建筑工程测量-测量误差的基本知识
- 格式:docx
- 大小:198.37 KB
- 文档页数:21
工程测量误差的定义工程测量误差是指在工程测量中由于各种因素导致的实际测量结果与理论测量结果之间的差异。
在实际工程中,由于各种因素的影响,任何工程测量都无法完全准确。
因此,误差的存在是不可避免的。
工程测量误差是测量过程中的一种现象,它会对工程设计和工程质量产生影响。
工程测量误差的分类工程测量误差可以分为系统误差和偶然误差两大类。
系统误差是指由于测量仪器、测量方法或环境条件等方面的固有因素引起的误差。
这种误差是在一定条件下持续存在的,通常会对测量结果产生固定的影响。
例如,仪器的刻度误差、非线性误差、温度漂移等都属于系统误差。
偶然误差是指由于测量过程中的各种随机因素引起的误差。
这种误差的出现是不可预测的,它在短时间内可能有正有负,具有随机性和临时性。
在多次测量中,偶然误差的结果应该在一定的范围内波动。
例如,由于人为操作不精确、环境因素变化、观察仪器的不稳定性等均会产生偶然误差。
工程测量误差的分类有助于我们理解误差的性质和影响因素,为误差评定和控制提供了基础。
在实际工程测量中,我们需要通过合理的方法对误差进行分类和分析,以提高测量结果的准确性和可靠性。
下面我们将进一步探讨工程测量误差的来源、影响因素、评定方法和控制措施。
工程测量误差的来源工程测量误差的来源可以分为人为因素和环境因素两大类。
人为因素是指由于操作人员的技术水平、经验、注意力等因素引起的误差。
在工程测量中,合格的操作人员是保证测量结果准确性的重要保障。
如果操作人员技术水平不高,可能会产生一系列的误差。
例如,操作不规范、读数不准确、操作动作不规范等都会对测量结果产生直接影响。
另外,操作人员的经验也会对测量误差产生影响。
经验丰富的操作人员在处理测量过程中可能会采取一些有效的措施来减小误差,而缺乏经验的操作人员则可能会忽略一些细节,导致误差的增大。
环境因素是指测量现场的环境条件对测量结果的影响。
环境因素包括温度、湿度、大气压力、地质条件等。
这些因素的变化都会引起测量仪器的性能变化,从而导致测量误差的产生。
工程测量测量误差基本知识
工程测量是一个非常重要的领域。
它涉及到各种测量任务,从建筑物的测量到土地测
量和水文测量。
在工程测量过程中,误差是一个不可避免的因素。
无论是由于仪器的限制、外部因素的影响还是由于人为因素的因素,错误都会存在。
因此,了解测量误差的基本知
识对于实现准确结果至关重要。
什么是测量误差?
测量误差是指在特定条件下进行的测量操作中的结果与实际值之间的偏差。
在工程测
量中,误差存在于两个因素之间:规律性误差和非规律性误差。
规律性误差是由于特定的
测量系统或方法的不确定性而引起的误差。
非规律性误差是由于外部因素如气象条件、测
量员的技能等因素引起的误差。
测量误差的类型
在工程测量中,测量误差可以被划分为几类:
1.仪器误差:这是由于仪器的不完美设计或磨损等因素而引起的误差。
2.人为误差:这种误差源于人为因素,例如在读数、操作仪器或处理数据时的不规范
操作。
3.外部误差:这种误差是由于环境因素,例如天气、土地条件等,造成的误差。
为了测量误差,需要使用误差分析来度量。
误差分析是一种量化工具,它提供了一些
技术来分析总误差,并确定每一组因素对误差的贡献。
经过误差分析后,可以采取适当的
纠正措施,减少或消除误差并使测量结果更准确。
误差的类型和度量对于实现准确的测量结果至关重要。
了解这些基础知识,可以帮助
工程师和测量员更好地理解测量数据并采取适当的纠正措施。
在测量误差的前提下,我们
可以实现更准确地测量结果,从而更好地满足各种应用场景的需求。
第五章测量误差的基本知识1、衡量测量精度的指标有中误差、相对误差、极限误差。
5.测量,测角中误差均为10〃,所以A角的精度高于B角。
(X)8.在测量工作中无论如何认真仔细,误差总是难以避免的。
(X)10 .测量中,增加观测次数的目的是为了消除系统误差。
(X)1、什么是偶然误差?它有哪些特性?定义:相同的观测条件,若误差在数值和符号上均不相同或从表面看无规律性。
如估读、气泡居中判断等。
偶然误差的特性:(D有界性(2)渐降性(3)对称性(4)抵偿性7.已知DJ6经纬仪一测回的测角中误差为nu = ±20",用这类仪器需要测几个测回取平均值,才能达到测角中误差为±10” ?()A. 1B.2C.3D.43.偶然误差服从于一定的规律。
4.对于偶然误差,绝对值较小的误差比绝对值较大的误差出现的机会。
14.测量误差的来源有、、外界条件。
3.设对某距离丈量了6 次,其结果为246.535m、246.548m、246.520m、246.529m、246.550m、246.537m,试求其算术平均值、算术平均值中误差及其相对中误差。
6.偶然误差的算术平均值随观测次数的无限增加而趋向于o14.设对某角度观测4个测回,每一测回的测角中误差为±5",则算术平均值的中误差为±〃。
24.衡量测量精度的指标有、、极限误差。
3.观测值与之差为闭合差。
()A.理论值B.平均值C.中误差D.改正数5.由于钢尺的不水平对距离测量所造成的误差是()A.偶然误差B.系统误差C.可能是偶然误差也可能是系统误差D.既不是偶然误差也不是系统误差8.阐述函数中误差与观测值中误差之间关系的定律称为o9.什么是系统误差?什么是偶然误差?误差产生的原因有哪些?10测量误差按性质可分为和两大类。
1. 2.相对误差2.由估读所造成的误差是()oA.偶然误差B.系统误差C.既是偶然误差又是系统误差14.下列不属于衡量精度的标准的是()。
第五节测量误差基础知识一、测量误差概述1.测量误差产生的原因测量时,由于各种因素会造成少许的误差,这些因素必须去了解,并有效的解决,方可使整个测量过程中误差减至最少;实践证明,产生测量误差的原因主要有以下三个方面;1人为因素;由于人为因素所造成的误差,包括观测者的技术水平和感觉器管的鉴别能力有一定的局限性,主要体现在仪器的对中、照准、读数等方面;2测量仪器的原因;由于测量仪器的因素所造成的误差,包括测量仪器在构造上的缺陷、仪器本身的精度、磨耗误差及使用前未经校正等因素;3环境因素;外界观测条件是指野外观测过程中,外界条件的因素,如天气的变化、植被的不同、地面土质松紧的差异、地形的起伏、周围建筑物的状况,以及太阳光线的强弱、照射的角度大小等;测量时受环境或场地之不同,可能造成的误差有热变形误差和随机误差为最显着;热变形误差通常发生于因室温、人体接触及加工后工件温度等情形下,因此必须在温湿度控制下,不可用手接触工件及量具、工件加工后待冷却后才测量;但为了缩短加工时在加工中需实时测量,因此必须考虑各种材料之热胀系数作为补偿,以因应温度材料的热膨胀系数不同所造成的误差;在实际的测量工作中,大量实践表明,当对某一未知量进行多次观测时,不论测量仪器有多精密,观测进行得多么仔细,所得的观测值之间总是不尽相同;这种差异都是由于测量中存在误差的缘故;测量所获得的数值称为观测值;由于观测中误差的存在而往往导致各观测值与其真实值简称为真值之间存在差异,这种差异称为测量误差或观测误差;用L代表观测值,X代表真值,则误差=观测值L—真值X,即∆ 5-1X=L-这种误差通常又称之为真误差;由于任何测量工作都是由观测者使用某种仪器、工具,在一定的外界条件下进行的,所以,观测误差来源于以下三个方面:观测者的视觉鉴别能力和技术水平;仪器、工具的精密程度;观测时外界条件的好坏;通常我们把这三个方面综合起来称为观测条件;观测条件将影响观测成果的精度:若观测条件好,则测量误差小,测量的精度就高;反之,则测量误差大,精度就低;若观测条件相同,则可认为精度相同;在相同观测条件下进行的一系列观测称为等精度观测;在不同观测条件下进行的一系列观测称为不等精度观测;由于在测量的结果中含有误差是不可避免的,因此,研究误差理论的目的不是为了去消灭误差,而是要对误差的来源、性质及其产生和传播的规律进行研究,以便解决测量工作中遇到的一些实际问题;例如:在一系列的观测值中,如何确定观测量的最可靠值;如何来评定测量的精度;以及如何确定误差的限度等;所有这些问题,运用测量误差理论均可得到解决;二、测量误差的分类测量误差按其性质可分为系统误差和偶然误差两类:一系统误差在相同的观测条件下,对某一未知量进行一系列观测,若误差的大小和符号保持不变,或按照一定的规律变化,这种误差称为系统误差;例如水准仪的视准轴与水准管轴不平行而引起的读数误差,与视线的长度成正比且符号不变;经纬仪因视准轴与横轴不垂直而引起的方向误差,随视线竖直角的大小而变化且符号不变;距离测量尺长不准产生的误差随尺段数成比例增加且符号不变;这些误差都属于系统误差;系统误差主要来源于仪器工具上的某些缺陷;来源于观测者的某些习惯的影响,例如有些人习惯地把读数估读得偏大或偏小;也有来源于外界环境的影响,如风力、温度及大气折光等的影响;系统误差的特点是具有累积性,对测量结果影响较大,因此,应尽量设法消除或减弱它对测量成果的影响;方法有两种:一是在观测方法和观测程序上采取一定的措施来消除或减弱系统误差的影响;例如在水准测量中,保持前视和后视距离相等,来消除视准轴与水准管轴不平行所产生的误差;在测水平角时,采取盘左和盘右观测取其平均值,以消除视准轴与横轴不垂直所引起的误差;另一种是找出系统误差产生的原因和规律,对测量结果加以改正;例如在钢尺量距中,可对测量结果加尺长改正和温度改正,以消除钢尺长度的影响;二偶然误差在相同的观测条件下,对某一未知量进行一系列观测,如果观测误差的大小和符号没有明显的规律性,即从表面上看,误差的大小和符号均呈现偶然性,这种误差称为偶然误差;例如在水平角测量中照准目标时,可能稍偏左也可能稍偏右,偏差的大小也不一样;又如在水准测量或钢尺量距中估读毫米数时,可能偏大也可能偏小,其大小也不一样,这些都属于偶然误差;产生偶然误差的原因很多,主要是由于仪器或人的感觉器官能力的限制,如观测者的估读误差、照准误差等,以及环境中不能控制的因素如不断变化着的温度、风力等外界环境所造成;偶然误差在测量过程中是不可避免的,从单个误差来看,其大小和符号没有一定的规律性,但对大量的偶然误差进行统计分析,就能发现在观测值内部却隐藏着一种必然的规律,这给偶然误差的处理提供了可能性;测量成果中除了系统误差和偶然误差以外,还可能出现错误有时也称之为粗差;错误产生的原因较多,可能由作业人员疏忽大意、失职而引起,如大数读错、读数被记录员记错、照错了目标等;也可能是仪器自身或受外界干扰发生故障引起的;还有可能是容许误差取值过小造成的;错误对观测成果的影响极大,所以在测量成果中绝对不允许有错误存在;发现错误的方法是:进行必要的重复观测,通过多余观测条件,进行检核验算;严格按照国家有关部门制定的各种测量规范进行作业等;在测量的成果中,错误可以发现并剔除,系统误差能够加以改正,而偶然误差是不可避免的,它在测量成果中占主导地位,所以测量误差理论主要是处理偶然误差的影响;下面详细分析偶然误差的特性;三、偶然误差的特性偶然误差的特点具有随机性,所以它是一种随机误差;偶然误差就单个而言具有随机性,但在总体上具有一定的统计规律,是服从于正态分布的随机变量;在测量实践中,根据偶然误差的分布,我们可以明显地看出它的统计规律;例如在相同的观测条件下,观测了217个三角形的全部内角;已知三角形内角之和等于180°,这是三内角之和的理论值即真值X,实际观测所得的三内角之和即观测值L;由于各观测值中都含有偶然误差,因此各观测值不一定等于真值,其差即真误差Δ;以下分两种方法来分析:一表格法由5-1式计算可得217个内角和的真误差,按其大小和一定的区间本例为dΔ=3″,分别统计在各区间正负误差出现的个数k及其出现的频率k/nn=217,列于表5-1中;从表5-1中可以看出,该组误差的分布表现出如下规律:小误差出现的个数比大误差多;绝对值相等的正、负误差出现的个数和频率大致相等;最大误差不超过27″;实践证明,对大量测量误差进行统计分析,都可以得出上述同样的规律,且观测的个数越多,这种规律就越明显;表5-1 三角形内角和真误差统计表二直方图法为了更直观地表现误差的分布,可将表5-1的数据用较直观的频率直方图来表示;以真误差的大小为横坐标,以各区间内误差出现的频率k /n 与区间d △的比值为纵坐标,在每一区间上根据相应的纵坐标值画出一矩形,则各矩形的面积等于误差出现在该区间内的频率k /n ;如图5-1中有斜线的矩形面积,表示误差出现在+6″~+9″之间的频率,等于;显然,所有矩形面积的总和等于1;可以设想,如果在相同的条件下,所观测的三角形个数不断增加,则误差出现在各区间的频率就趋向于一个稳定值;当n →∞时,各区间的频率也就趋向于一个完全确定的数值——概率;若无限缩小误差区间,即d △→0,则图5-1各矩形的上部折线,就趋向于一条以纵轴为对称的光滑曲线如图5-2所示,称为误差概率分布曲线,简称误差分布曲线,在数理统计中,它服从于正态分布,该曲线的方程式为式中:Δ为偶然误差;σ>0为与观测条件有关的一个参数,称为误差分布的标准差,它的大小可以反映观测精度的高低;其定义为:在图5-1中各矩形的面积是频率k /n ;由概率统计原理可知,频率即真误差出现在区间d △上的概率P Δ,记为22221)(σπσ∆-=∆ef 5-2[]nn ∆∆=∞→limσ5-3根据上述分析,可以总结出偶然误差具有如下四个特性:1 有限性:在一定的观测条件下,偶然误差的绝对值不会超过一定的限值;2 集中性:即绝对值较小的误差比绝对值较大的误差出现的概率大;3 对称性:绝对值相等的正误差和负误差出现的概率相同;4 抵偿性:当观测次数无限增多时,偶然误差的算术平均值趋近于零;即[]0lim=∆∞→nn 5-5式中 []∑=∆=∆++∆+∆=∆n i i n 121在数理统计中,也称偶然误差的数学期望为零,用公式表示为E Δ=0; 图5-2中的误差分布曲线,是对应着某一观测条件的,当观测条件不同时,其相应误差分布曲线的形状也将随之改变;例如图5-3中,曲线I 、II 为对应着两组不同观测条件得出的两组误差分布曲线,它们均属于正态分布,但从两曲线的形状中∆∆=∆∆=∆d f d d nk P )(/)(5-4可以看出两组观测的差异;当Δ=0时,πσ21)(11=∆f ,πσ21)(22=∆f ;πσ211、πσ212是这两误差分布曲线的峰值,其中曲线I 的峰值较曲线II 的高,即σ1<σ2,故第I 组观测小误差出现的概率较第II 组的大;由于误差分布曲线到横坐标轴之间的面积恒等于1,所以当小误差出现的概率较大时,大误差出现的概率必然要小;因此,曲线I 表现为较陡峭,即分布比较集中,或称离散度较小,因而观测精度较高;而曲线II 相对来说较为平缓,即离散度较大,因而观测精度较低;第二节 评定精度的指标研究测量误差理论的主要任务之一,是要评定测量成果的精度;在图5-3中,从两组观测的误差分布曲线可以看出:凡是分布较为密集即离散度较小的,表示该组观测精度较高;而分布较为分散即离散度较大的,则表示该组观测精度较低;用分布曲线或直方图虽然可以比较出观测精度的高低,但这种方法即不方便也不实用;因为在实际测量问题中并不需要求出它的分布情况,而需要有一个数字特征能反映误差分布的离散程度,用它来评定观测成果的精度,就是说需要有评定精度的指标;在测量中评定精度的指标有下列几种:一、 中误差由上节可知5-3式定义的标准差是衡量精度的一种指标,但那是理论上的表达式;在测量实践中观测次数不可能无限多,因此实际应用中,以有限次观测个数n 计算出标准差的估值定义为中误差m ,作为衡量精度的一种标准,计算公式为nm ][ˆ∆∆±=±=σ5-6例5-1有甲、乙两组各自用相同的条件观测了六个三角形的内角,得三角形的闭合差即三角形内角和的真误差分别为:甲:+3″、+1″、-2″、-1″、0″、-3″; 乙:+6″、-5″、+1″、-4″、-3″、+5″; 试分析两组的观测精度; 解用中误差公式5-6计算得:()()()()()3.46534156][0.26301213][222222222222''±=+-+-++-+±=∆∆±=''±=-++-+-++±=∆∆±=)(乙甲nm n m从上述两组结果中可以看出,甲组的中误差较小,所以观测精度高于乙组;而直接从观测误差的分布来看,也可看出甲组观测的小误差比较集中,离散度较小,因而观测精度高于乙组;所以在测量工作中,普遍采用中误差来评定测量成果的精度;注意:在一组同精度的观测值中,尽管各观测值的真误差出现的大小和符号各异,而观测值的中误差却是相同的,因为中误差反映观测的精度,只要观测条件相同,则中误差不变;在公式5-2中,如果令f Δ的二阶导数等于0,可求得曲线拐点的横坐标Δ=±σ≈m ;也就是说,中误差的几何意义即为偶然误差分布曲线两个拐点的横坐标;从图5-3也可看出,两条观测条件不同的误差分布曲线,其拐点的横坐标值也不同:离散度较小的曲线I,其观测精度较高,中误差较小;反之离散度较大的曲线II,其观测精度较低,中误差则较大;二、相对误差真误差和中误差都有符号,并且有与观测值相同的单位,它们被称为“绝对误差”;绝对误差可用于衡量那些诸如角度、方向等其误差与观测值大小无关的观测值的精度;但在某些测量工作中,绝对误差不能完全反映出观测的质量;例如,用钢尺丈量长度分别为100 m 和200 m 的两段距离,若观测值的中误差都是±2 cm,不能认为两者的精度相等,显然后者要比前者的精度高,这时采用相对误差就比较合理;相对误差K 等于误差的绝对值与相应观测值的比值;它是一个不名数,常用分子为1的分式表示,即T1==观测值误差的绝对值相对误差式中当误差的绝对值为中误差m 的绝对值时,K 称为相对中误差;mD Dm K 1==5-7在上例中用相对误差来衡量,则两段距离的相对误差分别为1/5000和1/10000,后者精度较高;在距离测量中还常用往返测量结果的相对较差来进行检核;相对较差定义为DD D D D D D ∆=∆=-平均平均平均返往1 5-8相对较差是真误差的相对误差,它反映的只是往返测的符合程度,显然,相对较差愈小,观测结果愈可靠;三、极限误差和容许误差 一极限误差由偶然误差的特性一可知,在一定的观测条件下,偶然误差的绝对值不会超过一定的限值;这个限值就是极限误差;在一组等精度观测值中,绝对值大于m 中误差的偶然误差,其出现的概率为%;绝对值大于2m 的偶然误差,其出现的概率为%;绝对值大于3m 的偶然误差,出现的概率仅为%;根据式5-2和式5-4有上式表示真误差出现在区间-σ,+σ内的概率等于,或者说误差出现在该区间外的概率为;同法可得上列三式的概率含义是:在一组等精度观测值中,绝对值大于σ的偶然误差,其出现的概率为%;绝对值大于2σ的偶然误差,其出现的概率为%;绝对值大于3()955.021)(222222222≈∆=∆∆=<∆<-⎰⎰+-∆-+-σσσσσπσσσd ed f P ()997.021)(333323322≈∆=∆∆=<∆<-⎰⎰+-∆-+-σσσσσπσσσd e d f P ()683.021)(222≈∆=∆∆=<∆<-⎰⎰+-∆-+-σσσσσπσσσd ed f Pσ的偶然误差,出现的概率仅为%;在测量工作中,要求对观测误差有一定的限值;若以m 作为观测误差的限值,则将有近32%的观测会超过限值而被认为不合格,显然这样要求过分苛刻;而大于3m 的误差出现的机会只有3‰,在有限的观测次数中,实际上不大可能出现;所以可取3m 作为偶然误差的极限值,称极限误差,m 3=∆极;二容许误差在实际工作中,测量规范要求观测中不容许存在较大的误差,可由极限误差来确定测量误差的容许值,称为容许误差,即m 3=∆容当要求严格时,也可取两倍的中误差作为容许误差,即m 2=∆容如果观测值中出现了大于所规定的容许误差的偶然误差,则认为该观测值不可靠,应舍去不用或重测;第三节 误差传播定律前面已经叙述了评定观测值的精度指标,并指出在测量工作中一般采用中误差作为评定精度的指标;但在实际测量工作中,往往会碰到有些未知量是不可能或者是不便于直接观测的,而由一些可以直接观测的量,通过函数关系间接计算得出,这些量称为间接观测量;例如用水准仪测量两点间的高差h ,通过后视读数a 和前视读数b 来求得的,h =a -b ;由于直接观测值中都带有误差,因此未知量也必然受到影响而产生误差;说明观测值的中误差与其函数的中误差之间关系的定律,叫做误差传播定律,它在测量学中有着广泛的用途;一、 误差传播定律设Z 是独立观测量x 1,x 2,…,x n 的函数,即 )(21n x x x f Z ,,, = a式中:x 1,x 2,…,x n 为直接观测量,它们相应观测值的中误差分别为m 1,m 2,…,m n ,欲求观测值的函数Z 的中误差m Z ;设各独立变量x i i =1,2,…,n 相应的观测值为L i ,真误差分别为Δx i ,相应函数Z 的真误差为ΔZ ;则因真误差Δx i 均为微小的量,故可将上式按泰勒级数展开,并舍去二次及以上的各项,得:a 减去b 式,得上式即为函数Z 的真误差与独立观测值L i 的真误差之间的关系式;式中ix f∂∂为函数Z 分别对各变量x i 的偏导数,并将观测值x i =L i 代入偏导数后的值,故均为常数;若对各独立观测量都观测了k 次,则可写出k 个类似于c 式的关系式将以上各式等号两边平方后再相加,得上式两端各除以k ,因各变量x i 的观测值L i 均为彼此独立的观测,则Δx i Δx j 当i ≠j 时,亦为偶然)(2211n n x x x x x x f Z Z ∆+∆+∆+=∆+,,, )()(221121n nn x x fx x f x x f x x x f Z Z ∆∂∂++∆∂∂+∆∂∂+=∆+ ,,, 2211n nx x f x x f x x f Z ∆∂∂++∆∂∂+∆∂∂=∆ ⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧∆∂∂++∆∂∂+∆∂∂=∆∆∂∂++∆∂∂+∆∂∂=∆∆∂∂++∆∂∂+∆∂∂=∆)()(22)(11)()2()2(22)2(11)2()1()1(22)1(11)1( k n n k k k n n n n x x f x x f x x f Z x x f x x f x x f Z x x f x x f x x f Z [][][][][]j i nji j i j i n n x x xf x f x x f x x f x x f Z ∆∆⎪⎪⎭⎫⎝⎛∂∂⎪⎪⎭⎫ ⎝⎛∂∂+∆⎪⎪⎭⎫ ⎝⎛∂∂++∆⎪⎪⎭⎫ ⎝⎛∂∂+∆⎪⎪⎭⎫ ⎝⎛∂∂=∆∑≠=1,22222221212 [][][][][]k x x x f x fk x x fkx x fkx x fkZ j i n ji j i j inn ∆∆⎪⎪⎭⎫ ⎝⎛∂∂⎪⎪⎭⎫ ⎝⎛∂∂+∆⎪⎪⎭⎫⎝⎛∂∂++∆⎪⎪⎭⎫⎝⎛∂∂+∆⎪⎪⎭⎫⎝⎛∂∂=∆∑≠=1,22222221212][lim=∆∆∞→kx x j i k b误差;根据偶然误差的第四个特性可知,上式的末项当k →∞时趋近于0,即故上式可写为 根据中误差的定义,上式可写成当k 为有限值时,即22222221212n n z m xf m x f m x f m ⎪⎪⎭⎫⎝⎛∂∂++⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎪⎭⎫ ⎝⎛∂∂= 5-9 或2222222121n nz m xf m x f m x f m ⎪⎪⎭⎫⎝⎛∂∂++⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎪⎭⎫ ⎝⎛∂∂±= 5-10式中ix f∂∂为函数Z 分别对各变量x i 的偏导数,并将观测值x i =L i 代入偏导数后的值,故均为常数;公式5-9或5-10即为计算函数中误差的一般形式;从公式的推导过程,可以总结出求任意函数中误差的方法和步骤如下: 1.列出独立观测量的函数式:)(21n x x x f Z ,,, = 2.求出真误差关系式;对函数式进行全微分,得n ndx x fdx x f dx x f dZ ∂∂++∂∂+∂∂=2211 因dZ 、dx 1、dx 2、…都是微小的变量,可看成是相应的真误差ΔZ 、Δx 1、Δx 2、…,因此上式就相当于真误差关系式,系数ix f∂∂均为常数; 3.求出中误差关系式;只要把真误差换成中误差的平方,系数也平方,即可直接写出中误差关系式:[][][][]⎪⎪⎭⎫ ⎝⎛∆⎪⎪⎭⎫⎝⎛∂∂++∆⎪⎪⎭⎫⎝⎛∂∂+∆⎪⎪⎭⎫⎝⎛∂∂=∆∞→∞→kx x fkx x fkx x f kZ nn k k 22222221212lim lim 22222221212n nz xf x f x f σσσσ⎪⎪⎭⎫ ⎝⎛∂∂++⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎪⎭⎫ ⎝⎛∂∂=22222221212n nzm xf m x f m x f m ⎪⎪⎭⎫⎝⎛∂∂++⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎪⎭⎫ ⎝⎛∂∂= 按上述方法可导出几种常用的简单函数中误差的公式,如表5-2所列,计算时可直接应用;表5-2 常用函数的中误差公式二、 应用举例误差传播定律在测绘领域应用十分广泛,利用它不仅可以求得观测值函数的中误差,而且还可以研究确定容许误差值;下面举例说明其应用方法;例5-2在比例尺为1:500的地形图上,量得两点的长度为d = mm,其中误差m d =± mm,求该两点的实际距离D 及其中误差m D ;解:函数关系式为D =Md ,属倍数函数,M =500是地形图比例尺分母;mmm Mm m m mm Md D d D 1.0100)2.0(5007.11117004.23500±=±=±⨯====⨯==两点的实际距离结果可写为 m ± m;例5-3水准测量中,已知后视读数a = m,前视读数b = m,中误差分别为m a =± m,m b =± m,试求两点的高差及其中误差;解:函数关系式为h =a -b ,属和差函数,得mm m m mb a h b a h 004.0003.0002.0258.1476.0734.12222±=+±=+±==-=-=两点的高差结果可写为 m ± m;例5-4在斜坡上丈量距离,其斜距为L = m,中误差m L =± m,并测得倾斜角α=10°34′,其中误差m α=±3′,求水平距离D 及其中误差m D ;解:首先列出函数式αcos L D = 水平距离m D 303.243'3410cos 50.247=︒⨯=这是一个非线性函数,所以对函数式进行全微分,先求出各偏导值如下:864 3.45'3410sin 50.247'3410sin 830 9.0'3410cos -=︒⨯-=︒⋅-=∂∂=︒=∂∂L DLDα写成中误差形式mm D m L D m L D 06.0'3438'3)3864.45(05.09830.0 22222222±=⎪⎭⎫⎝⎛⨯-+⨯±=⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂±=αα故得D = m ± m;例5-5图根水准测量中,已知每次读水准尺的中误差为m i =±2 mm,假定视距平均长度为50 m,若以3倍中误差为容许误差,试求在测段长度为L km 的水准路线上,图根水准测量往返测所得高差闭合差的容许值;解:已知每站观测高差为:b a h -=则每站观测高差的中误差为:mm 222±==i h m m因视距平均长度为50 m,则每公里可观测10个测站,L 公里共观测10L 个测站,L 公里高差之和为:L h h h h 1021+++=∑L 公里高差和的中误差为:mm 5410L m L m h ±==∑往返高差的较差即高差闭合差为:返往h h f h ∑+∑= 高差闭合差的中误差为:mm 1042L m m h f ==∑以3倍中误差为容许误差,则高差闭合差的容许值为:mm 3810123L L m f h f h ≈±==容在前面水准测量的学习中,我们取L f h 40±=容mm 作为闭合差的容许值是考虑了除读数误差以外的其它误差的影响如外界环境的影响、仪器的i 角误差等;三、 注意事项应用误差传播定律应注意以下两点: 一要正确列出函数式例:用长30 m 的钢尺丈量了10个尺段,若每尺段的中误差为m l =±5 mm,求全长D 及其中误差m D ;全长m 300301010=⨯==l D ,l D 10=为倍乘函数;但实际上全长应是10个尺段之和,故函数式应为1021l l l D +++= 为和差函数;用和差函数式求全长中误差,因各段中误差均相等,故得全长中误差为mm 1610±==l D m m若按倍数函数式求全长中误差,将得出mm 5010±==l D m m按实际情况分析用和差公式是正确的,而用倍数公式则是错误的; 二在函数式中各个观测值必须相互独立,即互不相关;如有函数式1221++=y y z a 22321+==x y x y ; b若已知x 的中误差为m x ,求Z 的中误差m z ; 若直接用公式计算,由a 式得:21224y y z m m m +±= c而 x y x y m m m m 2321==, 将以上两式代入c 式得x x x z m m m m 5)2(4)3(22=+±=但上面所得的结果是错误的;因为y 1和y 2都是x 的函数,它们不是互相独立的观测值,因此在a 式的基础上不能应用误差传播定律;正确的做法是先把b 式代入a式,再把同类项合并,然后用误差传播定律计算;x m x x z 7m 57x 1)22(23z =⇒+=+++=第四节 等精度直接观测平差当测定一个角度、一点高程或一段距离的值时,按理说观测一次就可以获得;但仅有一个观测值,测的对错与否,精确与否,都无从知道;如果进行多余观测,就可以有效地解决上述问题,它可以提高观测成果的质量,也可以发现和消除错误;重复观测形成了多余观测,也就产生了观测值之间互不相等这样的矛盾;如何由这些互不相等的观测值求出观测值的最佳估值,同时对观测质量进行评估,即是“测量平差”所研究的内容;对一个未知量的直接观测值进行平差,称为直接观测平差;根据观测条件,有等精度直接观测平差和不等精度直接观测平差;平差的结果是得到未知量最可靠的估值,它最接近真值,平差中一般称这个最接近真值的估值为“最或然值”,或“最可靠值”,有时也称“最或是值”,一般用x 表示;本节将讨论如何求等精度直接观测值的最或然值及其精度的评定;一、等精度直接观测值的最或然值等精度直接观测值的最或然值即是各观测值的算术平均值;用误差理论证明如下:设对某未知量进行了一组等精度观测,其观测值分别为L 1、L 2、…L n ,该量的真值设为X ,各观测值的真误差为Δ1、Δ2、…、Δn ,则Δi =L i -Xi =1,2,…,n ,将各式取和再除以次数n ,得X nL n -=∆][][ 即X nn L +∆=][][根据偶然误差的第四个特性有X nL n =∞→][lim 所以0][lim=∆∞→n n 由此可见,当观测次数n 趋近于无穷大时,算术平均值就趋向于未知量的真值;当n 为有限值时,算术平均值最接近于真值,因此在实际测量工作中,将算术平均值作为观测的最后结果,增加观测次数则可提高观测结果的精度;二、评定精度 一 观测值的中误差 1.由真误差来计算当观测量的真值已知时,可根据中误差的定义即nm ][∆∆±= 由观测值的真误差来计算其中误差; 2.由改正数来计算在实际工作中,观测量的真值除少数情况外一般是不易求得的;因此在多数情况下,我们只能按观测值的最或然值来求观测值的中误差;1改正数及其特征最或然值x 与各观测值L i 之差称为观测值的改正数,其表达式为n)2,1( ,, =-=i L x v i i 5-11在等精度直接观测中,最或然值x 即是各观测值的算术平均值;即nL x ][=显然0][)(][1=-=-=∑=L nx L x v ni i 5-12上式是改正数的一个重要特征,在检核计算中有用; 2公式推导已知X L i i -=∆,将此式与式5-8相加,得X x v i i -=∆+ a令δ=-X x ,则δ+-=∆i i v b对上面各式两端取平方,再求和2][2][][δδn v vv +-=∆∆。
建筑工程测量水准测量误差一、水准测量的误差水准测量中产生的误差包括仪器误差、观测误差及外界条件影响的误差三个方面。
l.仪器误差(1)望远镜视准轴与水准管轴不平行误差。
仪器经过校正后,还会留有残余误差;仪器长期使用或受振动,也会使两轴不平行,这种误差属于系统误差,该项误差的大小,与仪器至水准尺的距离成正比。
因此,只要在观测时,将仪器安置在距前、后两测点相等处,即可消除该项误差的影响。
(2)水准尺误差。
水准尺误差包括尺长误差、分划误差和零点误差。
观测前应对水准尺检验后方可使用,水准尺零点误差可在每个测段中设偶数站的方法来消除。
2.观测误差(1)整平误差。
在水准尺上读数时,水准管轴应处于水平位置,如果精平仪器时,水准管气泡没有精确居中,则水准管轴有一微小倾角,从而引起视准轴倾斜而产生误差。
例如,设水准管分划值 = 20″/2mm,视线长度为100m,如果气泡偏离中央0.5格,则引起的读数误差为:0.5×20×100×103/206265=5 mm(2)读数误差。
由于视差和估读毫米数的误差,其与人眼的分辨力、望远镜的放大倍数及视线的长度有关,所以要求望远镜的放大倍率在20倍以上,视线长度一般不得超过100m。
(3)水准尺倾斜误差。
测量时水准尺应扶直,当水准尺倾斜时,其读数总比尺子竖直时的读数大,而且,视线愈高,水准尺倾斜引起的读数误差愈大,所以在高差大、读数大时,应特别注意将尺扶直。
测量时可以采用”摇尺法”读数,在读数时,扶尺者将尺子缓缓向前后、俯仰摇动,尺上的读数也会缓缓改变,观测者读取尺上最小读数,即为尺子竖直时的读数。
3.外界条件的影响(1)仪器下沉的影响。
由于测站处土质松软使仪器下沉,视线降低,从而引起高差误差。
减小这种误差的办法可采用:一是尽可能将仪器安置在坚硬的地面处,并将脚架踏实;二是加快观测速度,尽量缩短前、后视读数时间差;三是采用后、前、前、后的观测程序。
第五节测量误差基础知识一、测量误差概述1.测量误差产生的原因测量时,111于各种因素会造成少许的误差,这些因素必须去了解,并有效的解决,方可使整个测量过程中误差减至最少。
实践证明,产生测量误差的原因主要有以下三个方面。
(1)人为因素。
由于人为因素所造成的误差,包括观测者的技术水平和感觉器管的鉴别能力有一定的局限性,主要体现在仪器的对中、照准、读数等方面。
(2)测量仪器的原因。
山于测量仪器的因素所造成的误差,包括测量仪器在构造上的缺陷、仪器本身的精度、磨耗误差及使用前未经校正等因素。
(3)环境因素。
外界观测条件是指野外观测过程中,外界条件的因素,如天气的变化、植被的不同、地面土质松紧的差异、地形的起伏、周圉建筑物的状况,以及太阳光线的强弱、照射的角度大小等。
测量时受环境或场地之不同,可能造成的误差有热变形误差和随机误差为最显着。
热变形误差通常发生于因室温、人体接触及加工后工件温度等情形下,因此必须在温湿度控制下,不可用手接触工件及量具、工件加工后待冷却后才测量。
但为了缩短加工时在加工中需实时测量,因此必须考虑各种材料之热胀系数作为补偿,以因应温度材料的热膨胀系数不同所造成的误差。
在实际的测量工作中,大量实践表明,当对某一未知量进行多次观测时,不论测量仪器有多精密,观测进行得多么仔细,所得的观测值之间总是不尽相同。
这种差异都是山于测量中存在误差的缘故。
测量所获得的数值称为观测值。
山于观测中误差的存在而往往导致各观测值与其真实值(简称为真值)之间存在差异, 这种差异称为测量误差(或观测误差)。
用L代表观测值,才代表真值,则误差二观测值厶一真值X,即(5-1)\ = L-X这种误差通常乂称之为真误差。
由于任何测量工作都是山观测者使用某种仪器、工具,在一定的外界条件下进行的,所以,观测误差来源于以下三个方面:观测者的视觉鉴别能力和技术水平;仪器、工具的精密程度;观测时外界条件的好坏。
通常我们把这三个方面综合起来称为观测条件。
观测条件将影响观测成果的精度:若观测条件好,则测量误差小,测量的精度就高;反之,则测量误差大,精度就低:若观测条件相同,则可认为精度相同。
在相同观测条件下进行的一系列观测称为等精度观测;在不同观测条件下进行的一系列观测称为不等精度观测。
由于在测量的结果中含有误差是不可避免的,因此,研究误差理论的LI的不是为了去消灭误差,而是要对误差的来源、性质及其产生和传播的规律进行研究, 以便解决测量工作中遇到的一些实际问题。
例如:在一系列的观测值中,如何确定观测量的最可靠值;如何来评定测量的精度;以及如何确定误差的限度等。
所有这些问题,运用测量误差理论均可得到解决。
二、测量误差的分类测量误差按其性质可分为系统误差和偶然误差两类:(-)系统误差在相同的观测条件下,对某一未知量进行一系列观测,若误差的大小和符号保持不变,或按照一定的规律变化,这种误差称为系统误差.例如水准仪的视准轴与水准管轴不平行而引起的读数误差,与视线的长度成正比且符号不变;经纬仪因视准轴与横轴不垂直而引起的方向误差,随视线竖直角的大小而变化且符号不变;距离测量尺长不准产生的误差随尺段数成比例增加且符号不变。
这些误差都属于系统误差。
系统误差主要来源于仪器工具上的某些缺陷;来源于观测者的某些习惯的影响,例如有些人习惯地把读数佔读得偏大或偏小;也有来源于外界环境的影响,如风力、温度及大气折光等的影响。
系统误差的特点是具有累积性,对测量结果影响较大,因此,应尽量设法消除或减弱它对测量成果的影响。
方法有两种:一是在观测方法和观测程序上釆取一定的措施来消除或减弱系统误差的影响。
例如在水准测量中,保持前视和后视距离相等,来消除视准轴与水准管轴不平行所产生的误差;在测水平角时,采取盘左和盘右观测取其平均值,以消除视准轴与横轴不垂直所引起的误差。
另一种是找出系统误差产生的原因和规律,对测量结果加以改正。
例如在钢尺量距中,可对测量结果加尺长改正和温度改正,以消除钢尺长度的影响。
(二)偶然误差在相同的观测条件下,对某一未知量进行一系列观测,如果观测误差的大小和符号没有明显的规律性,即从表面上看,误差的大小和符号均呈现偶然性,这种误差称为偶然误差。
例如在水平角测量中照准U标时,可能稍偏左也可能稍偏右,偏差的大小也不一样;乂如在水准测量或钢尺量距中估读亳米数时,可能偏大也可能偏小,其大小也不一样,这些都属于偶然误差。
产生偶然误差的原因很多,主要是山于仪器或人的感觉器官能力的限制,如观测者的佔读误差、照准误差等,以及环境中不能控制的因素如不断变化着的温度、风力等外界环境所造成。
偶然误差在测量过程中是不可避免的,从单个误差来看,其大小和符号没有一定的规律性,但对大量的偶然误差进行统汁分析,就能发现在观测值内部却隐藏着一种必然的规律,这给偶然误差的处理提供了可能性。
测量成果中除了系统误差和偶然误差以外,还可能出现错误(有时也称之为粗差)。
错误产生的原因较多,可能曲作业人员疏忽大意、失职而引起,如大数读错、读数被记录员记错、照错了LI标等;也可能是仪器自身或受外界干扰发生故障引起的;还有可能是容许误差取值过小造成的。
错误对观测成果的影响极大,所以在测量成果中绝对不允许有错误存在。
发现错误的方法是:进行必要的重复观测,通过多余观测条件,进行检核验算;严格按照国家有关部门制定的各种测量规范进行作业等。
在测量的成果中,错误可以发现并剔除,系统误差能够加以改正,而偶然误差是不可避免的,它在测量成果中占主导地位,所以测量误差理论主要是处理偶然误差的影响。
下面详细分析偶然误差的特性。
三、偶然误差的特性偶然误差的特点具有随机性,所以它是一种随机误差。
偶然误差就单个而言具有随机性,但在总体上具有一定的统计规律,是服从于正态分布的随机变量。
在测量实践中,根据偶然误差的分布,我们可以明显地看出它的统计规律。
例如在相同的观测条件下,观测了217个三角形的全部内角。
已知三角形内角之和等于180°,这是三内角之和的理论值即真值兀实际观测所得的三内角之和即观测值厶山于各观测值中都含有偶然误差,因此各观测值不一定等于真值,其差即真误差以下分两种方法来分析:(一)表格法由(5-1)式计算可得217个内角和的真误差,按其大小和一定的区间(本例为"A二3"),分别统计在各区间正负误差出现的个数&及其出现的频率k/n (严217),列于表5-1中。
从表5-1中可以看出,该组误差的分布表现出如下规律:小误差出现的个数比大误差多;绝对值相等的正、负误差出现的个数和频率大致相等;最大误差不超过27"。
实践证明,对大量测量误差进行统计分析,都可以得出上述同样的规律,且观测的个数越多,这种规律就越明显。
表三角形内角和真误差统计表w为了更直观地表现误差的分布,可将表5-1的数据用较直观的频率直方图来 表示。
以真误差的大小为横坐标,以各区间内误差出现的频率&//?与区间d △的比值为纵坐标,在每一区间上根据相应的纵坐标值画出一矩形,则各矩形的面积等 于误差出现在该区间内的频率矽”。
如图5-1中有斜线的矩形面积,表示误差出现 在+6"〜+9"之间的频率,等于0. 069o 显然,所有矩形面积的总和等于1。
寿(5_2)可以设想,如果在相同的条件下,所观测的三角形个数不断增加,则误差出 现在各区间的频率就趋向于一个稳定值。
当力一8时,各区间的频率也就趋向于一 个完全确定的数值一一概率。
若无限缩小误差区间,即〃△一0,则图5-1各矩形 的上部折线,就趋向于一条以纵轴为对称的光滑曲线(如图5-2所示),称为误差 概率分布曲线,简称误差分布曲线,在数理统讣中,它服从于正态分布,该曲线 的方程式为式中:△为偶然误差;。
(>0)为与观测条件有关的一个参数,称为误差分 布的标准差,它的大小可以反映观测精度的高低。
其定义为:在图5-1中各矩形的面积是频率k/n. Ill 概率统计原理可知,频率即真误差出=limHfg Vn(5-3)现在区间d △上的概率P(A),记为根据上述分析,可以总结出偶然误差具有如下四个特性:(1) 有限性:在一定的观测条件下,偶然误差的绝对值不会超过一定的限 值; (2) 集中性:即绝对值较小的误差比绝对值较大的误差出现的概率大; (3) 对称性:绝对值相等的正误差和负误差出现的概率相同;(4)抵偿性:当观测次数无限增多时,偶然误差的算术平均值趋近于零。
即lim — =0(5-5)n式中[△]=△] +△•>+•・・+亠=£亠1=1在数理统计中,也称偶然误差的数学期望为零,用公式表示为E (A)二0。
图5-2中的误差分布曲线,是对应着某一观测条件的,当观测条件不同时,(5-4)其相应误差分布曲线的形状也将随之改变。
例如图5-3中,曲线I、II为对应着两组不同观测条件得出的两组误差分布曲线,它们均属于正态分布,但从两曲线的形状中可以看出两组观测的差异。
当△二0时,/;(△) = —^,心(△)= —是这两误差分布曲线的峰值,其中曲线I的峰值较曲线II的高,即故笫I组观测小误差出现的概率较第II组的大。
由于误差分布曲线到横坐标轴之间的面积恒等于1,所以当小误差出现的概率较大时,大误差出现的概率必然要小。
因此,曲线I表现为较陡峭,即分布比较集中,或称离散度较小, 因而观测精度较高。
而曲线II相对来说较为平缓,即离散度较大,因而观测精度较低。
第二节评定精度的指标研究测量误差理论的主要任务之一,是要评定测量成果的精度。
在图5-3中, 从两组观测的误差分布曲线可以看出:凡是分布较为密集即离散度较小的,表示该组观测精度较高;而分布较为分散即离散度较大的,则表示该组观测精度较低。
用分布曲线或直方图虽然可以比较出观测精度的高低,但这种方法即不方便也不实用。
因为在实际测量问题中并不需要求出它的分布情况,而需要有一个数字特征能反映误差分布的离散程度,用它来评定观测成果的精度,就是说需要有评定精度的指标。
在测量中评定精度的指标有下列儿种:一、中误差由上节可知(5-3)式定义的标准差是衡量精度的一种指标,但那是理论上的表达式。
在测量实践中观测次数不可能无限多,因此实际应用中,以有限次观测个数/HI•算出标准差的估值定义为中误差血作为衡量精度的一种标准,计算公式为m = ±<r = ( 5-6 )【例5-1】有甲、乙两组各自用相同的条件观测了六个三角形的内角,得三角形的闭合差(即三角形内角和的真误差)分别为:【解】用中误差公式(5-6)计算得: +「+(- 2)- 4-(-1)' +0- +(- 3)-=±2.0 ' 6+ (-4)2 +(- 3)2 +5? — =±4.3 ”6从上述两组结果中可以看出,屮组的中误差较小,所以观测精度高于乙组。