各种数学符号
- 格式:doc
- 大小:27.00 KB
- 文档页数:3
数学运算符号大全1. 基本运算符号1.1 加法符号(+)加法符号用于表示两个数的和。
示例:2 + 3 = 51.2 减法符号(-)减法符号表示两个数的差。
示例:5 - 3 = 21.3 乘法符号(*)乘法符号用于表示两个数的乘积。
示例:2 * 3 = 61.4 除法符号(/)除法符号用于表示两个数的商。
示例:6 / 2 = 32. 高级运算符号2.1 平方符号(^)平方符号表示将一个数自乘。
示例:2^2 = 42.2 开方符号(√)开方符号用于求一个数的平方根。
示例:√9 = 32.3 绝对值符号(| |)绝对值符号表示一个数的绝对值。
示例:| -5 | = 52.4 求和符号(Σ)求和符号表示一系列数的和。
示例:Σ(1, 2, 3) = 62.5 积分符号(∫)积分符号用于表示函数的累积和。
示例:∫f(x)dx2.6 极限符号(lim)极限符号表示一个数序列或函数的极限。
示例:lim(n→∞)(1/n) = 02.7 阶乘符号(!)阶乘符号表示一个正整数的阶乘。
示例:5! = 1203. 等号与不等号符号3.1 等号(=)等号用于表示相等关系。
示例:2 + 3 = 53.2 不等号(≠)不等号表示不相等关系。
示例:2 + 3 ≠ 63.3 大于号(>)大于号表示一个数大于另一个数。
示例:5 > 33.4 小于号(<)小于号表示一个数小于另一个数。
示例:3 < 53.5 大于等于号(≥)大于等于号表示一个数大于等于另一个数。
示例:5 ≥ 33.6 小于等于号(≤)小于等于号表示一个数小于等于另一个数。
示例:3 ≤ 54. 其他常用符号4.1 求差符号(∆)求差符号用于表示两个数之间的差值。
示例:∆x = x2 - x14.2 百分号(%)百分号表示一个数的百分比。
示例:75% = 75/100 = 0.754.3 等价符号(≡)等价符号表示两个数或两个表达式等价。
示例:2 + 3 ≡ 54.4 集合运算符号•并集符号(∪)•交集符号(∩)•补集符号(\)•子集符号(⊆)•超集符号(⊇)示例:A ∪ B 表示 A 和 B 的并集4.5 向量符号(→)向量符号表示一个有方向的量。
1、几何符号≱∥∠≲≰≡(恒等号)≌△2、代数符号∝∧∨~∫≠≤≥≈∞∶3、运算符号如加号(+),减号(-),乘号(×或·),除号(÷或/),两个集合的并集(∪),交集(∩),根号(√),对数(log,lg,ln),比(:),微分(dx),积分(∫),曲线积分(∮)等。
4、集合符号∪∩∈5、特殊符号∑π(圆周率)6、推理符号|a| ≱∸△∠∩∪≠≡±≥≤∈←↑→↓↖↗↘↙∥∧∨&; §≳≴≵≶≷≸≹≺≻≼ΓΔΘΛΞΟΠΣΦΧΨΩαβγδεδεζηθικλμνπξζηυθχψωⅠⅡⅢⅣⅤⅥⅦⅧⅨⅩⅪⅫⅰⅱⅲⅳⅴⅵⅶⅷⅸⅹ∈∏∑∕√∝∞∟ ∠∣∥∧∨∩∪∫∮∴∵∶∷∸≈≌≒≠≡≤≥≦≧≮≯⊕≰≱≨≲℃指数0123:o1237、数量符号如:i,2+i,a,x,自然对数底e,圆周率π。
8、关系符号如“=”是等号,“≈”是近似符号,“≠”是不等号,“>”是大于符号,“<”是小于符号,“≥”是大于或等于符号(也可写作“≮”),“≤”是小于或等于符号(也可写作“≯”),。
“→ ”表示变量变化的趋势,“∸”是相似符号,“≌”是全等号,“∥”是平行符号,“≱”是垂直符号,“∝”是成正比符号,(没有成反比符号,但可以用成正比符号配倒数当作成反比)“∈”是属于符号,“??”是“包含”符号等。
9、结合符号如小括号“()”中括号“[]”,大括号“{}”横线“—”10、性质符号如正号“+”,负号“-”,绝对值符号“| |”正负号“±”11、省略符号如三角形(△),直角三角形(Rt△),正弦(sin),余弦(cos),x的函数(f(x)),极限(lim),角(∠),∵因为,(一个脚站着的,站不住)∴所以,(两个脚站着的,能站住)总和(∑),连乘(∏),从n个元素中每次取出r 个元素所有不同的组合数(C(r)(n) ),幂(A,Ac,Aq,x^n)等。
12、排列组合符号C-组合数A-排列数N-元素的总个数R-参与选择的元素个数!-阶乘,如5!=5×4×3×2×1=120C-Combination- 组合A-Arrangement-排列13、离散数学符号├ 断定符(公式在L中可证)╞ 满足符(公式在E上有效,公式在E上可满足)┐ 命题的“非”运算∧命题的“合取”(“与”)运算∨命题的“析取”(“或”,“可兼或”)运算→ 命题的“条件”运算A<=>B 命题A与B 等价关系A=>B 命题A与B的蕴涵关系A* 公式A的对偶公式wff 合式公式iff 当且仅当↑ 命题的“与非” 运算(“与非门” )↓ 命题的“或非”运算(“或非门” )□ 模态词“必然”◇模态词“可能”θ 空集∈属于(??不属于)P(A)集合A的幂集|A| 集合A的点数R^2=R○R [R^n=R^(n-1)○R] 关系R的“复合”(或下面加≠)真包含∪集合的并运算∩ 集合的交运算- (~)集合的差运算〡限制[X](右下角R) 集合关于关系R的等价类A/ R 集合A上关于R的商集[a] 元素a 产生的循环群I (i大写) 环,理想Z/(n) 模n的同余类集合r(R) 关系R的自反闭包s(R) 关系的对称闭包CP 命题演绎的定理(CP 规则)EG 存在推广规则(存在量词引入规则)ES 存在量词特指规则(存在量词消去规则)UG 全称推广规则(全称量词引入规则)US 全称特指规则(全称量词消去规则)R 关系r 相容关系R○S 关系与关系的复合domf 函数的定义域(前域)ranf 函数的值域f:X→Y f是X到Y的函数GCD(x,y) x,y最大公约数LCM(x,y) x,y最小公倍数aH(Ha) H 关于a的左(右)陪集Ker(f) 同态映射f的核(或称f同态核)[1,n] 1到n的整数集合d(u,v) 点u与点v间的距离d(v) 点v的度数G=(V,E) 点集为V,边集为E的图W(G) 图G的连通分支数k(G) 图G的点连通度△(G) 图G的最大点度A(G) 图G的邻接矩阵P(G) 图G的可达矩阵M(G) 图G的关联矩阵C 复数集N 自然数集(包含0在内)N* 正自然数集P 素数集Q 有理数集R 实数集Z 整数集Set 集范畴Top 拓扑空间范畴Ab 交换群范畴Grp 群范畴Mon 单元半群范畴Ring 有单位元的(结合)环范畴Rng 环范畴CRng 交换环范畴R-mod 环R的左模范畴mod-R 环R的右模范畴Field 域范畴Poset 偏序集范畴+plus 加号;正号-minus 减号;负号±plus or minus 正负号×is multiplied by 乘号÷is divided by 除号=is equal to 等于号≠is not equal to 不等于号≡is equivalent to 全等于号≌is approximately equal to 约等于≈is approximately equal to 约等于号<is less than 小于号>is more than 大于号≤is less than or equal to 小于或等于≥is more than or equal to 大于或等于%per cent 百分之…∞infinity 无限大号√(square) root 平方根X squared X的平方X cubed X的立方∵since; because 因为∴hence 所以∠angle 角≲semicircle 半圆≰circle 圆○circumference 圆周△triangle 三角形≱perpendicular to 垂直于∪intersection of 并,合集∩union of 交,通集∫the integral of …的积分∑(sigma) summation of 总和°degree 度′minute 分〃second 秒#number …号@at 单价。
1、几何符号⊥∥∠⌒⊙≡≌△2、代数符号∝∧∨~∫≠≤≥≈∞∶3、运算符号如加号(+),减号(-),乘号(×或·),除号(÷或/),两个集合的并集(∪),交集(∩),根号(√),对数(log,lg,ln),比(:),微分(dx),积分(∫),曲线积分(∮)等。
4、集合符号∪∩∈5、特殊符号∑π(圆周率)6、推理符号|a| ⊥∽△∠∩∪≠≡±≥≤∈←↑→↓↖↗↘↙∥∧∨&; §①②③④⑤⑥⑦⑧⑨⑩ΓΔΘΛΞΟΠΣΦΧΨΩαβγδεζηθικλμνξοπρστυφχψωⅠ Ⅱ Ⅲ Ⅳ Ⅴ Ⅵ Ⅶ Ⅷ Ⅸ Ⅹ Ⅺ Ⅻⅰ ⅱ ⅲ ⅳ ⅴ ⅵ ⅶ ⅷ ⅸ ⅹ∈∏∑∕√∝∞∟ ∠∣∥∧∨∩∪∫∮∴∵∶∷∽≈≌≒≠≡≤≥≦≧≮≯⊕⊙⊥⊿⌒℃指数0123:o1237、数量符号如:i,2+i,a,x,自然对数底e,圆周率π。
8、关系符号如“=”是等号,“≈”是近似符号,“≠”是不等号,“>”是大于符号,“<”是小于符号,“≥”是大于或等于符号(也可写作“≮”),“≤”是小于或等于符号(也可写作“≯”),。
“→ ”表示变量变化的趋势,“∽”是相似符号,“≌”是全等号,“∥”是平行符号,“⊥”是垂直符号,“∝”是成正比符号,(没有成反比符号,但可以用成正比符号配倒数当作成反比)“∈”是属于符号,“??”是“包含”符号等。
9、结合符号如小括号“()”中括号“[]”,大括号“{}”横线“—”10、性质符号如正号“+”,负号“-”,绝对值符号“| |”正负号“±”11、省略符号如三角形(△),直角三角形(Rt△),正弦(sin),余弦(cos),x的函数(f(x)),极限(lim),角(∠),∵因为,(一个脚站着的,站不住)∴所以,(两个脚站着的,能站住)总和(∑),连乘(∏),从n个元素中每次取出r个元素所有不同的组合数(C(r)(n) ),幂(A,Ac,Aq,x^n)等。
常用数学输入符号:≈ ≡ ≠ =≤≥ <>≮≯∷ ±+- × ÷/∫ ∮∝∞ ∧∨∑ ∏ ∪ⅺ∈∵∴⊥‖∠⌒≌∽√()【】{}ⅠⅡ⊕⊙‖α β γ δ ε δ ε ζ Γ大写小写英文注音国际音标注音中文注音Αα alpha alfa 阿耳法Ββ beta beta 贝塔Γγ gamma gamma 伽马Γδ deta delta 德耳塔Δε epsilon epsilon 艾普西隆Εδ zeta zeta 截塔Ζε eta eta 艾塔Θζ theta ζita西塔Ηη iota iota 约塔Κθ kappa kappa 卡帕∧ι lambda lambda 兰姆达Μμ mu miu 缪Νν nu niu 纽Ξξ xi ksi 可塞Οο omicron omikron 奥密可戎∏π pi pai 派Ρπ rho rou 柔∑ζ sigma sigma 西格马Τη tau tau 套Υυ upsilon jupsilon 衣普西隆Φθ phi fai 斐Φχ chi khai 喜Χψ psi psai 普西Ψω omega omiga 欧米符号含义i -1的平方根f(x) 函数f在自变量x处的值sin(x) 在自变量x处的正弦函数值exp(x) 在自变量x处的指数函数值,常被写作exa^x a的x次方;有理数x由反函数定义ln x exp x 的反函数ax 同 a^xlogba 以b为底a的对数; blogba = acos x 在自变量x处余弦函数的值tan x 其值等于 sin x/cos xcot x 余切函数的值或 cos x/sin xsec x 正割含数的值,其值等于 1/cos xcsc x 余割函数的值,其值等于 1/sin xasin x y,正弦函数反函数在x处的值,即 x = sin yacos x y,余弦函数反函数在x处的值,即 x = cos yatan x y,正切函数反函数在x处的值,即 x = tan yacot x y,余切函数反函数在x处的值,即 x = cot yasec x y,正割函数反函数在x处的值,即 x = sec yacsc x y,余割函数反函数在x处的值,即 x = csc yζ角度的一个标准符号,不注明均指弧度,尤其用于表示atan x/y,当x、y、z用于表示空间中的点时i, j, k 分别表示x、y、z方向上的单位向量(a, b, c) 以a、b、c为元素的向量(a, b) 以a、b为元素的向量(a, b) a、b向量的点积a•b a、b向量的点积(a•b) a、b向量的点积|v| 向量v的模|x| 数x的绝对值∑表示求和,通常是某项指数。
数学里所有符号
运算符符号:加号(+)、减号(-)、乘号(*)、除号(/)、百分号(%)、等号(=)、不等号(≠)、大于号(>)、小于号(<)、约等于号(≈)、小于等于号(≤)、大于等于号(≥)、恒等于号(≡)等。
特殊符号:圆周率(π)、虚数单位(i)、罗马数字(Ⅰ、Ⅱ、Ⅲ、Ⅳ、Ⅴ、Ⅵ、Ⅶ、Ⅷ、Ⅸ、Ⅹ、Ⅺ、Ⅻ)、正负号(±)、平方根号(√)、绝对值符号(||)、集合符号({}、[]、()、<>)、三角符号(∠、∇)。
数学公式符号:和(∑)、差(Δ)、积(∏)、商(÷)、指数符号(an)、分数符号(a/b)、幂符号(an)、根式符号(√a)、括号符号(+-*/)等。
代数符号:未知数符号(x、y、z)、代数式符号(a+b)、方程式符号(f(x)=0)、因式分解符号(ax+b=(cx+d)e)、分式符号(a/b)、等式符号("=")等。
几何符号:三角形符号(△)、四边形符号(□、平行四边形□)、多边形符号(n边形)、圆形符号(O)、圆弧符号(⌒)、球体符号(S)、圆锥体符号(C)、长方体符号(L)、正方体符号(□)等。
统计符号:平均数符号(x̄)、中位数符号(M)、众数符号(M x̄)、方差符号(s²)、标准差符号(s)、总体平均数符号(x̄_1)、样本平均数符号(x̄_2)、标准误差符号(s x̄_1)等。
以上是一些常见的数学符号,它们在数学学习和研究中经常使用,可以帮助我们更方便地表达和交流数学思想和概念。
常用数学符号大全、关系代数符号1、几何符号⊥∥∠⌒⊙≡≌△2、代数符号∝∧∨~∫≠≤≥≈∞∶3、运算符号如加号(+),减号(-),乘号(×或·),除号(÷或/),两个集合的并集(∪),交集(∩),根号(√),对数(log,lg,ln),比(:),微分(dx),积分(∫),曲线积分(∮)等。
4、集合符号∪∩∈5、特殊符号∑π(圆周率)6、推理符号|a| ⊥∽△∠∩∪≠≡±≥≤∈←↑→↓↖↗↘↙∥∧∨&; §①②③④⑤⑥⑦⑧⑨⑩ΓΔΘΛΞΟΠΣΦΧΨΩαβγδεζηθικλμνξοπρστυφχψωⅠⅡⅢⅣⅤⅥⅦⅧⅨⅩⅪⅫⅰⅱⅲⅳⅴⅵⅶⅷⅸⅹ∈∏∑∕√∝∞∟∠∣∥∧∨∩∪∫∮∴∵∶∷∽≈≌≒≠≡≤≥≦≧≮≯⊕⊙⊥⊿⌒℃指数0123:o1237、数量符号如:i,2+i,a,x,自然对数底e,圆周率π。
8、关系符号如“=”是等号,“≈”是近似符号,“≠”是不等号,“>”是大于符号,“<”是小于符号,“≥”是大于或等于符号(也可写作“≮”),“≤”是小于或等于符号(也可写作“≯”),。
“→”表示变量变化的趋势,“∽”是相似符号,“≌”是全等号,“∥”是平行符号,“⊥”是垂直符号,“∝”是成正比符号,(没有成反比符号,但可以用成正比符号配倒数当作成反比)“∈”是属于符号,“??”是“包含”符号等。
9、结合符号如小括号“()”中括号“[]”,大括号“{}”横线“—”10、性质符号如正号“+”,负号“-”,绝对值符号“| |”正负号“±”11、省略符号如三角形(△),直角三角形(Rt△),正弦(sin),余弦(cos),x的函数(f(x)),极限(lim),角(∠),∵因为,(一个脚站着的,站不住)∴所以,(两个脚站着的,能站住)总和(∑),连乘(∏),从n个元素中每次取出r个元素所有不同的组合数(C(r)(n) ),幂(A,Ac,Aq,x^n)等。
数学所有的符号数学是一种精密、抽象和逻辑性极强的学科,而符号是数学中至关重要的元素之一。
符号用来表示数学概念、关系和操作,使得数学中的复杂问题的表达和解决得以变得简单而准确。
在这篇文章中,我们将探讨数学中一些常见的符号及其含义。
一、基础符号1. 加号(+)加号是数学中最基本的符号之一,表示两个数或两个量的和。
例如,“3+4”表示3和4的和,结果为7。
同样,我们可以使用加号来表示更多的数或量的和,例如“2+5+1+3+9”表示这五个量的和为20。
2. 减号(-)减号也是常见的符号,表示一个数或一个量减去另一个数或量。
例如,“6-3”表示6减去3,结果为3。
类似地,“5-2-1”表示首先将5减去2,然后再减去1,结果为2。
3. 乘号(×)乘号用来表示两个数或两个量的乘积。
例如,“3×4”表示3和4的乘积,结果为12。
同样,“2×5×1×3×9”表示这五个量的乘积为270。
4. 除号(÷)除号用来表示一个数或量除以另一个数或量。
例如,“8÷2”表示将8分成2份,每份为4,结果为4。
同样,“20÷4÷2”表示首先将20分成4份,每份为5,然后将这5分之一再分成2份,每份为2.5,结果为2.5。
5. 等于号(=)等于号用来表示两个量相等。
例如,“3+4=7”表示3加4的结果等于7。
随后在数学中,等于号的应用变得更加广泛,在各种方程、恒等式和不等式的表达中都有重要的应用。
6. 大于号(>)大于号用来表示一个数或者量比另一个数或量大。
例如,“5>3”表示5比3大,为真。
另外,“x>y”表示x比y大,其中x和y可以是任何量或变量。
7. 小于号(<)小于号用来表示一个数或者量比另一个数或量小。
例如,“2<9”表示2比9小,为真。
同样,“y<x”表示y比x小,其中x和y可以是任何量或变量。
1、希腊字母:α——阿尔法β——贝塔γ——伽马Γ——德尔塔μ——可sei ψ——可赛ω——奥秘噶κ——米哟ι——南木打ζ——西格玛η——套θ——fai2、数学运算符:ⅲ—连加号ⅱ—连乘号ⅻ—并ⅺ—补ⅰ—属于ⅿ—因为ⅾ—所以ⅳ—根号‖—平行—垂直ⅶ—角—弧↋—圆ⅴ—正比于ⅵ—无穷ⅼ—积分Ↄ—约等ↆ—恒等3、三角函数:sin—赛因cos—考赛因tan—叹近体cot—考叹近体sec—赛看近体csc —考赛看近体序号大写小写英文注音国际音标注音中文注音1 Α α alpha a:lf 阿尔法2 Β β beta bet 贝塔3 Γ γ gamma ga:m 伽马4 Γ δ delta delt 德尔塔5 Δ ε epsilon ep`silon 伊普西龙6 Ε δ zeta zat 截塔7 Ζ ε eta eit 艾塔8 Θ ζ thet ζit 西塔9 Η η iot aiot 约塔10 Θ θ kappa kap 卡帕11 Ι ι lambda lambd 兰布达12 Κ κ mu mju 缪13 Λ λ nu n ju 纽14 Μ μ xi ksi 克西15 Ν ν omicron omik`ron 奥密克戎16 Ξ π pi pai 派17 Ο ξ rho rou 肉18 Π ζ sigma `sigma 西格马19 Ρ η tau tau 套20 υ upsilon jup`silon 宇普西龙21 Φ θ phi fai 佛爱22 Σ χ chi phai 西23 Τ ψ psi psai 普西24 Υ ω omega o`miga 欧米伽希腊字母的正确读法是什么?1 Α α alpha a:lf 阿尔法2 Β β beta bet 贝塔3 Γ γ gamma ga:m 伽马4 Γ δ delta delt 德尔塔5 Δ ε epsilon ep`silon 伊普西龙6 Ε δ zeta zat 截塔7 Ζ ε eta eit 艾塔8 Θ ζ thet ζit 西塔9 Η η iot aiot 约塔10 Κ θ kappa kap 卡帕11 ⅸι lambda lambd 兰布达12 Μ κ mu mju 缪13 Ν λ nu nju 纽磁阻系数14 Ξ μ xi ksi 克西15 Ο ν omicron omik`ron 奥密克戎16 ∏ π pi pai 派17 Ρ ξ rho rou 肉18 ∑ ζ sigma `sigma 西格马19 Σ η tau tau 套20 Τ υ upsilon jup`silon 宇普西龙21 Φ θ phi fai 佛爱22 Υ χ chi phai 西23 Φ ψ psi psai 普西角速;24 Χ ω omega o`miga 欧米伽希腊字母读法Αα:阿尔法AlphaΒβ:贝塔BetaΓγ:伽玛GammaΓδ:德尔塔DelteΔε:艾普西龙Epsilonδ :捷塔ZetaΕε:依塔EtaΘζ:西塔ThetaΗη:艾欧塔IotaΚθ:喀帕Kappaⅸι:拉姆达LambdaΜκ:缪MuΝλ:拗NuΞμ:克西XiΟν:欧麦克轮Omicron∏π:派PiΡξ:柔Rho∑ζ:西格玛SigmaΣη:套TauΤυ:宇普西龙UpsilonΦθ:fai PhiΥχ:器ChiΦψ:普赛PsiΧω:欧米伽Omega数学符号大全各种符号的英文读法'exclam'='!''at'='@''numbersign'='#''dollar'='$''percent'='%''caret'='^''ampersand'='&''asterisk'='*''parenleft'='(''parenright'=')''minus'='-''underscore'='_''equal'='=''plus'='+''bracketleft'='''braceright'='}''semicolon'=';''colon'=':''quote'=''''doublequote'='"''backquote'=''''tilde'='~''backslash'='\''bar'='|''comma'=',''less'='<''period'='.''greater'='>''slash'='/''question'='?''space'=' '~~~~~~~~~~~~~~~~~~~~~~。 hyphen 连字符' apostrophe 省略号;所有格符号— dash 破折号‘ ’single quotation marks 单引号“ ”double quotation m arks 双引号( ) parentheses 圆括号square brackets 方括号Angle bracket{} Brace《》French quotes 法文引号;书名号... ellipsis 省略号¨ tandem colon 双点号" ditto 同上‖ parallel 双线号/ virgule 斜线号& ampersand = and~ swung dash 代字号§ section; division 分节号Ⅾ arrow 箭号;参见号+ plus 加号;正号- minus 减号;负号ª plus or minus 正负号× is multiplied by 乘号÷ is divided by 除号= is equal to 等于号ↅ is not equal to 不等于号ↆ is equivalent to 全等于号ↄ is equal to or approximately equal to 等于或约等于号Ↄ is approximately equal to 约等于号< is less than 小于号> is more than 大于号↉ is not less than 不小于号↊ is not more than 不大于号ↇ is less than or equal to 小于或等于号ↈ is more than or equal to 大于或等于号% per cent 百分之…‟ per mill 千分之…ⅵ infinity 无限大号ⅴ varies as 与…成比例ⅳ (square) root 平方根ⅿ since; b ecause 因为ⅾ hence 所以ↁ equals, as (proportion) 等于,成比例ⅶ angle 角 semicircle 半圆↋ circle 圆◈ circumference 圆周π pi 圆周率△ triangle 三角形 perpendicular to 垂直于ⅻ union of 并,合集ⅺ intersection of 交,通集ⅼ the integral of …的积分ⅲ (sigma) summation of 总和© degree 度† minute 分‡ second 秒#number …号‣ Celsius system 摄氏度@ at 单价x'是x prime(比如转置矩阵)x"是x double-prime数学符号大全1 几何符号ⅷⅶ↋ↆↄ△‖2 代数符号ⅴⅸⅹ~ⅼↅↇↈↃⅵↀ3运算符号×÷ⅳª4集合符号ⅻⅺⅰⅰↇↈ⊆⊂5特殊符号ⅲπ(圆周率)6推理符号|a| ↂ△ⅶⅺⅻↅↆªↈↇⅰⅬⅭⅮⅯ↖↗↘↙ⅷⅸⅹ&; §←↑→↓↔↕↖↗ΓΓΘΛΞΟΠΦΥΦΧαβγδεδεζηθικλμνπξζηυθχψωⅠⅡⅢⅣⅤⅥⅦⅧⅨⅩⅪⅫ﹪﹫ﹰﹱﹲﹳⅰⅱⅲ↚ⅳⅴⅵ↛ⅶ↜ⅷⅸⅹⅺⅻⅼⅽⅾⅿↀↁↂↃↄ↝ↅↆↇↈ↞↟↉↊?↋↠‣上述符号所表示的意义和读法(中英文参照)+plus 加号;正号-minus 减号;负号±plus or minus 正负号×is multiplied by 乘号÷is divided by 除号=is equal to 等于号≠ is not equal to 不等于号≡ is equivalent to 全等于号ↄis approximately equal to 约等于≈ is approximately equal to 约等于号<is less than 小于号>is more than 大于号≤ is less than or equal to 小于或等于≥ is more than or equal to 大于或等于%per cent 百分之…∞ infinity 无限大号√ (square) root 平方根X squared X的平方X cubed X的立方ⅿsince; because 因为ⅾhence 所以ⅶangle 角semicircle 半圆↋circle 圆○ circumference 圆周△triangle 三角形perpendicular to 垂直于ⅻintersection of 并,合集∩ union of 交,通集∫ the integral of …的积分∑ (sigma) summation of 总和°degree 度′ minute 分〃second 秒#number …号@at 单价符号意义ⅵ无穷大PI 圆周率|x| 函数的绝对值ⅻ集合并ⅺ集合交ↈ大于等于ↇ小于等于ↆ恒等于或同余ln(x) 自然对数lg(x) 以2为底的对数log(x) 常用对数floor(x) 上取整函数ceil(x) 下取整函数x mod y 求余数{x} 小数部分 x - floor(x)ⅼf(x)δx 不定积分ⅼ[a:b]f(x)δx a到b的定积分[P] P为真等于1否则等于0ⅲ[1ↇkↇn]f(k) 对n进行求和,可以拓广至很多情况如:ⅲ[n is prime][n < 10]f(n)ⅲⅲ[1ↇiↇjↇn]n^2lim f(x) (x->?) 求极限f(z) f关于z的m阶导函数C(n:m) 组合数,n中取mP(n:m) 排列数m|n m整除nmn m与n互质a ⅰ A a属于集合A#A 集合A中的元素个数ⅰⅱⅲⅳⅵⅶ↜ⅷⅸⅹⅺⅻⅼⅽⅾⅿↂↃↄↅↆↇↈ↞↟?↋ •数学符号大全收藏运算符: ± × ÷ ↀ∫ ⅽↆↄ≈ ↂⅴ↝≠ ↆ≤ ≥ ↞↟↉↊/√ ‰ ∑ ∏ &关系运算符:ⅸⅹ集合符号:ⅻⅺⅰ↜⊆序号:←↑→↓↔↕↖↗ⅠⅡⅢⅣⅤⅥⅦⅧⅨⅩⅪⅫ﹪﹫ﹰﹱﹲﹳ≈㈠㈡㈢㈣㈤㈥㈦㈧㈨㈩其它:~ ± × ÷ ∑ⅻⅺⅰ√ⅷⅶ↋ↆↄ≈ↂ≠↉↊≤≥∞ⅿⅾ☈☇‣⦅‰☆★○●◉◇◆□■△▲ⅮⅠⅡⅢⅣⅤⅥⅦⅧⅨⅩⅪⅫ*ΟαβγδεζηθικλμνξποστυφχψωΑ Β Γ Δ Δ Ε Ζ Η Θ Ι Κ Λ Μ Ν Ξ Ο Π Ρ Σ Τ Υ Φ Ωα β γ δ ε ζ η θ ι κ λ μ μ ν ξ π ο σ τ υ φ χψ ωⅬⅭⅮⅯ↖↗↘↙∞ ⅾⅿↀↁ° ′ ″ ‣▝↠△↋ⅶⅷ〓〔〈〉《》「」『』〕〖【】()[]{}ﹶ§ № •#&@☆★○● ◉△▲◇◆□ ■〒▙▛▚▘☇☈ⅬⅭⅮⅯ↖↗↘↙ⅰ∏∑↠∕√ⅴ∞↛ⅶ↜ⅷⅸⅹⅺⅻ∫ⅽⅾⅿↀↁↂ≈ↄ↝≠ↆ≤≥↞↟↉↊﹞﹟﹠﹡﹢﹣﹤﹥﹦﹨﹩!﹖﹗"#$%&'*\^_`|~⦅⦆ﹴ。「▝↋▔▕■□▲△▖▗◆◇◈◉●▘▙▚▛★☆▜☇☈、。
数学中常用的符号
数学中常用的符号有很多,以下列举一些常见的:
1. 数字:0, 1, 2, 3, 4, 5, 6, 7, 8, 9
2. 基本运算符号:
- 加法:+
- 减法:-
- 乘法:*
- 除法:/
- 等于:=
- 不等于:≠
- 大于:>
- 小于:<
- 大于等于:≥
- 小于等于:≤
3. 数学函数符号:
- 圆周率:π
- 开根号:√
- 绝对值:| |
- 平方:²
- 立方:³
- 对数:log
4. 集合符号:
- 元素属于:∈
- 元素不属于:∉
- 空集:∅
- 子集:⊆
- 真子集:⊂
5. 集合运算符号:
- 并集:∪
- 交集:∩
- 补集:'
- 差集:\
- 符号集合:ℝ(实数集),ℕ(自然数集),ℤ(整数集),ℚ(有理数集),S(复数集)
6. 三角函数符号:
- 正弦:sin
- 余弦:cos
- 正切:tan
7. 极限符号:
- 极限:lim
8. 微积分符号:
- 导数:d/dx
- 积分:∫
- 偏导数:∂/∂x
9. 概率统计符号:
- 同等于:≈
- 和:Σ
- 均值:μ
- 方差:σ²
10. 集合论符号:
- 内含于:⊂
- 并集:⋃
- 交集:⋂
- 全集:U
- 子集:⊆
以上只是一些常见的符号,实际中还有很多其他符号,如矩阵符号、微分方程符号等。
数学中的符号非常丰富,灵活运用可以简洁地表示数学概念和运算关系。
数量符号如:i,2+i,a,x,自然对数底e,圆周率π。
运算符号如加号(+),减号(-),乘号(×或·),除号(÷或/),两个集合的并集(∪),交集(∩),根号(√),对数(log,lg,ln),比(:),绝对值符号“| |”,微分(dx),积分(∫),曲线积分(∮)等。
关系符号如“=”是等号,“≈”是近似符号,“≠”是不等号,“>”是大于符号,“<”是小于符号,“≥”是大于或等于符号(也可写作“≮”),“≤”是小于或等于符号(也可写作“≯”),。
“→ ”表示变量变化的趋势,“∽”是相似符号,“≌”是全等号,“∥”是平行符号,“⊥”是垂直符号,“∝”是成正比符号,(没有成反比符号,但可以用成正比符号配倒数当作成反比)“∈”是属于符号,“⊆”是“包含”符号等。
“|”表示“能整除”(例如a|b 表示 a 能整除b),x可以代表未知数,y也可以代表未知数,任何字母都可以代表未知数。
结合符号如小括号“()”中括号“[ ]”,大括号“{ }”横线“—”,比如(2+1)+3=6,[2.5x(23+2)+1]=x,{3.5+[3+1]+1=y性质符号如正号“+”,负号“-”,正负号“±”省略符号如三角形(△),直角三角形(Rt△),正弦(sin),余弦(cos),x的函数(f(x)),极限(lim),角(∠),∵因为,(一个脚站着的,站不住)∴所以,(两个脚站着的,能站住) (口诀:因为站不住,所以两个点)总和(∑),连乘(∏),从n个元素中每次取出r个元素所有不同的组合数(C(r)(n) ),幂(A,Ac,Aq,x^n)等。
排列组合符号C-组合数A-排列数N-元素的总个数R-参与选择的元素个数!-阶乘,如5!=5×4×3×2×1=120C-Combination- 组合A-Arrangement-排列离散数学符号(未全)∀全称量词∃存在量词├ 断定符(公式在L中可证)╞ 满足符(公式在E上有效,公式在E上可满足)┐ 命题的“非”运算∧ 命题的“合取”(“与”)运算∨ 命题的“析取”(“或”,“可兼或”)运算→ 命题的“条件”运算↔命题的“双条件”运算的A<=>B 命题A 与B 等价关系A=>B 命题 A与 B的蕴涵关系A* 公式A 的对偶公式wff 合式公式iff 当且仅当↑ 命题的“与非” 运算(“与非门” )↓ 命题的“或非”运算(“或非门” )□ 模态词“必然”◇ 模态词“可能”φ 空集∈ 属于A∈B 则为A属于B(∉不属于)P(A)集合A的幂集|A| 集合A的点数R^2=R○R [R^n=R^(n-1)○R] 关系R的“复合”א阿列夫⊆包含⊂(或下面加≠)真包含∪ 集合的并运算∩ 集合的交运算- (~)集合的差运算〡限制[X](右下角R) 集合关于关系R的等价类A/ R 集合A上关于R的商集[a] 元素a 产生的循环群I (i大写) 环,理想Z/(n) 模n的同余类集合r(R) 关系 R的自反闭包s(R) 关系的对称闭包CP 命题演绎的定理(CP 规则)EG 存在推广规则(存在量词引入规则)ES 存在量词特指规则(存在量词消去规则)UG 全称推广规则(全称量词引入规则)US 全称特指规则(全称量词消去规则)R 关系r 相容关系R○S 关系与关系的复合domf 函数的定义域(前域)ranf 函数的值域f:X→Y f是X到Y的函数GCD(x,y) x,y最大公约数LCM(x,y) x,y最小公倍数aH(Ha) H 关于a的左(右)陪集Ker(f) 同态映射f的核(或称 f同态核)[1,n] 1到n的整数集合d(u,v) 点u与点v间的距离d(v) 点v的度数G=(V,E) 点集为V,边集为E的图W(G) 图G的连通分支数k(G) 图G的点连通度△(G) 图G的最大点度A(G) 图G的邻接矩阵P(G) 图G的可达矩阵M(G) 图G的关联矩阵C 复数集N 自然数集(包含0在内)N* 正自然数集P 素数集Q 有理数集R 实数集Z 整数集Set 集范畴Top 拓扑空间范畴Ab 交换群范畴Grp 群范畴Mon 单元半群范畴Ring 有单位元的(结合)环范畴Rng 环范畴CRng 交换环范畴R-mod 环R的左模范畴mod-R 环R的右模范畴Field 域范畴Poset 偏序集范畴部分希腊字母数学符号字母古希腊语名称英语名称古希腊语发音现代希腊语发音中文注音数学意思Α α ?λφα Alpha [a],[a?] [a] 阿尔法角度;系数Β β β?τα Beta [b] [v] 贝塔角度;系数Δ δ δ?λτα Delta [d] [ð] 德尔塔变动;求根公式Ε ε ?ψιλον Epsilon [e] [e] 伊普西隆对数之基数Ζ ζ ζ?τα Zeta [zd] [z] 泽塔系数;Θθ θ?τα Theta [t?] [θ] 西塔温度;相位角Ι ι ι?τα Iota [i] [i] 约塔微小,一点儿Λ λ λ?μβδα(现为λ?μδα) Lambda [l] [l] 兰姆达波长(小写);体积Μ μ μυ(现为μι) Mu [m] [m] 谬微(千分之一);放大因数(小写)Ξ ξ ξι Xi [ks] [ks] 克西随机变量Π π πι Pi [p] [p] 派圆周率=圆周÷直径≈3.1416Σ σ σ?γμα Sigma [s] [s] 西格玛总和(大写)Τ τ ταυ Tau [t] [t] 陶时间常数Φ φ φι Phi [p?] [f] 弗爱辅助角Ω ω ωμ?γα Omega [??] [o] 欧米咖角编辑本段数学符号的意义符号(Symbol) 意义(Meaning)= 等于 is equal to≠ 不等于 is not equal to< 小于 is less than> 大于 is greater than|| 平行 is parallel to≥ 大于等于 is greater than or equal to≤ 小于等于 is less than or equal to≡恒等于或同余π 圆周率|x| 绝对值absolute value of X ∽ 相似 is similar to≌ 全等 is equal to(especially for triangle )>>远远大于号<< 远远小于号∪并集∩交集⊆包含于⊙ 圆\ 求商值β bet 磁通系数;角度;系数(数学中常用作表示未知角)φ f ai 磁通;角(数学中常用作表示未知角)∞无穷大ln(x) 以e为底的对数lg(x) 以10为底的对数floor(x) 上取整函数ceil(x) 下取整函数x mod y 求余数x - floor(x) 小数部分∫f(x)dx不定积分∫[a:b]f(x)dx a到b的定积分∑(n=p,q)f(n) 表示f(n)的n从p到q逐步变化对f(n)的连加和评论(1) | 3202013-02-21 20:09 冰城雪翼 | 一级(1)╮ +-×÷±<>•∶∴∵∷⊙∫∮∝∞∧∨º¹²³ ½ ¾ ¼≠≤≥≈≡‖=≌∽≮≯∑∏∪∩∈⊿⌒√∟㏒㏑¢∠⊥%‰℅°℃℉′〒¤○µ㎎㎏㎜㎝㎞㎡㏄㏎㏒$£¥㏕♂♀ X¹ X² X³ 1°1′1〃特殊符号(1)↑ ↓ ← → ↖ ↗ ↙ ↘ ㊣◎ ⊕ ⊙ ○ ● △ ▲☆★◇◆□■▽▼§¥£※♀♂∵∴φω ░▒☻☺☼♠◈♤♦◊♨♣♧♥♡▦▩▣▧▨▤▥▪▫◘◙☏☎☜☞◑◐◦°☑₪特殊符号(2)╮ ,、~%#*‧;∶ … ¨ ,• ˙ ‘ ’〃′ εїз™✿。◕‿◕。◎☺☻►◄▧▨◐◑↔↕㊊㊋㊌㊍㊎㊏㊐▀▄█▌▬ (ε.メ)特殊符号(3)▣▤▥▦▩♭☀ஐ☈➽〠〄㍿㊚㊛㊙℗♯♩♫♬¤큐≡(2)1 几何符号⊥ ‖ ∠ ⌒ ⊙ ≡ ≌ △2 代数符号∝ ∧ ∨ ~∫ ≠≤ ≥ ≈ ∞ ∶3运算符号× ÷ √ ±4集合符号∪ ∩ ∈5特殊符号∑ π(圆周率)6推理符号|a| ⊥ ∽ △ ∠ ∩ ∪ ≠ ≡ ± ≥ ≤ ∈ ←↑ → ↓ ↖ ↗ ↘ ↙ ‖ ∧ ∨ ∥&; §① ② ③ ④ ⑤ ⑥ ⑦ ⑧ ⑨ ⑩Ⅰ Ⅱ Ⅲ Ⅳ Ⅴ Ⅵ Ⅶ Ⅷ Ⅸ Ⅹ Ⅺ Ⅻⅰ ⅱ ⅲ ⅳ ⅴ ⅵ ⅶ ⅷ ⅸ ⅹ∈ ∏ ∑ ∕ √ ∝ ∞ ∟ ∠ ∣ ‖∧ ∨ ∩ ∪ ∫ ∮∴ ∵ ∶ ∷ ∽ ≈ ≌ ≈ ≠ ≡ ≤ ≥ ≤ ≥ ≮ ≯ ⊕ ⊙ ⊥⊿ ⌒ ℃指数0123:o1237、数量符号如:i,2+i,a,x,自然对数底e,圆周率π。
∱
1 => <=> ⊊⊋
按下ctrl+F9键,在出现的花括号中键入{eq \r(2,123456789)},然后单击右键,切换域代码即可得到123456789的2次根号,无论您后边的数字多长都会在根号内。
注意所有的字母均为半角符号。
【例】输入分数5/8 的步骤
答:1、在需要输入分数的位置插入光标;
2、按ctrl+F9;
3、输入eq \f(5,8);
4、按shift+F9。
αβγδεδεζηθικλμνπξζηυθχψω
ΑΒΓΓΔΕΖΘΗΚ∡ΜΝΞΟ∏Ρ∑ΤΥΦΦΧΨ
•¨…∩∪∧∨
∥∦÷ª∈∫∬∭∝∮∞∑∏∣
〒!∬∮∯∰∱∰∱∲∳『』〕〖【】〓〔〓〔{}
‖∵≨∟∟‖∡∢∣∤∣
√*@@∞⊕∶∴‰&?!%℅℉
℃$⦅⦆‰§№☆★※¥%&
⊕∬∮∯∰∱
∵‖∴∑兀
○●℃℉
∣∤㏑㏒→∟©
ⅠⅡⅢⅣⅤⅥⅦⅧⅨⅩ
ΓΓΘ∡∏∑ΞΦΧΨ
νπξζηυθχψω
δηξδ∑εζηΧθικθυΨα∏ΤεΥΦζΡπΦν
ΓΓΔΕΖΘΗΚ∡ΜΝΞΟΒωμλ
1、几何符号
∵∠∟∶∴≡ ∭△
2、代数符号
∝∡∢~∫ ≠ ≤ ≥ ≈ ∞ ∩
3、运算符号
如加号(+),减号(-),乘号(×或·),除号(÷或/),两个集合的并集(∤),交集
(∩),根号(√),对数(log,lg,ln),比(:),微分(dx),积分(∫),曲线积分(∦)等。
4、集合符号
∤∩ ∈
5、特殊符号
∑ π(圆周率)
6、推理符号
|a| ∵∫△∟∩ ∤≠ ≡ ± ≥ ≤ ∈←
↑ → ↓ ↖↗↘↙∠∡∢
&; §
∷∸∹∺∻∼∽∾∿≀
Γ Δ Θ Λ Ξ Ο Π Σ Φ Χ Ψ Ω
α β γ δ ε δ ε ζ η θ ι κ λ
μ ν π ξ ζ η υ θ χ ψ ω
ⅠⅡⅢⅣⅤⅥⅦⅧⅨⅩⅪⅫ
ⅰⅱⅲⅳⅴⅵⅶⅷⅸⅹ
∈∏ ∑ ∕ √ ∝∞ ∟ ∟∣∠∡∢∩ ∤∫ ∦
∧∨∩∪∫≈ ∭≒≠ ≡ ≤ ≥ ≦≧∲∳⊕∴∵
≨∶℃
指数0123:o123
7、数量符号
如:i,2+i,a,x,自然对数底e,圆周率π。
8、关系符号
如“=”是等号,“≈”是近似符号,“≠”是不等号,“>”是大于符号,“<”是小于符号,“≥”是大于或等于符号(也可写作“∲”),“≤”是小于或等于符号(也可写作“∳”),。
“→ ”表示变量变化的趋势,“∫”是相似符号,“∭”是全等号,“∠”是平行符号,“∵”是垂直符号,“∝”是成正比符号,(没有成反比符号,但可以用成正比符号配倒数当作成反比)“∈”是属于符号,“??”是“包含”符号等。
9、结合符号
如小括号“()”中括号“[]”,大括号“{}”横线“—”
10、性质符号
如正号“+”,负号“-”,绝对值符号“| |”正负号“±”
11、省略符号
如三角形(△),直角三角形(Rt△),正弦(sin),余弦(cos),x的函数(f(x)),极限(lim),角(∟),
∨因为,(一个脚站着的,站不住)
∧所以,(两个脚站着的,能站住)总和(∑),连乘(∏),从n个元素中每次取出r 个元素所有不同的组合数(C(r)(n) ),幂(A,Ac,Aq,x^n)等。
12、排列组合符号
C-组合数
A-排列数
N-元素的总个数
R-参与选择的元素个数
!-阶乘,如5!=5×4×3×2×1=120
C-Combination- 组合
A-Arrangement-排列。