遗传基本定律和遗传图谱
- 格式:pptx
- 大小:373.12 KB
- 文档页数:19
第三章遗传的基本规律(一) 名词解释:1、性状:生物体所表现的形态特征和生理特性。
2、单位性状:把生物体所表现的性状总体区分为各个单位,这些分开来的性状称为。
3、等位基因(allele):位于同源染色体上,位点相同,控制着同一性状的基因。
4、完全显性(complete dominance):一对相对性状差别的两个纯合亲本杂交后,F1的表现和亲本之一完全一样,这样的显性表现,称作完全显性。
5、不完全显性(imcomplete dominance):是指F1表现为两个亲本的中间类型。
6、共显性(co-dominance):是指双亲性状同时在F1个体上表现出来。
如人类的ABO血型和MN血型。
7、测交:是指被测验的个体与隐性纯合体间的杂交。
8、基因型(genotype):也称遗传型,生物体全部遗传物质的组成,是性状发育的内因。
9、表现型(phenotype):生物体在基因型的控制下,加上环境条件的影响所表现性状的总和。
10、一因多效(pleiotropism):一个基因也可以影响许多性状的发育现象。
11、多因一效(multigenic effect):许多基因影响同一个性状的表现。
12、基因位点(locus):基因在染色体上的位置。
13、交换:指同源染色体的非姊妹染色单体之间的对应片段的交换,从而引起相应基因间的交换与重组。
14、交换值(重组率):指同源染色体的非姊妹染色单体间有关基因的染色体片段发生交换的频率。
17.相引相:在遗传学中,把两个显性基因或两个隐性基因的连锁称为是相引相。
18.相斥相:在遗传学中,把一个显性基因和一个隐性基因连锁称为相斥相。
15、基因定位:确定基因在染色体上的位置。
主要是确定基因之间的距离和顺序。
16、符合系数:表示干扰程度的大小,指理论交换值与实际交换值的比值,符合系数经常变动于0—1之间。
17、干扰(interference):一个单交换发生后,在它邻近再发生第二个单交换的机会就会减少的现象。
二、遗传三大基本定律杂交(hybridization):遗传学中经典的也是常用的实验方法,通过不同的基因型的个体之间的交配而取得某些双亲基因重新组合的个体的方法互交(reciprocal cross):甲乙两种具有不同遗传特性的亲本杂交回交(back cross):子一代与亲本之一相交配的一种杂交方法测交(test cross):杂种子一代与隐形纯和类型交配,用来测定杂种F1遗传型的方法纯种(true breeding):指相对与某一或某些形状而言在自交后代中没有分离而可真实遗传的品种显性性状(dominant character):具有相对性状的双亲杂交所产生的子一代中得到表现的那个亲本性状隐性性状(recessive character):没有得到表现的那个亲本性状基因型(genotype):指所研究性状所对应的有关遗传因子表型(phenotype):指在特定环境下所研究的基因型的性状表现纯合体(homozygote):由两个相同的遗传因子结合而成的个体杂合体(heterozygote):由两个不同遗传因子结合而成的个体等位基因(alleles):指一对同源染色体的某一给定位点的成对的遗传因子单因子杂种(Monohybrid):the offspring of two parents that are homozygous for alternate alleles of a gene分离定律:配子形成过程中,成对的遗传因子相互分离,结果,如在杂合体中,半数的配子带有其中一个遗传因子,另一半的配子带有另外一个遗传因子共显性(codominance):宏观上呈显隐性关系的相对性状,在分子水平上却呈共显性关系,即二者的基因都表达从而产生两种不同的蛋白质自由组合规律:形成配子时等位基因分离,非等位基因以同等的机会在配子内自由组合,通过不同基因型配子之间的随机结合,形成F2的表型比例连锁与交换定律:处于同一染色体上的两个或两个以上基因遗传时,联合在一起的频率大于重新组合的频率;配子形成过程中,同源染色体的非姊妹染色单体间发生局部交换的结果导致重组类型的产生交换值(crossing-over value):大小用来表示基因间距离的长短表型模写(phenocopy):环境改变引起的表型改变,有时与某基因引起的表型变化很相似外显率(penetrance):某一基因型个体显示其预期表型的比率,是基因表达的另一变异方式表现度(expressivity):基因的表达程度存在一定的差异,描述基因表达的程度三、染色体与遗传基因型性别决定系统(genotypic sex determination system):与染色体或基因型有关的性别决定系统异配性别(heterogametic sex):产生两种不同的配子同配性别(homogametic sex)性染色体(Sex chromosomes):与性别决定有明显而直接关系的染色体常染色体(Autosomes):性染色体以外的所有染色体巴氏小体(Barr body):又名性染色质体(sex-chromatin body)是一种高度浓缩的、惰性的、异染色质化的小体,它就是失活的X染色体性反转(sex reversal):指生物从一种性别转为另一种性别的现象初级例外子代(primary exceptional progeny):例外子代与它们同一性别的亲本一样,雌蝇偏母,雄蝇偏父,次级例外子代:初级例外雌蝇的例外子代性相关遗传(Sex-related inheritance):指和性别相关连的遗传现象伴性遗传(Sex-linked inheritance):遗传学上,将位于性染色体上的基因所控制的性状的遗传方式交叉遗传(criss-cross inheritance):男性所拥有的来自母系的X连锁基因将来只能传给他女儿的遗传现象限性遗传(sex-limited inheritance):有些基因并不一定位于性染色体上,但它所影响的特殊性状只在某一种性别中出现的遗传方式从性遗传(sex influenced inheritance):有些基因虽然位于常染色体上,但由于受到性激素的作用,因而使得它在不同性别中的表达不同的遗传现象剂量补偿效应(dosage compensation effect):指在XY性别决定机制的生物中,使性连锁基因在两种性别中有相等或近乎相等的有效剂量的遗传效应假显性(pseudo-dominance):又称拟显性,一条染色体上的显性基因缺失,导致同源染色体上的隐性等位基因(非致死)表现效应交换抑制突变(crossover suppressor mutations):由于染色体倒位所造成交换抑制因子(crossover represspr)平衡致死系(balanced lethal system):又称永久杂种(permanent hybrid),紧密连锁或中间具有倒位片段的相邻基因由于生殖细胞的同源染色体不能交换,所以可以用非等位基因的双杂合子,保存非等位基因的纯合隐性致死基因的品系罗伯逊易位(Robertsonian translocation):又称着丝粒融合或整臂融合,发生于近端着丝粒染色体之间的特殊易位方式基数:一个染色体组内含有的染色体数又称基数,用x表示整倍体(euploid):含有一套或多套完整染色体组的个体多倍体(polyploid):超过两个染色体组的个体非整倍体(aneuploid):染色体组内个别染色体数目的增减,使细胞内染色体数目不成完整的染色体组倍数单倍体:是指体细胞内具有本物种配子染色体数目(n)的个体,它可以是天然的,也可以是人工诱变或培育的四、遗传图的制作和基因定位图距(map distance):即两个基因在染色体图上距离的数量单位,它以重组1%去掉%号表示基因在染色体上的一个距离单位,即某基因间的距离为一个图距单位(map unit, mu),现用厘摩(cM)基因定位(gene mapping):指将基因定位于某一特定的染色体上,以及测定基因在染色体上线性排列的顺序与距离两点测交(two-point testcross):指每次只测定两个基因间的遗传距离,这是基因定位的最基本方法三点测交(three-point testcross):就是通过一次杂交和一次测交,同时确定三对等位基因(即三个基因位点)的排列顺序和它们之间的遗传距离干涉(interference):每发生一次单交换时,它的临近基因间也发生一次交换的机会就减少并发系数(coefficient of coincidence,c):干涉的程度,其值为:实际双交换值/理论双交换值负干涉(negative interference):并发系数大于1,即一次交换的发生使第二次发生交换的频率增加了染色体干涉(chromosomal interference)就一个完整的染色体为单位来说的,第一次交换发生后,第二次交换可以在任意两条非姊妹染色单体间进行。
遗传的基本规律遗传是生物学中一个重要的概念,它涉及到表型和基因的传递。
通过遗传的基本规律,我们可以更好地理解生物体的形态特征以及物种的多样性。
本文将介绍遗传的基本规律,包括孟德尔的遗传定律、基因型和表型的关系、显性与隐性基因、等位基因和杂合等概念。
1.孟德尔的遗传定律19世纪的奥地利僧侣孟德尔通过对豌豆植物进行大量的实验观察,总结出了遗传的基本定律。
这些定律包括:1.1 第一定律:孟德尔的第一定律是关于基因的分离和独立遗传的。
他观察到在有性生殖中,父母的基因会分别传递给子代,在子代的配子形成过程中,基因会分离,并且每个配子只能携带一个基因。
1.2 第二定律:孟德尔的第二定律是关于基因的随机组合和分离的。
他观察到不同基因的组合和分离是随机的,不同基因之间的遗传是独立进行的。
1.3 第三定律:孟德尔的第三定律是关于基因的优势和显性的。
他发现一些基因在表型上表现出来,而另一些基因则被掩藏起来,这种现象被称为显性与隐性。
2.基因型和表型的关系基因型是指生物体内部基因组成的基因型型谱,表型则是指基因组成的生物体外部组织结构和功能。
这两者之间存在着紧密的联系。
2.1 纯合子与杂合子:纯合子指一个个体的两个基因表现完全相同,例如AA或aa;杂合子则是两个基因不同的个体,例如Aa。
纯合子之间的杂交后代属于杂合子。
2.2 显性与隐性:显性基因指在表型上表达出来的基因,隐性基因则被掩藏起来。
当显性基因和隐性基因共同存在时,显性基因会在表型上显示出来。
3.等位基因等位基因是指在同一个基因位点上,不同的基因可能存在多个形式。
这些不同的形式可以决定物种的遗传特征和多样性。
3.1 常染色体等位基因:在非性染色体上的基因位点上,不同的基因形式可以决定个体的遗传特征,如眼睛的颜色、血型等。
这些基因可以是多态的,即存在多个等位基因形式。
3.2 性染色体等位基因:性染色体上的基因位点上也存在不同的基因形式,例如决定人类性别的X和Y染色体上的基因。
生物高考常见遗传题解读遗传学是生物学的重要分支,也是高考生物的重点内容之一。
在高考中,常常会出现与遗传相关的题目。
本文将针对生物高考常见遗传题进行解读,帮助考生更好地理解和掌握这一知识点。
1. 分离定律分离定律也称为孟德尔第一定律,是遗传学的基础。
根据该定律,一个个体双等位基因在配子形成过程中会分离,每个配子只携带一个等位基因。
这意味着基因在传递给下一代时会以等位基因的形式随机组合。
通过分离定律,我们可以解释为什么同一对父母基因可以产生不同的子代。
2. 二倍体和单倍体生物体的细胞可以分为两种类型:具有成对染色体的二倍体细胞和只有单一染色体组的单倍体细胞。
在动物和植物的生活史中,二倍体和单倍体细胞会交替出现。
通过染色体的数量变化,我们可以解释为何一些生物体经历有性生殖和无性生殖的不同方式。
3. 遗传图谱遗传图谱是用来描述基因在染色体上位置关系的图表。
在遗传图谱中,基因与其他基因之间的物理距离可以用遗传距离来表示,遗传距离是通过基因连锁概率计算得出的。
通过遗传图谱,我们可以分析和预测基因的遗传规律以及染色体的结构。
4. 突变和变异突变是指遗传物质(DNA)发生可遗传的改变,是遗传变异的主要来源。
突变可以是基因突变,也可以是染色体突变,甚至是基因组变异。
突变和变异的发生可以产生新的性状和新的遗传组合,是进化的一个重要驱动力。
5. 随性状的遗传在遗传学中,有些性状是由多对基因共同控制的,不仅仅是由一个基因所决定的,这被称为多基因遗传。
随性状的遗传是指一个性状在同一群体中表现出连续性的变化。
通过对多基因的遗传方式和性状表现的分析,我们可以解释为什么某些性状在人群中呈现连续的变化趋势。
6. 基因工程和基因编辑技术随着生物技术的发展,基因工程和基因编辑技术成为了遗传学的热门领域。
基因工程通过将外源基因导入目标生物体中,实现对其遗传信息的人为改造。
而基因编辑技术则可以直接修复或改变生物体自身的基因序列。
这些技术的应用将会对农业、医学以及生态环境等领域产生深远的影响。
生物学中的经典遗传学遗传学是研究基因和遗传信息在生物体传递和表达中的规律的学科。
经典遗传学是遗传学的一个重要分支,它主要研究基因的遗传模式以及基因在遗传过程中的组合、分离和重组现象。
经典遗传学是生物学的基础学科,对于深入理解生物体遗传规律、推动基因工程和生命科学研究发展具有重要意义。
1、经典遗传学的基本假设经典遗传学基于三个基本假设:一是遗传基因是生物遗传信息的基本单位;二是遗传基因在生物体中按照一定规律进行组合和分离;三是遗传基因遵循孟德尔遗传定律。
2、孟德尔遗传定律孟德尔遗传定律是经典遗传学的基础理论,由奥地利僧侣孟德尔于19世纪50年代通过对豌豆的杂交实验发现。
孟德尔遗传定律有三个方面:2.1、单因遗传定律单因遗传定律是指一种性状基因的遗传与其他种性状基因的遗传是独立的,各个性状的基因可以分离组合,从而产生新的组合。
这就是说,不同基因对于不同性状是相互独立的。
例如:豌豆中颜色、种子型和花型等性状遵循单因遗传定律。
2.2、分离定律分离定律是指杂交后代的基因组合必须进行分离,依照一定的比例遗传给后代。
这个比例就是3:1,即在F2代中,表现出杂合性状(两个因子混合时)的个体数量约为表现出显性性状(一个因子)的个体数量的三倍。
例如:豌豆的花色,F2代中白花和紫花的比例是3:1。
2.3、自由组合定律自由组合定律是指各个基因随机组合的概率相等,且互相独立。
例如:如果两个基因A和B分别有两种不同表现,分别为AA、Aa、aA和aa,BB和bb,则在交配后他们所有的可能组合为AB、Ab、aB和ab,且每个基因的表现概率都是1/4。
3、遗传图谱的制作遗传图谱是指一种研究物种基因结构和遗传性质的可视化方式。
经典遗传学通过遗传图谱的制作来研究物种基因载体(染色体)的特性、基因的位置和距离关系。
遗传图谱的制作需要先通过自交、杂交等方式,收集各种适合的生物个体,利用适当方式实施交配,统计出后代中各种表型和遗传类型的个体数目,从而分析基因和表型间的关系。
学情分析基础,对于知识不能灵活运用课题遗传图谱分析学习目标与考点分析学习目标:1、对基因的分离定率和基因的自由组合定律能熟练的牢记把握考点分析:1、遗传图谱的分析与把握学习重点重点:1、基因的分离定律和自由组合定律学习方法讲练结合练习巩固学习内容与过程知识点梳理第三章遗传和染色体第一节基因的分离定律一、相对性状性状:生物体所表现出来的的形态特征、生理生化特征或行为方式等。
相对性状:同一种生物的同一种性状的不同表现类型。
二、孟德尔一对相对性状的杂交实验1、实验过程(看书)2、对分离现象的解释(看书)3、对分离现象解释的验证:测交(看书)例:现有一株紫色豌豆,如何判断它是显性纯合子(AA)还是杂合子(Aa)?相关概念1、显性性状与隐性性状显性性状:具有相对性状的两个亲本杂交,F1表现出来的性状。
隐性性状:具有相对性状的两个亲本杂交,F1没有表现出来的性状。
附:性状分离:在杂种后代中出现不同于亲本性状的现象)2、显性基因与隐性基因显性基因:控制显性性状的基因。
隐性基因:控制隐性性状的基因。
附:基因:控制性状的遗传因子(DNA分子上有遗传效应的片段P67)等位基因:决定1对相对性状的两个基因(位于一对同源染色体上的相同位置上)。
3、纯合子与杂合子纯合子:由相同基因的配子结合成的合子发育成的个体(能稳定的遗传,不发生性状分离):显性纯合子(如AA的个体)隐性纯合子(如aa的个体)杂合子:由不同基因的配子结合成的合子发育成的个体(不能稳定的遗传,后代会发生性状分离)4、表现型与基因型表现型:指生物个体实际表现出来的性状。
基因型:与表现型有关的基因组成。
(关系:基因型+环境→表现型)5、杂交与自交杂交:基因型不同的生物体间相互交配的过程。
自交:基因型相同的生物体间相互交配的过程。
(指植物体中自花传粉和雌雄异花植物的同株受粉)附:测交:让F1与隐性纯合子杂交。
(可用来测定F1的基因型,属于杂交)三、基因分离定律的实质:在减I分裂后期,等位基因随着同源染色体的分开而分离。