常用数学符号大全
- 格式:docx
- 大小:30.85 KB
- 文档页数:13
数学符号大全1. 数字和基本运算符号•0, 1, 2, 3, 4, 5, 6, 7, 8, 9:十进制数字。
•+:加法运算符。
•-:减法运算符。
•× 或 *:乘法运算符。
•÷ 或 /:除法运算符。
•%:取余运算符。
2. 算术表达式符号•( ):括号。
用于改变运算顺序。
•{ }:花括号。
常用于集合符号。
•[ ]:方括号。
常用于向量和数组的表示。
•|:绝对值符号。
•√:平方根符号。
•^:乘方符号,表示乘方运算。
3. 特殊数学符号•π:圆周率。
•∞:无穷大。
•e:自然对数的底数。
•i:虚数单位,表示根号下-1。
•≈:约等于符号,表示两个数值大致相等。
•≡ :全等符号,表示恒等于。
4. 比较符号•=:等于符号。
•≠:不等于符号。
•<:小于符号。
•:大于符号。
•≤:小于或等于符号。
•≥:大于或等于符号。
5. 代数符号•x, y, z:常用的代数变量。
•a, b, c:常用的系数或常数。
•n:整数变量。
•α, β, γ:希腊字母符号,常用于表示角度或系数。
•∑:求和符号。
•∏:求积符号:•∴:因此符号。
6. 集合和逻辑符号•∅:空集符号。
•∈:属于符号,表示元素属于集合。
•∉:不属于符号,表示元素不属于集合。
•∪:并集符号,表示两个或多个集合的并集。
•∩:交集符号,表示两个或多个集合的交集。
•⊂:子集符号,表示一个集合是另一个集合的子集。
7. 几何符号•∠:角度符号,用于表示角度。
•∥:平行符号,表示两条线段平行。
•⊥:垂直符号,表示两条线段垂直。
•≅:全等符号,表示两个图形全等。
8. 微积分符号•∂:偏导符号,用于表示偏导数。
•∫:积分符号,表示定积分。
•∬:重积分符号,表示二重积分。
•∭:三重积分符号,表示三重积分。
•∮:曲线积分符号,表示沿曲线的积分。
9. 统计学符号•μ:总体均值。
•σ:总体标准差。
•x̄:样本均值。
•s:样本标准差。
•P:概率。
•Z:正态分布的标准化变量。
数学符号列密达
常用数学符号大全:
1、几何符号
◎ ≡ ≌
2、代数符号
α∧v~∫≠ ≤≥≈∞:
运算符号
如加号(+),减号(-),乘号(x或),除号(÷或/),两个集合的并集(u),交集(n),根号(),对数(log,lg,ln),比(:),微分(dx),积分(),曲线积分(f)等。
4、特殊符号
∑ π(圆周率)
C 复数集
N自然数集(包含0在内)
N*正自然数集
P 素数集
Q有理数集
R实数集
Z整数集
Set集范畴
5、数量符号
如:i,2+i,a,x,自然对数底e,圆周率π。
6、关系符号
如“=”是等号,“~”是近似符号,“≠”是不等号,“>”是大于符号,“<”是小于符号,“>”是大于或等于符号(也可写作“丈”),“<”是小于或等于符号(也可写作“”),。
“→”表示变量变化的趋势“~”是相似符号,“≌”是全等号,“I”是平行符号,“工”是垂直符号,“α”是成正比符号,(没有成反比符号,但可以用成正比符号配倒数当作成反比)“”是属于符号,“??”是“包含”。
1、几何符号⊥∥∠⌒⊙≡≌△2、代数符号∝∧∨~∫≠≤≥≈∞∶3、运算符号如加号(+),减号(-),乘号(×或·),除号(÷或/),两个集合的并集(∪),交集(∩),根号(√),对数(log,lg,ln),比(:),微分(dx),积分(∫),曲线积分(∮)等。
4、集合符号∪∩∈5、特殊符号∑π(圆周率)6、推理符号|a| ⊥∽△∠∩∪≠≡±≥≤∈←↑→↓↖↗↘↙∥∧∨&; §①②③④⑤⑥⑦⑧⑨⑩ΓΔΘΛΞΟΠΣΦΧΨΩαβγδεζηθικλμνξοπρστυφχψωⅠ Ⅱ Ⅲ Ⅳ Ⅴ Ⅵ Ⅶ Ⅷ Ⅸ Ⅹ Ⅺ Ⅻⅰ ⅱ ⅲ ⅳ ⅴ ⅵ ⅶ ⅷ ⅸ ⅹ∈∏∑∕√∝∞∟ ∠∣∥∧∨∩∪∫∮∴∵∶∷∽≈≌≒≠≡≤≥≦≧≮≯⊕⊙⊥⊿⌒℃指数0123:o1237、数量符号如:i,2+i,a,x,自然对数底e,圆周率π。
8、关系符号如“=”是等号,“≈”是近似符号,“≠”是不等号,“>”是大于符号,“<”是小于符号,“≥”是大于或等于符号(也可写作“≮”),“≤”是小于或等于符号(也可写作“≯”),。
“→ ”表示变量变化的趋势,“∽”是相似符号,“≌”是全等号,“∥”是平行符号,“⊥”是垂直符号,“∝”是成正比符号,(没有成反比符号,但可以用成正比符号配倒数当作成反比)“∈”是属于符号,“??”是“包含”符号等。
9、结合符号如小括号“()”中括号“[]”,大括号“{}”横线“—”10、性质符号如正号“+”,负号“-”,绝对值符号“| |”正负号“±”11、省略符号如三角形(△),直角三角形(Rt△),正弦(sin),余弦(cos),x的函数(f(x)),极限(lim),角(∠),∵因为,(一个脚站着的,站不住)∴所以,(两个脚站着的,能站住)总和(∑),连乘(∏),从n个元素中每次取出r个元素所有不同的组合数(C(r)(n) ),幂(A,Ac,Aq,x^n)等。
常用数学符号大全、关系代数符号1、几何符号⊥∥∠⌒⊙≡≌△2、代数符号∝∧∨~∫≠≤≥≈∞∶3、运算符号如加号(+),减号(-),乘号(×或·),除号(÷或/),两个集合的并集(∪),交集(∩),根号(√),对数(log,lg,ln),比(:),微分(dx),积分(∫),曲线积分(∮)等。
4、集合符号∪∩∈5、特殊符号∑π(圆周率)6、推理符号|a| ⊥∽△∠∩∪≠≡±≥≤∈←↑→↓↖↗↘↙∥∧∨&; §①②③④⑤⑥⑦⑧⑨⑩ΓΔΘΛΞΟΠΣΦΧΨΩαβγδεζηθικλμνξοπρστυφχψωⅠⅡⅢⅣⅤⅥⅦⅧⅨⅩⅪⅫⅰⅱⅲⅳⅴⅵⅶⅷⅸⅹ∈∏∑∕√∝∞∟∠∣∥∧∨∩∪∫∮∴∵∶∷∽≈≌≒≠≡≤≥≦≧≮≯⊕⊙⊥⊿⌒℃指数0123:o1237、数量符号如:i,2+i,a,x,自然对数底e,圆周率π。
8、关系符号如“=”是等号,“≈”是近似符号,“≠”是不等号,“>”是大于符号,“<”是小于符号,“≥”是大于或等于符号(也可写作“≮”),“≤”是小于或等于符号(也可写作“≯”),。
“→”表示变量变化的趋势,“∽”是相似符号,“≌”是全等号,“∥”是平行符号,“⊥”是垂直符号,“∝”是成正比符号,(没有成反比符号,但可以用成正比符号配倒数当作成反比)“∈”是属于符号,“??”是“包含”符号等。
9、结合符号如小括号“()”中括号“[]”,大括号“{}”横线“—”10、性质符号如正号“+”,负号“-”,绝对值符号“| |”正负号“±”11、省略符号如三角形(△),直角三角形(Rt△),正弦(sin),余弦(cos),x的函数(f(x)),极限(lim),角(∠),∵因为,(一个脚站着的,站不住)∴所以,(两个脚站着的,能站住)总和(∑),连乘(∏),从n个元素中每次取出r个元素所有不同的组合数(C(r)(n) ),幂(A,Ac,Aq,x^n)等。
常用数学符号大全、关系代数符号1、几何符号⊥⊥⊥⊥⊥≡⊥⊥2、代数符号⊥⊥⊥~∫≠≤≥≈∞⊥3、运算符号如加号(+),减号(-),乘号(×或·),除号(÷或/),两个集合的并集(⊥),交集(∩),根号(√),对数(log,lg,ln),比(:),微分(dx),积分(∫),曲线积分(⊥)等。
4、集合符号⊥∩⊥5、特殊符号∑π(圆周率)6、推理符号|a|⊥⊥⊥⊥∩⊥≠≡±≥≤⊥←↑→↓↖↗↘↙⊥⊥⊥&;§①②③④⑤⑥⑦⑧⑨⑩ΓΔΘΛΞΟΠΣΦΧΨΩαβγδεζηθικλμνξοπρστυφχψω⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥⊥∏∑∕√⊥∞∟ ⊥⊥⊥⊥⊥∩⊥∫⊥⊥⊥⊥⊥⊥≈⊥⊥≠≡≤≥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥指数0123:o1237、数量符号如:i,2+i,a,x,自然对数底e,圆周率π。
8、关系符号如“=”是等号,“≈”是近似符号,“≠”是不等号,“>”是大于符号,“<”是小于符号,“≥”是大于或等于符号(也可写作“⊥”),“≤”是小于或等于符号(也可写作“⊥”),。
“→ ”表示变量变化的趋势,“⊥”是相似符号,“⊥”是全等号,“⊥”是平行符号,“⊥”是垂直符号,“⊥”是成正比符号,(没有成反比符号,但可以用成正比符号配倒数当作成反比)“⊥”是属于符号,“??”是“包含”符号等。
9、结合符号如小括号“()”中括号“[]”,大括号“{}”横线“—”10、性质符号如正号“+”,负号“-”,绝对值符号“| |”正负号“±”11、省略符号如三角形(⊥),直角三角形(Rt⊥),正弦(sin),余弦(cos),x的函数(f(x)),极限(lim),角(⊥),⊥因为,(一个脚站着的,站不住)⊥所以,(两个脚站着的,能站住)总和(∑),连乘(∏),从n个元素中每次取出r个元素所有不同的组合数(C(r)(n) ),幂(A,Ac,Aq,x^n)等。
数学符号大全及意义数学符号是数学领域中的重要工具,它们用来表示数学概念、关系和运算,是数学语言中不可或缺的一部分。
在数学中,有许多常用的符号,它们代表着不同的数学概念和意义。
本文将为大家介绍一些常见的数学符号及其意义,希望能够帮助大家更好地理解和运用这些符号。
1. 加号(+)。
加号是数学中最基本的运算符号之一,它表示两个数相加的运算。
例如,3+5=8,表示3加5的结果是8。
2. 减号(-)。
减号也是常见的运算符号,表示两个数相减的运算。
例如,7-4=3,表示7减去4的结果是3。
3. 乘号(×)。
乘号表示两个数相乘的运算。
例如,2×6=12,表示2乘以6的结果是12。
4. 除号(÷)。
除号表示两个数相除的运算。
例如,8÷2=4,表示8除以2的结果是4。
5. 等号(=)。
等号用来表示两个数或表达式相等的关系。
例如,2+3=5,表示2加3的结果等于5。
6. 小于号(<)和大于号(>)。
小于号和大于号分别表示数学中的小于和大于关系。
例如,3<5表示3小于5,5>2表示5大于2。
7. 求和符号(∑)。
求和符号用来表示对一组数进行求和的运算。
例如,∑(i=1 to 5) i,表示对1到5的所有整数进行求和。
8. 开方符号(√)。
开方符号表示对一个数进行开方运算。
例如,√9=3,表示对9进行开方的结果是3。
9. π(圆周率)。
π是一个代表圆周率的数学常数,它的值约为3.14159。
在数学中,π经常用来表示圆的周长和面积等概念。
10. Σ(求和)。
Σ是希腊字母中的一个,表示求和的意思。
在数学中,Σ常用来表示对一组数进行求和的运算。
11. ∫(积分)。
积分符号用来表示对一个函数进行积分运算。
在微积分中,积分是一个重要的概念,它常常用来求函数的面积、体积等。
12. ∞(无穷大)。
无穷大符号表示一个数值是无穷大的概念。
在数学中,无穷大常常用来表示某些极限值或者数列的趋势。
常用数学符号大全常用数学符号大全1、几何符号≱‖θδΩΩΦΦφφΨ﹟∠≲≰≡≌△° |a| ≱∸∠∟‖|2、代数符号? ∝∧∨~∫ ≤ ≥ ≈ ∞ :〔〕[ ]〈〉《》「」『』】【〖3、运算符号× ‚ √ ± ≠ ≡≮≯﹟4、集合符号∪∩ⅰΦ ? ¢5、特殊符号∑ π(圆周率)@#☆★◈●◉◇◆□■▓⊿※¥Γ Δ Θ ∧Ξ Ο ∏ ∑ Φ Χ ΨΩ∏6、推理符号ⅬⅭⅮⅯ↖↗↘↙∴∵∶∷T ? ü7、标点符号` ˉ ˇ ¨ 、· ‘’8、其他& ; §℃№ $£¥‰ ℉☈☇≳≴≵≶≷≸≹≺≻≼Γ Δ Θ ∧Ξ Ο ∏ ∑ Φ Χ Ψ Ωα β γ δ εδ ε ζ η θ ι κλ μ ν π ξ ζ η υ θ χ ψ ωⅠⅡⅢⅣⅤⅥⅦⅧⅨⅩⅪⅫⅰⅱⅲⅳⅴⅵⅶⅷⅸⅹⅰ∏ ∑ ∕ √ ∝∞ ∟∠∣‖∧∨∩∪∫ ∮∴∵∶∷∸≈ ≌≈ ≠ ≡≤ ≥ ≤ ≥ ≮≯⊕≰≱⊿≲指数0123:o123 〃? ? ?符号意义∞ 无穷大PI 圆周率|x| 函数的绝对值∪集合并∩集合交≥ 大于等于≤ 小于等于≡恒等于或同余ln(x) 以e为底的对数lg(x) 以10为底的对数floor(x) 上取整函数ceil(x) 下取整函数x mod y 求余数{x} 小数部分x - floor(x)∫f(x)δx 不定积分∫[a:b]f(x)δx a到b的定积分∑[1≤k≤n]f(k) 对n进行求和,可以拓广至很多情况,如:∑[n is prime][n < 10]f(n)∑∑[1≤i≤j≤n]n^2lim f(x) (x->?) 求极限C(n:m) 组合数,n中取mP(n:m) 排列数m|n m整除n(m,n)=1 m与n互质a ⅰA a属于集合ACard(A) 集合A中的元素个数|a| ≱∸△∠∩∪≠ ∵∴≡± ≥ ≤ ⅰⅬⅭⅮⅯ↖↗↘↙‖∧∨¼ ½ ¾§≳≴≵≶≷≸≹≺≻≼α β γ δ ε δ ε ζ η θ ι κ λ μ ν π ξ ζ η υ θ χ ψ ωⅰⅱⅲⅳⅴⅵⅶⅷⅸⅹⅰ∏∑∕√∝∞∟∠∣‖∧∨∩∪∫∮∴∵∶∷∸≈≌≈≠≡≤≥≤≥≮≯⊕≰≱⊿≲为了方便,也做些约定!x的平方,可以打成x^2 (其它的以此类推)x+1的开方,可以打成√(x+1),记住加括号;x分之一,可以输入1/x;如果是x+1分之一,请输入1/(x+1),分子、分母请加括号<> 或>< 表示不等于例:a<>b 即a不等于b;<= 表示小于等于(不大于)例:a<=b 即a不大于b;>= 表示大于等于(不小于)例:a>=b 即a不小于b;^ 表示乘方例:a^b 即a的b次方, 也可用于开根号,例:a^(1/2) 表示a的平方根* 表示乘……/ 表示浮点除例:3/2=1.5\ 表示整除例:3\2=1……1()广义括号,允许多重嵌套,无大、中、小之分,优先级最高。
常用数学符号大全点击查看>>数学实用工具:数学符号大全1、几何符号ⅷⅶ△2、代数符号ⅴⅸⅹ~ⅵ?3、运算符号如加号(+),减号(-),乘号(×或·),除号(÷或/),两个集合的并集(?),交集(?),根号(ⅳ),对数(log,lg,ln),比(:),微分(dx),积分(?),曲线积分(?)等。
4、集合符号ⅰ5、特殊符号ⅲπ(圆周率)6、推理符号|a| ??△ⅶ±??ⅰ?↖↗↘↙ⅷⅸⅹ&; §←↑→↓??↖↗ΓΔΘΛΞΟΠΣΦΧΨΩαβγδεδεζηθικλμνπξζηυθχψωⅠ Ⅱ Ⅲ Ⅳ Ⅴ Ⅵ Ⅶ Ⅷ Ⅸ Ⅹ Ⅺ Ⅻⅰ ⅱ ⅲ ⅳ ⅴ ⅵ ⅶ ⅷ ⅸ ⅹⅰⅱⅲ?ⅳⅴⅵ? ⅶ?ⅷⅸⅹ⊕??℃指数0123:o1237、数量符号如:i,2+i,a,x,自然对数底e,圆周率π。
8、关系符号如“=”是等号,“?”是近似符号,“?”是不等号,“>”是大于符号,“<”是小于符号,“?”是大于或等于符号(也可写作“?”),“?”是小于或等于符号(也可写作“?”),。
“? ”表示变量变化的趋势,“?”是相似符号,“?”是全等号,“ⅷ”是平行符号,“?”是垂直符号,“ⅴ”是成正比符号,(没有成反比符号,但可以用成正比符号配倒数当作成反比)“ⅰ”是属于符号,“??”是“包含”符号等。
9、结合符号如小括号“()”中括号“[]”,大括号“{}”横线“—”10、性质符号如正号“+”,负号“-”,绝对值符号“| |”正负号“±”11、省略符号如三角形(△),直角三角形(Rt△),正弦(sin),余弦(cos),x的函数(f (x)),极限(lim),角(ⅶ),因为,(一个脚站着的,站不住)所以,(两个脚站着的,能站住)总和(ⅲ),连乘(ⅱ),从n 个元素中每次取出r个元素所有不同的组合数(C(r)(n) ),幂(A,Ac,Aq,x^n)等。
点击查看>>数学实用工具:数学符号大全1、几何符号ⅷⅶ↋ↆↄ△2、代数符号ⅴⅸⅹ~ⅼↅↇↈↃⅵↀ3、运算符号如加号(+),减号(-),乘号(×或·),除号(÷或/),两个集合的并集(ⅻ),交集(ⅺ),根号(ⅳ),对数(log,lg,ln),比(:),微分(dx),积分(ⅼ),曲线积分(ⅽ)等。
4、集合符号ⅻⅺⅰ5、特殊符号ⅲπ(圆周率)6、推理符号|a| ↂ△ⅶⅺⅻↅↆ±ↈↇⅰⅬⅭⅮⅯ↖↗↘↙ⅷⅸⅹ&; §←↑→↓↔↕↖↗ΓΔΘΛΞΟΠΣΦΧΨΩαβγδεδεζηθικλμνπξζηυθχψωⅠ Ⅱ Ⅲ Ⅳ Ⅴ Ⅵ Ⅶ Ⅷ Ⅸ Ⅹ Ⅺ Ⅻⅰ ⅱ ⅲ ⅳ ⅴ ⅵ ⅶ ⅷ ⅸ ⅹⅰⅱⅲ↚ⅳⅴⅵ↛ ⅶ↜ⅷⅸⅹⅺⅻⅼⅽⅾⅿↀↁↂↃↄ↝ↅↆↇↈ↞↟↉↊⊕↋↠℃指数0123:o1237、数量符号如:i,2+i,a,x,自然对数底e,圆周率π。
8、关系符号如“=”是等号,“Ↄ”是近似符号,“ↅ”是不等号,“>”是大于符号,“<”是小于符号,“ↈ”是大于或等于符号(也可写作“↉”),“ↇ”是小于或等于符号(也可写作“↊”),。
“Ⅾ ”表示变量变化的趋势,“ↂ”是相似符号,“ↄ”是全等号,“ⅷ”是平行符号,“”是垂直符号,“ⅴ”是成正比符号,(没有成反比符号,但可以用成正比符号配倒数当作成反比)“ⅰ”是属于符号,“??”是“包含”符号等。
9、结合符号如小括号“()”中括号“[]”,大括号“{}”横线“—”10、性质符号如正号“+”,负号“-”,绝对值符号“| |”正负号“±”11、省略符号如三角形(△),直角三角形(Rt△),正弦(sin),余弦(cos),x的函数(f (x)),极限(lim),角(ⅶ),ⅿ因为,(一个脚站着的,站不住)ⅾ所以,(两个脚站着的,能站住)总和(ⅲ),连乘(ⅱ),从n个元素中每次取出r个元素所有不同的组合数(C(r)(n) ),幂(A,Ac,Aq,x^n)等。
常用的数学符号大全及其意义在数学中,有许多常用的符号用来表示数学概念、运算和关系。
以下是一些常见的数学符号及其意义的详细介绍:1.+(加号):表示两个数的加法运算,如2+3=52.-(减号):表示两个数的减法运算,如5-2=33.×(乘号):表示两个数的乘法运算,如2×3=64.÷(除号):表示两个数的除法运算,如6÷2=35.=(等号):表示两个数或表达式相等的关系,如2+3=56.<(小于号):表示一个数小于另一个数的关系,如3<57.>(大于号):表示一个数大于另一个数的关系,如5>38.≤(小于等于号):表示一个数小于或等于另一个数的关系,如3≤59.≥(大于等于号):表示一个数大于或等于另一个数的关系,如5≥310.≠(不等号):表示两个数或表达式不相等的关系,如2+3≠611.():圆括号,用于表示运算的优先级或改变表达式的结构,如(2+3)×412.[]:方括号,用于表示数集或矩阵等,如[1,2,3]。
13.{}:花括号,用于表示集合的元素或条件,如{1,2,3}。
14.√(开方号):表示一个数的平方根,如√9=315.^(上标):表示一个数的幂运算,如2^3=816. ∞(无穷大):表示一个数趋近于无穷大的概念,如lim(x→∞) = ∞。
17.∑(求和符号):表示一系列数的累加和,如∑(1,2,3)=1+2+318. ∫(积分符号):表示曲线下的面积或函数的积分运算,如∫(0, 1) x^2 dx。
21.∠(角度符号):表示一个角度的概念,如∠ABC表示角ABC。
22.∥(平行符号):表示两条直线平行的关系,如AB∥CD。
23.⊥(垂直符号):表示两条直线垂直的关系,如AB⊥CD。
24.∆(三角形符号):表示一个三角形的概念,如∆ABC表示三角形ABC。
25.∝(正比符号):表示两个量之间成正比的关系,如y∝x表示y与x成正比。
2024年常用数学符号总结随着时间的推移,数学符号在不断发展和演变。
在2024年,我们可以预见一些常用的数学符号将继续被广泛使用。
以下是对2024年常用数学符号的总结,展示了它们的含义和用法。
1. = (等于号):表示两个量相等,也可用于方程中的解等式。
例:2 + 3 = 52. + (加号):用于表示两个数相加。
例:4 + 6 = 103. - (减号):用于表示两个数相减。
例:8 - 3 = 54. × 或 * (乘号):用于表示两个数相乘。
例:2 × 7 = 14 或 3 * 4 = 125. ÷ 或 / (除号):用于表示两个数相除。
例:10 ÷ 2 = 5 或 12 / 3 = 46. % (百分号):表示百分数。
例如,12%表示12的百分之一。
例:20% = 0.2 或0.2 × 100 = 207. < (小于号):表示一个数小于另一个数。
例:5 < 108. > (大于号):表示一个数大于另一个数。
例:10 > 59. ≤ (小于等于号):表示一个数小于或等于另一个数。
例:4 ≤ 510. ≥ (大于等于号):表示一个数大于或等于另一个数。
例:5 ≥ 411. ≠ (不等于号):表示两个数不相等。
例:3 ≠ 712. π (圆周率):表示圆的周长与直径的比值,约为3.14159。
例:C = 2πr13. √ (平方根):表示一个数的平方根。
例:√16 = 414. ^ (指数符号):表示一个数的幂。
例:2^3 = 815. ∑ (求和符号):表示对一系列数求和。
例:∑x 表示对所有x进行求和。
16. ∫ (积分符号):表示对一个函数进行积分。
例:∫f(x)dx 表示对函数f(x)进行积分。
17. ∞ (无穷大):表示趋于无穷大的数。
例:lim(x→∞) f(x) 表示当x趋于无穷大时,函数f(x)的极限。
18. ∈ (属于符号):表示一个元素属于一个集合。
常用数学符号大全1、几何符号 ⅷ ⅶ ↋ ↆ ↄ △2、代数符号ⅴ ⅸ ⅹ ~ⅼ ↅ ↇ ↈ Ↄ ⅵ ↀ3、运算符号如加号(+),减号(-),乘号(×或·),除号(÷或/),两个集合的并集(ⅻ),交集(ⅺ),根号(ⅳ),对数(log,lg,ln),比(:),微分(dx),积分(ⅼ),曲线积分(ⅽ)等。
4、集合符号ⅻ ⅺ ⅰ5、特殊符号ⅲ π(圆周率)6、推理符号|a| ↂ △ ⅶ ⅺ ⅻ ↅ ↆ ± ↈ ↇ ⅰⅬⅭ Ⅾ Ⅿ ↖ ↗ ↘ ↙ ⅷ ⅸ ⅹ&; § ← ↑ → ↓ ↔ ↕ ↖ ↗ΓΔΘΛΞΟΠΣΦΧΨΩαβγδεδεζηθικλμνπξζηυθχψωⅠ Ⅱ Ⅲ Ⅳ Ⅴ Ⅵ Ⅶ Ⅷ Ⅸ Ⅹ Ⅺ Ⅻⅰ ⅱ ⅲ ⅳ ⅴ ⅵ ⅶ ⅷ ⅸ ⅹⅰ ⅱ ⅲ ↚ ⅳ ⅴ ⅵ ↛ ⅶ ↜ ⅷ ⅸ ⅹ ⅺ ⅻ ⅼ ⅽⅾ ⅿ ↀ ↁ ↂↃ ↄ ↝ ↅ ↆ ↇ ↈ ↞ ↟ ↉ ↊ ⊕ ↋ ↠ ℃指数0123:o1237、数量符号如:i,2+i,a,x,自然对数底e,圆周率π。
8、关系符号如“=”是等号,“Ↄ”是近似符号,“ↅ”是不等号,“>”是大于符号,“<”是小于符号,“ↈ”是大于或等于符号(也可写作“↉”),“ↇ”是小于或等于符号(也可写作“↊”),。
“Ⅾ ”表示变量变化的趋势,“ↂ”是相似符号,“ↄ”是全等号,“ⅷ”是平行符号,“”是垂直符号,“ⅴ”是成正比符号,(没有成反比符号,但可以用成正比符号配倒数当作成反比)“ⅰ”是属于符号,“??”是“包含”符号等。
9、结合符号如小括号“()”中括号“[]”,大括号“{}”横线“—”10、性质符号如正号“+”,负号“-”,绝对值符号“| |”正负号“±”11、省略符号如三角形(△),直角三角形(Rt△),正弦(sin),余弦(cos),x的函数(f(x)),极限(lim),角(ⅶ),ⅿ因为,(一个脚站着的,站不住)ⅾ所以,(两个脚站着的,能站住)总和(ⅲ),连乘(ⅱ),从n个元素中每次取出r 个元素所有不同的组合数(C(r)(n) ),幂(A,Ac,Aq,x^n)等。
常用数学符号大全1、几何符号⊥∥∠⌒⊙≡≌△2、代数符号∝∧∨~∫≠≤≥≈∞∶3、运算符号如加号(+),减号(-),乘号(×或·),除号(÷或/),两个集合的并集(∪),交集(∩),根号(√),对数(log,lg,ln),比(:),微分(dx),积分(∫),曲线积分(∮)等。
4、集合符号∪∩∈5、特殊符号∑π(圆周率)6、推理符号|a| ⊥∽△∠∩∪≠≡±≥≤∈←↑→↓↖↗↘↙∥∧∨&; §①②③④⑤⑥⑦⑧⑨⑩ΓΔΘΛΞΟΠΣΦΧΨΩαβγδεζηθικλμνξοπρστυφχψωⅠⅡⅢⅣⅤⅥⅦⅧⅨⅩⅪⅫⅰⅱⅲⅳⅴⅵⅶⅷⅸⅹ∈∏∑∕√∝∞∟ ∠∣∥∧∨∩∪∫∮∴∵∶∷∽≈≌≒≠≡≤≥≦≧≮≯⊕⊙⊥⊿⌒℃指数0123:o1237、数量符号如:i,2+i,a,x,自然对数底e,圆周率π。
8、关系符号如“=”是等号,“≈”是近似符号,“≠”是不等号,“>”是大于符号,“<”是小于符号,“≥”是大于或等于符号(也可写作“≮”),“≤”是小于或等于符号(也可写作“≯”),。
“→ ”表示变量变化的趋势,“∽”是相似符号,“≌”是全等号,“∥”是平行符号,“⊥”是垂直符号,“∝”是成正比符号,(没有成反比符号,但可以用成正比符号配倒数当作成反比)“∈”是属于符号,“??”是“包含”符号等。
9、结合符号如小括号“()”中括号“[]”,大括号“{}”横线“—”10、性质符号如正号“+”,负号“-”,绝对值符号“| |”正负号“±”11、省略符号如三角形(△),直角三角形(Rt△),正弦(sin),余弦(cos),x的函数(f(x)),极限(lim),角(∠),∵因为,(一个脚站着的,站不住)∴所以,(两个脚站着的,能站住)总和(∑),连乘(∏),从n个元素中每次取出r 个元素所有不同的组合数(C(r)(n) ),幂(A,Ac,Aq,x^n)等。
12、排列组合符号C-组合数A-排列数N-元素的总个数R-参与选择的元素个数!-阶乘,如5!=5×4×3×2×1=120 C-Combination- 组合A-Arrangement-排列。
(完整版)常用数学符号大全1. 加号(+):表示两个数相加,例如 2 + 3 = 5。
2. 减号():表示两个数相减,例如 5 3 = 2。
3. 乘号(×):表示两个数相乘,例如2 × 3 = 6。
4. 除号(÷):表示两个数相除,例如6 ÷ 2 = 3。
5. 等号(=):表示两个数或表达式相等,例如 2 + 3 = 5。
6. 不等号(≠):表示两个数或表达式不相等,例如2 + 3 ≠ 4。
7. 大于号(>):表示一个数大于另一个数,例如 5 > 3。
8. 小于号(<):表示一个数小于另一个数,例如 3 < 5。
9. 大于等于号(≥):表示一个数大于或等于另一个数,例如 5 ≥ 3。
10. 小于等于号(≤):表示一个数小于或等于另一个数,例如3 ≤ 5。
11. 分数线(/):用于表示分数,例如 1/2 表示一半。
12. 开方号(√):用于表示求一个数的平方根,例如√9 = 3。
13. 乘方号(^):用于表示求一个数的幂,例如 2^3 = 8。
14. 求和号(∑):用于表示求和,例如∑(i=1 to n) i 表示求从 1 到 n 的和。
15. 积分号(∫):用于表示求定积分,例如∫(f(x)dx) 表示求函数 f(x) 在某个区间上的定积分。
16. 对数号(log):用于表示求对数,例如 log10(100) = 2。
17. 三角函数符号(sin、cos、tan):用于表示求三角函数的值,例如sin(30°) = 0.5。
18. 倒数符号(1/x):用于表示求一个数的倒数,例如 1/2 =0.5。
19. 无穷大符号(∞):表示无穷大,例如lim(x→∞) f(x) 表示求函数 f(x) 当 x 趋向于无穷大时的极限。
(完整版)常用数学符号大全1. 矩阵符号([ ]):用于表示矩阵,例如 [1 2; 3 4] 表示一个 2x2 的矩阵。
常用数学输入符号:~~≈ ≡ ≠ =≤≥ <>≮≯∷± +-× ÷ /∫ ∮∝∞ ∧∨∑ ∏ ∪∩ ∈∵∴//⊥‖ ∠⌒≌∽√()【】{}ⅠⅡ⊕⊙∥αβγδεζηθΔ
α?β?γ?δ?ε?ζ?η?θ?ι?κ?λ?μ?ν?ξ?ο?π?ρ?σ?τ?υ?φ?χ?ψ?ω??
Α?Β?Γ?Δ?Ε?Ζ?Η?Θ?Ι?Κ?∧?Μ?Ν?Ξ?Ο?∏?Ρ?∑?Τ?Υ?Φ?Χ?Ψ?Ω??
а?б?в?г?д?е?ё?ж?з?и?й?к?л?м?н?о?п?р?с?т?у?ф?х?ц?ч?ш?щ?ъ??ы?ь?э?ю?я?
А?Б?В?Г?Д?Е?Ё?Ж?З?И?Й?К?Л?М?Н?О?П?Р?С?Т?У?Ф?Х?Ц?Ч?Ш?Щ?Ъ??Ы?Ь?Э?Ю?Я?
即 x = cot y
asec x y,正割函数反函数在x处的值,
即 x = sec y
acsc x y,余割函数反函数在x处的值,
即 x = csc y
θ角度的一个标准符号,不注明均指
弧度,尤其用于表示atan x/y,当
x、y、z用于表示空间中的点时
i, j, k 分别表示x、y、z方向上的单位向
量
(a, b, c) 以a、b、c为元素的向量
(a, b) 以a、b为元素的向量
(a, b) a、b向量的点积
a?b a、b向量的点积
((a?b)) a、b向量的点积
|v| 向量v的模
|x| 数x的绝对值
Σ表示求和,通常是某项指数。
下边
界值写在其下部,上边界值写在其
上部。
如j从1到100 的和可以表
示成:。
这表示 1 + 2 + …
+ n
公式输入符号
≈≡≠=≤≥<>≮≯∷±+-×÷/∫∮∝∞∧∨∑∏∪∩∈∵∴//⊥‖∠⌒⊙≌∽√
引理→Lemma
是辅助定理(auxiliary theorem),是为了叙述主要的定理而事先叙述的基本概念(concept)、基本原理(principle)、基本规则(rule)、基本特性(property).
推理→Deduce,Deduction
是证明的过程(proving),逻辑推理的过程(logic reasoning),也就是前提推演(derive,deduce)出一个定理(theorem)的过程(process,procedure).
公理(Axiom)是不需要证明的立论、陈述(statement),例如:过一点可画无数条直线;过两点只可画一条直线。
定理(theorem)是理论(theory)的核心,在科学上,定律(Law)是不可以证明的,是无法证明的。
从定律出发,得出一系列的定理,通常我们又将定理称为公式(formula),它们是物理量跟物理量(physical quantity)之间的关系,是一种恒等式关系(identity),不同于普通的方程(equation),普通的方程是有条件的成立(conditional equation),如x+2=5,只有x=3才能满足。
如电磁学上的高斯定理指的是电荷分布与电场强度分布的关系。
数学上的Law指的是运算规则,如分配律、结合律、交换律、传递律等等,theorem指的也是量与量(variable)之间的关系,如勾股定理、相交弦定理等等。
微积分中高斯定理,是将电磁场中的高斯定理进一步理论化,变成面积分与体积分之间的关系。
由定理、运算规则,加以拓展,形成理论。