得+⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=+∆+∆+∆+∆+∆=∆515.3715.5209.1604.35515.3715.5209.1604.35515.3715.5209.1604.35515.3715.5209.1604.35515.375.5209.1604.35432)3()2()1()0(A A A A x x x x y x .)8033.744899.57169.238749.204083.121(T ≈其中,y A x ∆=∆)0(为各部门生产y ∆直接消耗各部门产品数量;而后面各项的和为各部门生 产y ∆的全数间接消耗的和.实验报告下表给出的是某城市某年度的各部门之间产品消耗量和外部需求量(均以产品价值计算, 单位: 万元), 表中每一行的数字是某一个部门提供给各部门和外部的产品价值.(1) 试列出投入—产出简表, 并求出直接消耗矩阵;(2) 依照预测, 从这一年度开始的五年内, 农业的外部需求每一年会下降1%, 轻工业和商业的外部需求每一年会递增6%, 而其它部门的外部需求每一年会递增3%, 试由此预测这五年内该城市和各部门的总产值的平均年增加率;(3) 编制第五年度的打算投入产出表.实验5 交通流模型(综合实验)实验目的利用线性代数中向量和矩阵的运算, 线性方程组的求解等知识,成立交通流模型. 把握线性代数在交通计划方面的应用.应用举例假设某城市部份单行街道的交通流量(每小时通过的车辆数)如图5-1所示.300 300 300+-432xxx=300+54xx=500-67xx=200+21xx=800+51xx=800+87xx=10009x=400-910xx=20010x=600++638xxx=1000⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧⎪排版时只保留图,不要方程组图5-1试成立数学模型确信该交通网络未知部份的具体流量.假定上述问题知足以下两个大体假设(1)全数流入网络的流量等于全数流出网络的流量;(2)全数流入一个节点的流量等于流出此节点的流量.那么依照图5-1及上述大体两个假设,可成立该问题的线性方程组⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎨⎧=++==+-==+=+=+=+-=+=+-1000600200400100080018002005003008631010998751217654432x x x x x x x x x x x x x x x x x x x x , 即 ⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---100060020040010008008002005003000010100110000000001100000000010000000000110000000000010001000000001100011000000000011000000000111010987654321x x x x x x x x x x 假设将上述矩阵方程记为b Ax =,那么问题就转化为求b Ax =的全数解. 下面咱们利用 Mathmatica 软件来求解一、输入矩阵A ,并利用RowReduce[A ]命令求得A 的秩为8. 输入RowReduce[A]⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-00000000000000000000100000000001000000000011000000001010000000000110000000000100000001001000000100010=Ax 输入In[3]:=NullSpace[A]⎪⎪⎭⎫ ⎝⎛----00000110110011100000⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--+⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=+=00000110110011100000212211C C c c ξξη21,C C 3、输入增广阵(A b ),求出其秩为8, 由,108)()(=<==n Ab r A r 知方程组有无穷多个解.输入RowReduce[Ab]⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-0000000000000000000006001000000000400010000000010000011000000800001010000050000000110002000000000100000000100108000000010001b Ax =输入 LinearSolve[A,b]Out[9]={{800},{0},{200},{500},{0},{800},{1000},{0},{400},{600}}那么取得所求非齐次线性方程组的一个特解:T )6004000100080005002000800(*=ξ综上所述,咱们就取得了非齐次线性方程组b Ax =的全数解为,*2211*ξξξξη++++=C C x (21,C C 为任意常数).在解的表示式中, x 的每一个分量即为交通网络中未知部份的具体流量, 该问题有无穷 多解(什么缘故? 并试探其实际意义).本模型具有实际应用价值, 求出该模型的解, 能够为交通计划设计部门提供解决交通堵 塞、车流运行不顺畅等问题的方式, 明白在何处应建设立交桥, 那条路应设计多宽等, 为城镇交通计划提供科学的指导意见. 可是,在本模型中,咱们只考虑了单行街道如此一种简单情形, 更复杂的情形留待读者在更高一级的课程中去研究. 另外,本模型还可推行到电路分析中的 网络节点流量等问题中.实验报告请读者应用本模型的思想方式, 为你所在或你熟悉的城镇成立一个区域的交通流量模 型. 并提供一个具体的解决方案, 即从无穷多个解中依照具体限制确信出一个具体的解决方 案.。
矩阵求方程的解
矩阵可以被用来求解线性方程组。
线性方程组可以表示为以下形式:
A * x = b
其中,A 是一个系数矩阵,x 是未知向量,b 是已知向量。
矩阵求解线性方程组主要有两种方法:逆矩阵法和高斯消元法。
1.逆矩阵法:如果矩阵A 是可逆的(即行列式不等于零),
则可以通过以下公式求解线性方程组的解:
x = A⁻¹ * b
其中,A⁻¹ 表示矩阵 A 的逆矩阵,* 表示矩阵的乘法运算。
2.高斯消元法:高斯消元法是通过变换线性方程组的形式,
将其转化为上三角形式或者简化行阶梯形式。
然后,可以
通过回代的方式求解线性方程组的解。
具体步骤如下:
•用初等行变换将矩阵A 转化为上三角形式(或简化行阶梯形式)。
•根据变换后的矩阵形式,可以直接得到解的结果或通过回代得到解。
需要注意的是,在实际应用中,矩阵方程的求解可能会遇到多解、无解或条件问题等情况。
因此,在使用矩阵求解线性方程组时,需要对方程组的性质进行仔细分析,并进行适当的处理。
矩阵解方程组的方法
首先,我们来看高斯消元法。
这是一种常用的方法,通过矩阵的初等行变换将增广矩阵化为阶梯形矩阵,然后通过回代求解得到方程组的解。
这个方法的优点是简单易懂,但是在计算过程中可能会出现舍入误差,对于大型的矩阵计算也可能会比较耗时。
其次,克拉默法则是另一种常见的方法。
它利用矩阵的行列式来求解方程组的解,其优点是在理论上比较简洁,但是在实际计算中,由于需要计算每个未知数对应的行列式,所以当方程组的阶数较大时,计算量会很大,效率较低。
最后,矩阵逆的方法是利用矩阵的逆来求解方程组的解。
具体而言,对于方程组Ax=b,如果矩阵A是可逆的,那么可以通过A的逆矩阵来求解x,即x=A^(-1)b。
这种方法在理论上比较简单高效,但是需要保证矩阵A是可逆的,而且在实际计算中求逆矩阵的运算量也比较大。
除了以上三种方法,还有其他一些特殊情况下的求解方法,比如特征值分解方法、奇异值分解方法等,这些方法在特定情况下可能会更加高效。
总的来说,矩阵解方程组的方法有多种,每种方法都有其适用的情况和局限性。
在实际应用中,需要根据具体的问题特点来选择合适的方法来求解方程组的解。
矩阵的线性方程组解法线性方程组是数学中的重要概念,它描述了一组线性方程之间的关系。
而求解线性方程组的方法之一就是利用矩阵的运算进行计算。
本文将介绍几种常见的矩阵解法,以帮助读者更好地理解线性方程组求解的过程。
一、高斯消元法高斯消元法是求解线性方程组的基本方法之一。
它通过矩阵的行变换来简化系数矩阵,并最终将线性方程组化简为上三角形式。
步骤如下:1. 构建增广矩阵:将系数矩阵和常数向量合并成一个增广矩阵。
2. 初等行变换:利用加减乘除的运算,将增广矩阵化为上三角矩阵。
3. 回代求解:从方程组的最后一行开始,依次求解每个变量。
二、矩阵的逆解法对于非奇异矩阵(可逆矩阵),可以利用矩阵的逆求解线性方程组。
设线性方程组为Ax=b,其中A为系数矩阵,x为未知向量,b为常数向量。
解法如下:1. 判断A是否可逆:计算矩阵A的行列式,若不为零,则A可逆。
2. 计算逆矩阵:利用伴随矩阵法或初等变换法,求解A的逆矩阵A^-1。
3. 求解线性方程组:利用逆矩阵的性质,有 x=A^-1b。
三、克拉默法则克拉默法则是一种求解线性方程组的特殊方法,它通过计算行列式的比值来求解每个未知数的值。
步骤如下:1. 列出增广矩阵:将线性方程组化为增广矩阵形式。
2. 计算行列式:利用增广矩阵的系数部分,计算系数矩阵A的行列式det(A)。
3. 计算未知数:利用克拉默法则,有 xi=det(Ai)/det(A),其中Ai是用b替换第i列得到的矩阵。
四、LU分解法LU分解法是一种将矩阵A分解为下三角矩阵L和上三角矩阵U的方法。
通过LU分解后,可以利用前代法和回代法求解线性方程组。
步骤如下:1. 进行LU分解:将系数矩阵A分解为下三角矩阵L和上三角矩阵U,有 A=LU。
2. 利用前代法求解Ly=b:先解 Ly=b 得到y的值。
3. 利用回代法求解Ux=y:再解 Ux=y 得到x的值。
总结:本文介绍了矩阵的线性方程组解法,包括高斯消元法、矩阵的逆解法、克拉默法则和LU分解法。
矩阵与线性方程组求解在数学领域中,矩阵与线性方程组是非常重要的概念。
矩阵可以用来表示线性方程组,而线性方程组的求解则可以通过矩阵运算来实现。
本文将介绍矩阵与线性方程组的基本概念,并以实例演示如何使用矩阵来求解线性方程组。
一、矩阵的基本概念矩阵是由数个数按照一定的规则排列而成的矩形阵列。
一个矩阵通常用大写字母表示,例如A、B、C等。
矩阵中的每个数称为元素,用小写字母表示,例如a、b、c等。
矩阵的元素按照行和列的顺序排列,可以用下标表示。
例如,A的第i行第j列的元素可以表示为A[i,j]。
二、线性方程组的表示线性方程组是由一系列线性方程组成的方程集合。
每个线性方程可以表示为:a1x1 + a2x2 + ... + anxn = b其中,a1、a2、...、an是已知系数,x1、x2、...、xn是未知数,b是等号右侧的常数。
线性方程组可以用矩阵表示,形式为AX = B,其中A是系数矩阵,X是未知数矩阵,B是常数矩阵。
三、矩阵的运算1. 矩阵的加法:对应位置的元素相加。
2. 矩阵的减法:对应位置的元素相减。
3. 矩阵的数乘:矩阵中的每个元素乘以一个常数。
4. 矩阵的乘法:矩阵乘法是指两个矩阵相乘的运算,它的定义是:若A是m行n列的矩阵,B是n行p列的矩阵,则A与B的乘积C是一个m行p列的矩阵,其中C[i,j]等于A的第i行与B的第j列对应元素乘积的和。
四、矩阵的逆若一个n阶矩阵A存在一个n阶矩阵B,使得AB=BA=I,其中I是单位矩阵,则称矩阵A是可逆的,矩阵B称为A的逆矩阵。
逆矩阵的存在性是一个重要的性质,可以用来求解线性方程组。
五、使用矩阵求解线性方程组的步骤1. 将线性方程组转化为矩阵形式AX = B,其中A是系数矩阵,X是未知数矩阵,B是常数矩阵。
2. 判断矩阵A是否可逆,若不可逆则无解,若可逆则继续下一步。
3. 计算A的逆矩阵A^-1。
4. 将方程组转化为X = A^-1B的形式,即X = A^-1B。
三元一次方程组与矩阵求解在数学中,线性方程组是一个基本概念,其解法在很多领域都有应用。
尤其是三元一次方程组,通常被用来描述三维空间中的问题。
本文将介绍矩阵法求解三元一次方程组的过程和原理。
一. 矩阵的定义在介绍矩阵求解之前,我们先来了解一下矩阵的基本定义。
矩阵是一个由数排成的矩形阵列,其中每一个数都被称为“元素”。
矩阵可以表示成一下形式:$$\begin{pmatrix}a_{1,1}&a_{1,2}&\cdots&a_{1,n}\\a_{2,1}&a_{2,2}&\cdots&a_{2,n}\\\vdots&\vdots&\ddots&\vdots\\a_{m,1}&a_{m,2}&\cdots&a_{m,n}\e nd{pmatrix}$$它具有$m$行$n$列,矩阵中元素的下标$a_{i,j}$表示它在矩阵中的位置,例如$a_{1,2}$表示在矩阵的第一行第二列。
二. 矩阵运算了解矩阵之后,我们需要掌握矩阵的基本运算:1. 矩阵加法对于两个$m$行$n$列矩阵$A$和$B$,它们的和矩阵$C$定义为:$C=A+B,$其中$C$的元素为$C_{i,j}=A_{i,j}+B_{i,j}.$2. 矩阵乘法对于两个矩阵$A$和$B$,如果$A$的列数等于$B$的行数,则它们的乘积矩阵$C$定义为:$$C_{i,j}=\sum_{k=1}^{n}A_{i,k}\cdot B_{k,j},$$其中$n$是$A$的列数或$B$的行数。
需要注意的是,矩阵乘法不满足交换律,即$AB\neq BA$。
3. 矩阵转置矩阵转置是指将矩阵的行列位置对换后得到的新矩阵,记为$A^T$。
对于$m$行$n$列的矩阵$A$,它的转置矩阵$A^T$是一个$n$行$m$列的矩阵,满足$A_{i,j}^T=A_{j,i}$。
三. 三元一次方程组与矩阵求解接下来我们来介绍三元一次方程组的定义和解法。
矩阵求解方程组技巧矩阵求解方程组是线性代数中重要的内容,也是应用广泛的技巧之一。
本文将介绍一些常用的矩阵求解方程组的技巧。
一、高斯消元法高斯消元法是一种常用的求解线性方程组的方法,它的基本原理是通过矩阵初等行变换将方程组转化为简化的行阶梯形矩阵,进而求出方程组的解。
具体步骤如下:1. 将方程组的系数矩阵与常数矩阵合并为增广矩阵。
2. 选取一个非零的主元素(系数矩阵中的非零元素)作为基准行。
3. 将选取的主元素所在行除以主元素的值,使主元素的值变为1。
4. 将其他行中的相应元素化为0,使得主元素所在列的其他元素都变为0。
5. 对剩余的行重复上述操作,直到所有行都变成简化的行阶梯形矩阵。
高斯消元法的优点是求解过程直观、简单,但该方法对于某些特殊情况(如主元素为0)会出现问题,需要进行进一步的改进。
二、LU分解原方程组的系数矩阵A分解为一个下三角矩阵L与一个上三角矩阵U的乘积。
通过LU分解,可以将原方程组的求解转化为两个简单的步骤:求解Ly=b和求解Ux=y。
具体步骤如下:1. 对系数矩阵进行LU分解,得到下三角矩阵L和上三角矩阵U。
2. 解Ly=b,得到向量y。
3. 解Ux=y,得到向量x。
相比于高斯消元法,LU分解的优点是可以将一次的LU分解应用于多个右侧向量b,从而减少计算量。
三、矩阵的逆矩阵求解方程组的另一个常用方法是通过求解矩阵的逆来得到方程组的解。
设矩阵A为系数矩阵,向量x为未知向量,向量b为常数向量,则原方程组可以表示为Ax=b。
若矩阵A的逆矩阵存在,则可以通过左乘矩阵A 的逆来求解方程组的解,即x=A⁻¹b。
求解矩阵的逆矩阵的方法有多种,其中一种常用的方法是高斯-约当消元法,通过矩阵初等行变换将矩阵A转化为单位矩阵,然后将相同的行变换施加在单位矩阵上,得到矩阵A的逆矩阵。
需要注意的是,矩阵的逆不一定存在,当矩阵的行列式为0时,矩阵没有逆矩阵。
四、QR分解原方程组的系数矩阵A分解为一个正交矩阵Q与一个上三角矩阵R的乘积。
线性微分方程组的解法和矩阵法线性微分方程组和矩阵法是高等数学课程中非常重要的主题,也是应用数学研究中的基础。
本篇文章就线性微分方程组的解法和矩阵法进行探讨。
1. 线性微分方程组的基本概念线性微分方程组是由一系列的线性微分方程组成的方程组,可以用矩阵的形式表示。
例如:$$x^{'}=Ax$$其中,$x=(x_1,x_2,\cdots,x_n)$ 是一个 $n$ 元向量,$A=(a_{ij})_{n\times n}$ 是一个 $n\times n$ 的矩阵,$x^{'}=(x_1^{'},x_2^{'},\cdots,x_n^{'})$ 是 $x$ 的导数。
2. 线性微分方程组的解法对于线性微分方程组,其解法可以分为两种:一种是齐次线性微分方程组,即 $Ax=\textbf{0}$ 的解法,另一种是非齐次线性微分方程组,即 $Ax=b$ 的解法。
2.1 齐次线性微分方程组的解法对于齐次线性微分方程组 $Ax=\textbf{0}$,我们可以先求出其通解 $x=c_1x_1+c_2x_2+\cdots+c_nx_n$。
其中,$x_1,x_2,\cdots,x_n$ 是该方程的基础解系,$c_1,c_2,\cdots,c_n$ 是任意常数。
求基础解系 $x_1,x_2,\cdots,x_n$ 的方法可以分为两种:一种是代数法,使用高斯消元法将矩阵 $A$ 化为最简形,然后就可以求出基础解系;另一种是矩阵法,使用矩阵的特征根和特征向量来求解基础解系。
2.2 非齐次线性微分方程组的解法对于非齐次线性微分方程组 $Ax=b$,其解法可以分为两步:第一步是求出其通解 $x_h=c_1x_1+c_2x_2+\cdots+c_nx_n$,其中$x_1,x_2,\cdots,x_n$ 是 $Ax=\textbf{0}$ 的基础解系,$c_1,c_2,\cdots,c_n$ 是任意常数;第二步是求出特解 $x_p$,将特解和通解相加即可得到非齐次线性微分方程组的一般解。
第1章矩阵及其基本运算
MATLAB,即“矩阵实验室”,它是以矩阵为基本运算单元。
因此,本书从最基本的运算单元出发,介绍MATLAB的命令及其用法。
1.1 矩阵的表示
1.1.1 数值矩阵的生成
1.实数值矩阵输入
MATLAB的强大功能之一体现在能直接处理向量或矩阵。
当然首要任务是输入待处理的向量或矩阵。
不管是任何矩阵(向量),我们可以直接按行方式输入每个元素:同一行中的元素用逗号(,)或者用空格符来分隔,且空格个数不限;不同的行用分号(;)分隔。
所有元素处于一方括号([ ])内;当矩阵是多维(三维以上),且方括号内的元素是维数较低的矩阵时,会有多重的方括号。
如:
>> Time = [11 12 1 2 3 4 5 6 7 8 9 10]
Time =
11 12 1 2 3 4 5 6 7 8 9 10
>> X_Data = [2.32 3.43;4.37 5.98]
X_Data =
2.43
3.43
4.37
5.98
>> vect_a = [1 2 3 4 5]
vect_a =
1 2 3 4 5
>> Matrix_B = [1 2 3;
>> 2 3 4;3 4 5]
Matrix_B = 1 2 3
2 3 4
3 4 5
>> Null_M = [ ] %生成一个空矩阵
2.复数矩阵输入
复数矩阵有两种生成方式:
第一种方式
例1-1
>> a=2.7;b=13/25;
>> C=[1,2*a+i*b,b*sqrt(a); sin(pi/4),a+5*b,3.5+1]
C=
1.0000 5.4000 + 0.5200i 0.8544
0.7071 5.3000 4.5000
第2种方式
例1-2
>> R=[1 2 3;4 5 6], M=[11 12 13;14 15 16]
R =
1 2 3
4 5 6
M =
11 12 13
14 15 16
>> CN=R+i*M
CN =
1.0000 +11.0000i
2.0000 +12.0000i
3.0000 +13.0000i
4.0000 +14.0000i
5.0000 +15.0000i
6.0000 +16.0000i
1.1.2 符号矩阵的生成
在MATLAB中输入符号向量或者矩阵的方法和输入数值类型的向量或者矩阵在形式上很相像,只不过要用到符号矩阵定义函数sym,或者是用到符号定义函数syms,先定义一些必要的符号变量,再像定义普通矩阵一样输入符号矩阵。
1.用命令sym定义矩阵:
这时的函数sym实际是在定义一个符号表达式,这时的符号矩阵中的元素可以是任何的符号或者是表达式,而且长度没有限制,只是将方括号置于用于创建符号表达式的单引号中。
如下例:
例1-3
>> sym_matrix = sym('[a b c;Jack,Help Me!,NO WAY!],')
sym_matrix =
[a b c]
[Jack Help Me! NO WAY!]
>> sym_digits = sym('[1 2 3;a b c;sin(x)cos(y)tan(z)]')
sym_digits =
[1 2 3]
[a b c]
[sin(x)cos(y)tan(z)]
2.用命令syms定义矩阵
先定义矩阵中的每一个元素为一个符号变量,而后像普通矩阵一样输入符号矩阵。
例1-4
>> syms a b c ;
>> M1 = sym('Classical');
>> M2 = sym(' Jazz');
>> M3 = sym('Blues')
>> syms_matrix = [a b c;M1,M2,M3;int2str([2 3 5])]
syms_matrix =
[ a b c]
[Classical Jazz Blues]
[ 2 3 5]
把数值矩阵转化成相应的符号矩阵。
数值型和符号型在MATLAB中是不相同的,它们之间不能直接进行转化。
MA TLAB提供了一个将数值型转化成符号型的命令,即sym。
例1-5
>> Digit_Matrix = [1/3 sqrt(2)3.4234;exp(0.23)log(29)23^(-11.23)]
>> Syms_Matrix = sym(Digit_Matrix)
结果是:
Digit_Matrix =
0.3333 1.4142 3.4234
1.2586 3.3673 0.0000
Syms_Matrix =
[ 1/3,sqrt(2),17117/5000]
[*2^(-52),*2^(-51),*2^(-103)]
注意:矩阵是用分数形式还是浮点形式表示的,将矩阵转化成符号矩阵后,都将以最接近原值的有理数形式表示或者是函数形式表示。
1.1.3 大矩阵的生成
对于大型矩阵,一般创建M文件,以便于修改:
例1-6 用M文件创建大矩阵,文件名为example.m
exm=[ 456 468 873 2 579 55
21 687 54 488 8 13
65 4567 88 98 21 5
456 68 4589 654 5 987
5488 10 9 6 33 77]
在MA TLAB窗口输入:
>>example;
>>size(exm) %显示exm的大小
ans=
5 6 %表示exm有5行6列。
1.1.4 多维数组的创建
函数cat
格式A=cat(n,A1,A2,…,Am)
说明n=1和n=2时分别构造[A1;A2]和[A1,A2],都是二维数组,而n=3时可以构造出三维数组。
例1-7
>> A1=[1,2,3;4,5,6;7,8,9];A2=A1';A3=A1-A2;
>> A4=cat(3,A1,A2,A3)
A4(:,:,1) =
1 2 3
4 5 6
7 8 9
A4(:,:,2) =
1 4 7
2 5 8
3 6 9
A4(:,:,3) =。