平行线复习课
- 格式:ppt
- 大小:2.03 MB
- 文档页数:12
第4章相交线和平行线复习课1.两条直线被第三条直线所截,就第三条直线上的两个交点而言形成了“三线八角”.为了便于记忆,同学们可仿照下图用双手表示“三线八角”(两大拇指代表被截直线,食指代表截线).下列三幅图依次表示()A.同位角、同旁内角、内错角B.同位角、内错角、同旁内角C.同位角、对顶角、同旁内角D.同位角、内错角、对顶角2.如图,在三角形ABC中,∠C=90°,AC=3,P是边BC上的动点,则AP的长不可能是()A.2.5B.4C.5D.63.如图,AB∥CD,截线EF与AB,CD分别相交于M,N两点,若∠1∶∠2=1∶5,则∠6等于()A.100°B.120°C.150°D.170°4.如图,直线AB与直线CD相交于点O,E是∠AOD内一点,已知OE⊥AB,∠BOD=45°,则∠COE的度数是.5.如图,这是由边长为1的小正方形组成的网格,请仅用直尺在网格中画图:过点C 作AB的平行线CD.【能力巩固】6.下列结论正确的是()A.平行线的一组同位角的平分线相交B.平行线的一组内错角的平分线平行C.平行线的一组同旁内角的平分线平行D.平行线的一组同位角互补7.如图,直线l1∥l2,则∠1+∠2=.8.如图,为了解决A,B,C,D四个小区的缺水问题,市政府准备投资修建一个水厂.(1)要使水厂到四个小区的距离之和最小,请你画图确定水厂H的位置.(2)另外,计划把河流EF中的水引入水厂H中,使之到H的距离最短.请你画图确定铺设引水管道的位置,并说明理由.9.如果一个角的两边与另一个角的两边分别平行,那么这两个角之间有什么关系?某同学为了探究这两个角的关系,画出下面两个不同的图形,请你根据图形完成以下问题:(1)如图1,如果AB∥CD,BE∥DF,那么∠1与∠2的关系是;如图2,如果AB∥CD,BE∥DF,那么∠1与∠2的关系是. (2)根据(1)的探究过程,我们可以得到结论:如果一个角的两边与另一个角的两边分别平行,那么这两个角的关系是.(3)利用结论解决问题:如果有两个角的两边分别平行,且一个角比另一个角的3倍少40°,那么这两个角分别是多少度?【素养拓展】10.感知:如图1,若AB∥CD,点P在AB,CD内部,则∠P,∠A,∠C之间的数量关系是.探究:如图2,若AB∥CD,点P在AB,CD外部,则∠APC,∠A,∠C之间的数量关系是.请补全以下证明过程:证明:如图3,过点P作PQ∥AB,∴∠A=.∵AB∥CD,PQ∥AB,∴∥CD,∴∠C=∠.∵∠APC=∠-∠,∴∠APC=.应用:(1)图4为北斗七星的位置图,如图5,将北斗七星分别标为点A,B,C,D,E,F,G,其中B,C,D三点在一条直线上,AB∥EF,求∠B,∠D,∠E之间的数量关系,并说明理由.(2)如图6,在(1)问的条件下,延长AB到点M,延长FE到点N,过点B和点E分别作射线BP和EP,交于点P,使得BD平分∠MBP,EN平分∠DEP,若∠MBD=25°,求∠D-∠P=的度数.参考答案1.B2.A3.C4.135°5.解:如图所示.【能力巩固】6.B7.30°8.解:(1)如图,连接AC,BD,线段AC和BD的交点为点H,点H就是水厂的位置. (2)如图,过点H作HM⊥EF,M是垂足,HM最短.理由是垂线段最短.9.解:(1)相等;互补.提示:题图1中,∵AB∥CD,BE∥DF,∴∠1=∠3,∠2=∠3,∴∠1=∠2,即∠1与∠2的关系是相等;题图2中,∵AB∥CD,BE∥DF,∴∠1=∠3,∠2+∠3=180°,∴∠1+∠2=180°,即∠1与∠2的关系是互补.故答案为相等;互补.(2)相等或互补.(3)由题意可设两个角为x°和3x°-40°,∵两个角的两边分别平行,则这两个相等或互补,∴x=3x-40或x+3x-40=180,解得x=20或x=55,即这两个角为20°,20°或55°,125°.【素养拓展】10.解:感知:∠P=∠A+∠C.探究:∠APC=∠A-∠C.证明:∠APQ,PQ,CPQ,APQ,CPQ,∠A-∠C.应用:(1)∠D+∠B-∠E=180°.理由:如图1,过点D作DH∥EF,∴∠HDE=∠E.∵AB∥EF,DH∥EF,∴AB∥DH,∴∠B+∠BDH=180°,即∠BDH=180°-∠B,∴∠HDE+∠BDH=∠E+180°-∠B,即∠BDE+∠B-∠E=180°,∴∠D+∠B-∠E=180°.(2)如图2,过点P作PH∥EF,∴∠EPH=∠NEP.∵AB∥EF,PH∥EF,∴AB∥PH,∴∠MBP+∠BPH=18 0°,∵BD平分∠MBP,∠MBD=25°.∴∠MBP=2∠MBD=2×25°=50°,∴∠BPH=180°-50°=130°.∵EN平分∠DEP,∴∠NEP=∠DEN,∴∠BPE=∠BPH-∠EPH=∠BPH-∠NEP=∠BPH-∠D EN=130°-(180°-∠DEF)=∠DEF-50°.由(1)知∠D+∠ABD-∠DEF=180°,∵∠MBD=25°,∴∠ABD=155°,∴∠D+155°-∠DEF=1 80°,∴∠DEF=∠D-25°,∴∠BPE=∠DEF-50°=∠D-25°-50°=∠D-75°,即∠D-∠BPE=75°,即∠D-∠P=75°,故答案为75°.。
第二章相交线和平行线第三节平行线的性质第2课时兴仁中学李丽课型:复习课授课时间:2013年3月29日星期五第3节课教学目标:1复习平行线的判定和性质,体会几何说理过程2熟练应用平行线的性质和判定直线平行的条件解决问题。
教学重点与难点:重点:灵活应用平行线的判定和性质难点:平行线的判定和性质的区别与联系,有条理地说理表达教法与学法指导:教法:引导,启发,探究,归纳学法:自主探究,合作交流课前准备:直尺练习本教学过程:一.情境引入师:同学们,前几节课,我们一起探索了两直线平行的条件和平行线的性质,你们还记得吗?生:学生同位互答2))。
(1) 如图1,要说明BD ∥AE ,请添加一个适当的条件,说明添加的依据。
生1:∠CBD=∠A ,理由是:同位角相等,两直线平行 生2:∠BDC=∠E, 理由是:同位角相等,两直线平行 这时,学生没有方法了,在思考,师提示生3:∠BDF=∠DFE, 理由是:内错角相等,两直线平行 之后,生4: ∠BDF+∠AFD=180°,理由是:同旁内角互补,两直线平行 生5:∠ABD+∠A=180°,理由是:同旁内角互补,两直线平行(2) 如果DE ∥AC ,请在图中找出相等的角或互补的角,说出依据。
通过第(1)题的复习,很容易得出该题的答案生:∠BDF=∠CBD,∠C=∠FDE,∠DFE=∠A, ∠C+∠CDF=180°∠A+∠AFD=180°师:通过上面的复习,谁能说说“平行线的判定和性质的区别是什么”? 在应用二者时应注意什么问题?(学生思考、讨论、回答) 生:判定是由角到线,性质是由线到角 生:它们的条件和结论是互逆的 师:你们总结很好,由“数”到“形”是判定,由“形”到“数”的说理是性质。
设计意图:通过创设问题情境,给学生一个思考的平台,让学生在寻找角的关系中回忆平行线的判定和性质,利用这一设问激发学生思考问题的兴趣,发散学生的思维,引发学生对数学问题的思考二.新课探索活动一:如图2说理过程填空(1)∠1和∠2是_____________角,若∠1=∠2,则______∥______;( ) (2)∠2和∠M 是_________角,若∠2=∠M ,则______∥______;( )(3) ∠2和∠3是_________角,若∠2+∠3=180°,则______∥______;( )(4)因为AM ∥BF,所以∠A=________;( )因为∠ABF+∠BFM=180°,所以AB ∥FM 学生思考,讨论,回答设计意图:运用平行线的判定和性质进行说理的基础性训练,既是关于判定和性质的复习,又是综合运用这些知识解题的铺垫。
第五章《相交线与平行线》期末复习讲义5.2平行线及其判定【知识回顾】一.平行线1.定义:在同一平面内,__________的两条直线叫做平行线2.要点剖析(1):平行线的特征:在同一平面内;是直线;没有公共点。
(2)在同一平面内,不重合的两条直线的位置关系只有相交和平行两种,重合的直线视为一条直线。
(3)平行线是指的两条直线的位置关系,两条射线或线段平行,是指的它们所在的直线平行。
二.平行线的画法1.“一落”把三角尺的一边落在已知直线上2.“二靠”用直尺紧靠三角尺的另一边3.“三推”把三角尺沿着直尺推到三角尺的一边刚好过已知点的位置4.“四画”沿三角尺过已知点的边画直线三.平行公理及其推论1.平行公理:经过直线外一点,_________一条直线与这条直线平行2.平行公理的推论:如果两条直线都与_________直线平行,那么这两条直线也互相平行四.平行线的判定1.同位角相等,两直线_________2.内错角相等,两直线_________3.同旁内角互补,两直线___________4.在同一平面内,垂直于_______________的两条直线互相平行题型拓展题型1 平行公理及其推论的应用例1:1.如图,取一张长方形的硬纸板ABCD,将硬纸板ABCD对折使CD与AB重合,EF 为折痕.把长方形ABEF平放在桌面上,另一个面CDEF无论怎么改变位置,总有CD∥AB存在,你知道为什么吗?例2:2.如图,取一张长方形的硬纸片ABCD对折,MN是折痕,把ABNM平摊在桌面上,另一个面CDMN不论怎样改变位置,总有MN∥∥.因此∥.题型2 综合运用各种判定方法判定两条直线平行例1:3.如图,∠1=47°,∠2=133°,∠D=47°,那么BC与DE平行吗?AB与CD呢?为什么?例2:4.阅读下面的推理过程,在括号内填上推理的依据,如图:因为∠1+∠2=180°,∠2+∠4=180°(已知)所以∠1=∠4,()所以a∥c.()又因为∠2+∠3=180°(已知)∠3=∠6()所以∠2+∠6=180°,()所以a∥b.()所以b∥c.()题型3 平行线判定的开放探究题例1:5.如图,∠A=60°,∠1=60°,∠2=120°,猜想图中哪些直线平行,并证明.例2:6.如图,直线a,b被c所截,∠1=50°,若要a∥b,则需增加条件(填图中某角的度数);依据是.题型4 平行线的判定在实际生活中的应用例1:7.如图所示,给你两块同样的三角板和一根直尺(直尺比桌子长),请你设计一个方案,检验桌子的相对边缘线是否平行?例2:8.在铺设铁轨时,两条直轨必须是互相平行的,如图,已经知道∠2是直角,那么再度量图中已标出的哪个角,就可以判断两条直线是否平行?为什么?课后提高训练9.下列说法错误的是()A.平行于同一条直线的两直线平行B.两直线平行,同旁内角互补C.对顶角相等D.同位角相等10.如图,下面哪个条件不能判断AC∥EF的是()A.∠1=∠2B.∠4=∠C C.∠1+∠3=180°D.∠3+∠C=180°11.如图,平面内有五条直线l1、l2、l3、l4、l5,根据所标角度,下列说法正确的是()A.l1∥l2B.l2∥l3C.l1∥l3D.l4∥l512.如图,在下列条件中,能判断AB∥CD的是()A.∠1=∠4B.∠BAD=∠BCDC.∠BAD+∠ADC=180°D.∠2=∠313.如图所示,下列推理正确的是()A.∵∠1=∠4(已知)∴AB∥CD(内错角相等,两直线平行)B.∵∠2=∠3(已知)∴AE∥DF(内错角相等,两直线平行)C.∵∠1=∠3(已知)∴AB∥DF(内错角相等,两直线平行)D.∵∠2=∠2(已知)∴AE∥DC(内错角相等,两直线平行)14.下列说法中正确的个数为()①过一点有且只有一条直线与已知直线垂直②两条直线被第三条直线所截,同位角相等③经过两点有一条直线,并且只有一条直线④在同一平面内,不重合的两条直线不是平行就是相交A.1个B.2个C.3个D.4个15.如图,下列能判定AB∥CD的条件有(填序号)①∠B+∠BCD=180°;②∠2=∠3;③∠1=∠4;④∠B=∠5;⑤∠D=∠5.16.如图,要使BE∥DF,需补充一个条件,你认为这个条件应该是(填一个条件即可).17.一副三角板按如图所示叠放在一起,其中点C、D重合,若固三角板定ABC,改变三角板AED的位置(其中A点位置始终不变),当∠CAD=时,ED∥AC.18.如图,直线a、b被直线c所截,现给出的下列四个条件:①∠4=∠7;②∠2=∠5;③∠2+∠3=180°;④∠2=∠7.其中能判定a∥b的条件的序号是.19.已知:∠A=∠C=120°,∠AEF=∠CEF=60°,求证:AB∥CD.20.如图,若∠1=42°,∠2=53°,∠3=85°,则直线l1与l2平行吗?判断并说明理由.21.如图,已知CD⊥AD于点D,DA⊥AB于点A,∠1=∠2,试说明DF∥AE.解:因为CD⊥AD(已知),所以∠CDA=90°().同理∠DAB=90°.所以∠CDA=∠DAB=90°().即∠1+∠3=∠2+∠4=90°.因为∠1=∠2(已知),所以∠3=∠4().所以DF∥AE().22.完成下列证明过程,并在括号内填上依据.如图,点E在AB上,点F在CD上,∠1=∠2,∠B=∠C,求证AB∥CD.证明:∵∠1=∠2(已知),∠1=∠4(),∴∠2=∠4(等量代换),∴().∴∠3=∠C().又∵∠B=∠C(已知),∴∠3=∠B(等量代换),∴AB∥CD().参考答案与解析1.解:∵四边形FECD是矩形,∴CD∥EF;又∵四边形ABEF是矩形,∴AB∥EF,∴CD∥AB.2.解:∵长方形的硬纸片ABCD对折,MN是折痕,∴MN∥AB,MN∥CD,即MN∥AB∥CD,∴AB∥CD(平行于同一直线的两条直线互相平行).故各空依次填AB、CD、AB、CD.3.解:BC∥DE,AB∥CD.理由如下:∵∠1=47°,∠2=133°,而∠ABC=∠1=47°,∴∠ABC+∠2=180°,∴AB∥CD;∵∠2=133°,∴∠BCD=180°﹣133°=47°,而∠D=47°,∴∠BCD=∠D,∴BC∥DE.4.解:因为∠1+∠2=180°,∠2+∠4=180°(已知),所以∠1=∠4,(同角的补角相等)所以a∥c.(内错角相等,两直线平行)又因为∠2+∠3=180°(已知)∠3=∠6(对顶角相等)所以∠2+∠6=180°,(等量代换)所以a∥b.(同旁内角互补,两直线平行)所以b∥c.(平行于同一条直线的两条直线平行).故答案为:同角的补角相等;内错角相等,两直线平行;对顶角相等;等量代换;同旁内角互补,两直线平行;平行于同一条直线的两条直线平行.5.解:如图,∵∠A=60°,∠1=60°,∴∠A=∠1,∴DE∥AC.又∵∠A=60°,∠2=120°,∴∠A+∠2=180°,∴EF∥AB.6.解:∵∠3=50°,1=50°,∴∠1=∠3,∴a∥b(同位角相等,两直线平行).故答案为:∠3=50°;同位角相等;两直线平行.7.解:(1)将直尺放在桌面上,使其与桌面一组对边相交;(2)将三角板一边贴近直尺,斜边贴近桌面边缘;(3)使另一个三角形同样方法放置,如果相符合说明对边平行,原理如图所示,若∠1=∠2则a∥b,再检查另一组对边是否平行.8.解:①通过度量∠3的度数,若满足∠2+∠3=180°,根据同旁内角互补,两直线平行,就可以验证这个结论;②通过度量∠4的度数,若满足∠2=∠4,根据同位角相等,两直线平行,就可以验证这个结论;③通过度量∠5的度数,若满足∠2=∠5,根据内错角相等,两直线平行,就可以验证这个结论.9. D10.C11.D12.C13.B14.B15.解:选项①中∵∠B+∠BCD=180°,∴AB∥CD(同旁内角互补,两直线平行),所以正确;选项②中,∵∠2=∠3,∴AD∥BC(内错角相等,两直线平行),所以错误;选项③中,∵∠1=∠4,∴AB∥CD(内错角相等,两直线平行),所以正确;选项④中,∵∠B=∠5,∴AB∥CD(同位角相等,两直线平行),所以正确;选项⑤中,∠D=∠5,∴AD∥BC(内错角相等,两直线平行),所以错误;故答案为:①③④.16.解:添加条件为:∠D=∠COE.理由如下:∵∠D=∠COE,∴BE∥DE(同位角相等,两直线平行).故答案为:∠D=∠COE(答案不唯一).17.解:如图所示:当ED∥AC时,∠CAD=∠D=30°;如图所示,当ED∥AC时,∠E=∠EAC=60°,∴∠CAD=60°+90°=150°;故答案为:30°或150°.18.解:当∠4=∠7时,a∥b,故①正确;当∠2=∠5时,无法证明a∥b,故②错误;当∠2+∠3=180°时,无法证明a∥b,故③错误;当∠2=∠7时,a∥b,故④正确;故答案为:①④.19.证明:∵∠A=∠C=120°,∠AEF=∠CEF=60°,∴∠A+∠AEF=180°,∠C+∠CEF=180°,∴AB∥EF,CD∥EF,∴AB∥CD.20.解:直线l1与l2平行,理由:∵∠1=∠4,∠2=∠5,∠1=42°,∠2=53°,∴∠4=42°,∠5=53°,又∵∠3=85°,∴∠3+∠5=85°+53°=138°,∴∠3+∠5+∠4=138°+42°=180°,∴l1∥l2(同旁内角互补,两直线平行).21.解:因为CD⊥AD(已知),所以∠CDA=90°(垂直的定义),同理∠DAB=90°.所以∠CDA=∠DAB=90°(等量代换),即∠1+∠3=∠2+∠4=90°.因为∠1=∠2(已知),所以∠3=∠4(等式的性质1),所以DF∥AE(内错角相等,两直线平行).22.证明:∵∠1=∠2(已知),∠1=∠4(对顶角相等),∴∠2=∠4(等量代换),∴CE∥BF(同位角相等,两直线平行).∴∠3=∠C(两直线平行,同位角相等).又∵∠B=∠C(已知),∴∠3=∠B(等量代换),∴AB∥CD(内错角相等,两直线平行).故答案为:对顶角相等;CE∥BF;同位角相等,两直线平行;C;两直线平行,同位角相等;内错角相等,两直线平行.。
相交线与平行线(复习课)教案一、教学目标1. 知识与技能:(1)能够识别和画出相交线与平行线;(2)理解平行线的性质和判定方法;(3)掌握相交线的性质和判定方法。
2. 过程与方法:(1)通过观察、实践、探索等活动,加深对相交线与平行线概念的理解;(2)运用画图工具,提高作图能力和空间想象能力;(3)培养学生的逻辑思维能力和解决问题的能力。
3. 情感态度价值观:(2)培养学生合作学习、积极探究的精神;(3)让学生感受数学在生活中的应用,培养学生的应用意识。
二、教学重点与难点1. 教学重点:(1)相交线与平行线的识别和画法;(2)平行线和相交线的性质和判定方法。
2. 教学难点:(1)平行线的判定方法;(2)相交线的性质和判定方法。
三、教学准备1. 教具:黑板、粉笔、直尺、三角板、多媒体课件等;2. 学具:每人一份练习纸、直尺、圆规、三角板等。
四、教学过程1. 导入新课:(1)复习已学过的相交线与平行线的概念;(2)引导学生回顾平行线的性质和判定方法;(3)提问:什么是相交线?相交线有哪些性质?2. 探究与展示:(1)分组讨论:让学生分组探究相交线与平行线的性质和判定方法;(2)每组派代表展示探究成果,并讲解;3. 练习与提高:(1)让学生独立完成练习题,巩固所学知识;(2)针对学生存在的问题,进行讲解和辅导;(3)鼓励学生互相讨论,共同提高。
五、课堂小结2. 强调平行线和相交线在实际生活中的应用;3. 提醒学生课后复习,做好学习笔记。
六、教学拓展1. 利用多媒体课件展示相交线与平行线在现实生活中的应用,如交通标志、建筑设计等;2. 引导学生思考:相交线与平行线在其他领域有哪些应用?3. 让学生举例说明,培养学生的应用意识和创新能力。
七、课堂练习1. 完成练习题:(1)判断题:相交线一定有一条公共点,平行线没有公共点。
()(2)选择题:在同一平面内,不相交的两条直线叫做(A. 平行线B. 相交线C. 重合线D. 异面直线)。
《平行线的性质和判定》复习课教学设计一、内容和内容解析:1.内容:平行线的性质和判定的综合运用2.内容解析:本节课是平行线性质和判定的复习课,担负着几何语言和识图能力培养的任务,是完成本章要让学生实现“几何模型→图形→文字→符号”顺利过渡的一个重要的环节。
也是检验学生经过一个阶段的训练,是否能够顺利找到解决题目的思路,并用数学语言准确的表达出来。
因此,本节课的教学重点:能够根据不同的题目背景,准确选择平行线的性质或者判定,并准确地用数学语言进行表述。
二、目标和目标解析:1.目标(1)能够叙述平行线的判定和平行线性质的区别和联系;(2)能运用平行线的判定和性质进行综合推理,并规范书写推理过程。
2.目标解析:达成目标(1)的标志是:针对题目中的条件准确的判断使用的是性质还是判定;达成目标(2)的标志是:学生能够独立或者在教师的提示下,用数学语言完整的表述学案题目的解答过程。
三、教学诊断分析:在这一阶段,学生已经有了一定的解决平行线性质和判定的基础,并对两步的证明能够独立完成,简单题目能够进行,需要通过这节课的学习,在学生的互相交流中提高他们分析问题、解决问题的能力,培养他们推理能力和有条理的表达能力。
所以,基于此,本节课的难点是:在证明和求解中的说理能力。
四、教学过程:1、创设情境,复习引入:(1)提问:平行线的性质和判定内容,区别和联系(2)回忆阶段考试中的题目:母题1:如图所示:AD∥BC,∠A=∠C,试说明AB∥DC.教师提出问题,可以把题目进行如此的变化:(3)变式一如图所示:AB∥DC,∠A=∠C,试说明AD∥BC.(4)变式二如图所示:AD∥BC,AB∥DC,试说明∠A=∠C.2、整合信息,自主体验:母题2:如图,已知AB∥CD, ∠1=∠2,求证∠E=∠F.【我的题目,我做主】变式:如图,已知_____________,______________, ,求证_______________.母题3:已知:∠CGD=∠CAB,∠1=∠2,AD⊥BC,求证:EF⊥BC.【我的题目,我做主】变式:已知:_____________,______________,_______________,求证:______________.3、体会·收获:引导学生总结证明的思路(预设:①给角的信息,可以推出直线的平行,给出直线的平行可以推出角的关系,渗透转化思想②老师出题的结构无外乎条件和结论之间的变换,在解题时,多留意一下题目的条件和结论也许就有解题的方向了;③………………)4、课后作业:基础作业:把母题2,母题3中学生没有完成的另外的题目、结论组合方式自主编题,解答。