缓冲区溢出攻击原理与防范
- 格式:pdf
- 大小:345.53 KB
- 文档页数:11
第三讲缓冲区溢出n1 缓冲区溢出问题简介n2 几种典型的缓冲区溢出n3 防范措施缓冲区溢出1 缓冲区溢出问题简介缓冲区溢出是一种常见的漏洞.据统计,通过缓冲区溢出进行的攻击占所有系统攻击总数的80%以上.这种错误的状态发生在写入内存的数据超过了分配给缓冲区的大小的时候,就像一个杯子只能盛一定量的水,如果放到杯子中的水太多,多余的水就会一出到别的地方。
由于缓冲区溢出,相邻的内存地址空间被覆盖,造成软件出错或崩溃。
如果没有采取限制措施,可以使用精心设计的输入数据使缓冲区溢出,从而导致安全问题。
缓冲区溢出缓冲区溢出问题的历史很长一段时间以来,缓冲区溢出都是一个众所周知的安全问题, C程序的缓冲区溢出问题早在70年代初就被认为是C语言数据完整性模型的一个可能的后果。
这是因为在初始化、拷贝或移动数据时,C语言并不自动地支持内在的数组边界检查。
虽然这提高了语言的执行效率,但其带来的影响及后果却是深远和严重的。
•1988年Robert T. Morris的finger蠕虫程序.这种缓冲区溢出的问题使得Internet几乎限于停滞,许多系统管理员都将他们的网络断开,来处理所遇到的问题. •1989年Spafford提交了一份关于运行在VAX机上的BSD版UNIX的fingerd的缓冲区溢出程序的技术细节的分析报告,引起了部分安全人士对这个研究领域的重视•1996年出现了真正有教育意义的第一篇文章, Aleph One在Underground发表的论文详细描述了Linux系统中栈的结构和如何利用基于栈的缓冲区溢出。
缓冲区溢出Aleph One的贡献还在于给出了如何写开一个shell的Exploit的方法,并给这段代码赋予shellcode的名称,而这个称呼沿用至今,我们现在对这样的方法耳熟能详--编译一段使用系统调用的简单的C程序,通过调试器抽取汇编代码,并根据需要修改这段汇编代码。
•1997年Smith综合以前的文章,提供了如何在各种Unix变种中写缓冲区溢出Exploit更详细的指导原则。
缓冲区溢出攻击原理与防范1.程序预留了一块内存区域作为缓冲区,用于执行其中一种特定的操作,如字符串拼接、输入输出处理等;2.当输入的数据长度超过了这个缓冲区的大小时,多余的数据会溢出到相邻的内存区域中;3.攻击者利用输入超出缓冲区的长度来对溢出的数据进行控制,修改程序的执行流程;4.修改后的程序执行流程可以导致程序崩溃、系统崩溃、拒绝服务等问题,也可以用于执行任意的恶意代码。
为了防范缓冲区溢出攻击,可以采取以下几种措施:1.对输入进行有效的长度检查:在程序中对输入数据进行有效的长度检查,确保不会超过预定的缓冲区大小。
这样就可以避免发生缓冲区溢出。
2. 使用安全编程语言和工具:选择使用安全编程语言,如Rust、Go 等,这些语言具有安全性的内存管理机制,能够自动检查和防范缓冲区溢出问题。
此外,使用安全编程工具如静态代码分析工具、Fuzzing工具等也可以帮助发现和修复潜在的缓冲区溢出漏洞。
3.使用内存安全检查工具:使用内存安全检查工具,如利用内存隔离技术的地址空间布局随机化(ASLR)、点火检查器、堆栈保护机制等。
这些工具可以帮助检测和防范缓冲区溢出攻击。
4.最小特权原则:在设计软件时,采用最小特权原则,即仅分配程序所需的最小权限。
这样做可以确保即使发生缓冲区溢出攻击,攻击者也只能访问到最小特权内的信息,减少损失。
5.及时修复漏洞和更新软件:及时修复已知的缓冲区溢出漏洞,更新软件以获取最新的安全补丁是非常重要的。
由于缓冲区溢出攻击是一种常见的攻击方式,软件开发商通常会不断更新修复这方面的漏洞。
综上所述,缓冲区溢出攻击是一种常见的安全漏洞利用技术,可以对各种软件和操作系统进行攻击。
为了防范这种攻击,需要采取有效的措施,如对输入进行有效的长度检查、使用安全编程语言和工具、使用内存安全检查工具、采用最小特权原则以及及时修复漏洞和更新软件等。
这样可以有效地减少缓冲区溢出攻击带来的风险。
缓冲区溢出攻击与防范实验报告——计算机网络(2)班——V200748045黄香娥1·缓冲区溢出的概念:缓冲区溢出是指当计算机向缓冲区内填充数据位数时超过了缓冲区本身的容量溢出的数据覆盖在合法数据上,理想的情况是程序检查数据长度并不允许输入超过缓冲区长度的字符,但是绝大多数程序都会假设数据长度总是与所分配的储存空间想匹配,这就为缓冲区溢出埋下隐患.操作系统所使用的缓冲区又被称为"堆栈". 在各个操作进程之间,指令会被临时储存在"堆栈"当中,"堆栈"也会出现缓冲区溢出。
2·缓冲区溢出的危害:在当前网络与分布式系统安全中,被广泛利用的50%以上都是缓冲区溢出,其中最著名的例子是1988年利用fingerd漏洞的蠕虫。
而缓冲区溢出中,最为危险的是堆栈溢出,因为入侵者可以利用堆栈溢出,在函数返回时改变返回程序的地址,让其跳转到任意地址,带来的危害一种是程序崩溃导致拒绝服务,另外一种就是跳转并且执行一段恶意代码,比如得到shell,然后为所欲为。
3·缓冲区溢出原理:由一个小程序来看://test.c#include "stdio.h"#include "stdlib.h"#include "string.h"void overflow(void){char buf[10];strcpy(buf,"0123456789123456789");}//end overflowint main(void){overflow();return 0;}//end main按F11进入"Step into"调试模式,如下:按F11跟踪进入overflow,让程序停在6,现在再看一下几个主要参数:esp=0x0012ff30,eip发生了变化,其它未变。
c语言缓冲区溢出原理摘要:1.缓冲区溢出概念2.C语言中可能导致缓冲区溢出的原因3.缓冲区溢出的防范方法4.总结正文:正文:缓冲区溢出是计算机科学中的一种常见错误,它在编程中可能导致严重的安全问题。
本文将解释缓冲区溢出的概念,探讨其原因、危害以及如何预防。
一、什么是缓冲区溢出缓冲区溢出是指程序中的缓冲区无法容纳输入的数据,从而覆盖了其他内存区域。
这种情况通常发生在程序没有正确处理输入数据长度的情况下,导致数据超过了缓冲区的容量。
二、缓冲区溢出的原因1.字符串操作函数:在C语言中,一些字符串操作函数(如gets、strcpy 等)没有对输入数据长度进行限制,可能导致缓冲区溢出。
2.动态内存分配:在使用动态内存分配函数(如malloc)分配内存时,如果未正确初始化或超量分配,可能导致缓冲区溢出。
3.函数调用:在调用函数时,如果传入的参数长度超过预期,可能导致缓冲区溢出。
三、缓冲区溢出的危害1.程序崩溃:缓冲区溢出可能导致程序崩溃,因为覆盖的内存区域可能包含程序的重要数据或代码。
2.数据损坏:缓冲区溢出可能导致数据损坏,因为覆盖的内存区域可能包含程序处理数据的正确结果。
3.安全漏洞:缓冲区溢出可能被恶意利用,攻击者可以通过注入恶意数据来覆盖内存中的安全关键数据,如密码、加密密钥等。
四、如何预防缓冲区溢出1.检查输入数据长度:在对输入数据进行处理之前,应检查数据长度,确保不会超过缓冲区容量。
2.使用安全的字符串操作函数:尽量使用带有长度限制的字符串处理函数,如strncpy、strncat等。
3.初始化缓冲区:在使用动态内存分配时,应初始化缓冲区,并确保分配的内存空间足够大。
4.使用边界检查:在编写程序时,对输入数据进行边界检查,确保数据长度符合预期。
“溢出攻击”的讲解和防护随着网络普及,大量公开的Shellcode(“溢出”代码)与溢出攻击原理都能在各大安全网站中找到,也由此衍生了一系列安全隐患,很多稍微了解网络安全知识的人都可以利用现成的攻击软件轻易发动溢出攻击获得服务器权限。
1.什么是“溢出攻击”?“溢出攻击”就像是将很多沙子倒入装满水的容器时,水就会溢出来一样。
目前,大多溢出攻击都是针对缓冲区的溢出。
当缓冲区溢出时,过剩的信息对电脑内存中原有内容进行完全替换,如未进行备份,你的内容就永远丢失了。
现在网上公布的攻击程序不仅具有破坏文件的功能,一般还会得到系统权限的CMDSHELL(管理命令行),那它又是如何实现的呢?“溢出攻击”在对缓冲区中的文件进行替换的同时,还会执行一些非法程序,从而得到命令行下的管理员权限,之后攻击者再通过命令行建立管理员账号,对电脑进行控制。
2.“溢出攻击”的实现一般入侵者在网上了解或发现了可以进行溢出攻击的漏洞后,使用缺陷扫描器(如全面扫描的X-SCAN、针对单一漏洞扫描的IIS WEBDAV等工具)找到并确认存在远程溢出漏洞的电脑,接着便使用利用攻击代码编程成功的Exploit(攻击程序)发送Shellcode攻击,确认远程溢出成功后使用NC或TELNET等程序连接被溢出主机的端口从而得到CMDSHELL。
比如前段时间危害特别大的MS05039溢出漏洞,就是先利用MS05039Scan来扫描有漏洞的电脑(见图1),然后打开两个命令提示符窗口,一个用来得到CMDSHELL的NC(见图2),一个执行溢出攻击程序(见图3),当执行攻击程序后,就得到了系统权限的CMDSHELL(见图4)。
图1图2图3图43.如何对溢出攻击进行防护?说到防护,首先定时更新有效补丁,微软个官方补丁发布下载地址是/china/。
但如果攻击者用的是尚未发布补丁的攻击程序呢?所以打补丁是有效,但不是惟一的方法。
下面就来看看如何手动设置,对溢出攻击进行防御。
缓冲区溢出攻击的原理分析与防范原理分析:1.缓冲区的分配:当程序运行时,会为其分配一定大小的缓冲区(数组)来存储数据。
攻击者通过输入超过缓冲区大小的数据,覆盖相邻的内存区域。
2. 缓冲区溢出:攻击者构造特定的输入,超过缓冲区的边界,将溢出的数据覆盖到程序的其他内存空间,包括调用栈(stack)等。
3.返回地址覆盖:返回地址是指程序执行的下一条指令的地址,攻击者通过溢出缓冲区,将恶意代码的地址覆盖到返回地址上,使程序执行恶意代码。
4.执行恶意代码:当程序执行到返回地址时,由于返回地址被替换为恶意代码的地址,程序控制权转移到了恶意代码上,攻击者可以控制程序执行一系列恶意操作。
防范措施:1. 输入验证:在程序中对用户输入进行验证和过滤,确保输入的大小不会超出缓冲区的边界。
可以使用编程语言中的字符串处理函数,如strncpy(、snprintf(等,确保只将有效数据拷贝到缓冲区。
2. 使用编程语言和框架提供的安全API:使用编程语言提供的安全API,如Java中的StringBuilder类,C#中的StringBuilder类等,这些API在处理字符串时会进行边界检查,避免缓冲区溢出。
3. 栈保护技术:栈保护技术包括Stack Smashing Protector (SSP)和Control Flow Integrity (CFI)等。
SSP通过在栈上插入一个特殊的栈保护变量,监控缓冲区的溢出情况。
CFI通过在程序中插入额外的代码和元数据,来防止控制流的恶意改变。
4. 内存随机化:通过内存随机化技术,如ASLR(Address Space Layout Randomization),将程序的内存布局随机化,使攻击者难以预测恶意代码的位置。
5.使用静态和动态代码分析工具:使用静态和动态代码分析工具来检测和修复程序中的缓冲区溢出漏洞。
静态代码分析工具可以在编译时检测潜在的缓冲区溢出漏洞,而动态代码分析工具可以模拟攻击,并检测运行时的缓冲区溢出情况。
简述缓冲区溢出攻击的原理以及防范方法
一、缓冲区溢出攻击原理
缓冲区溢出攻击(Buffer Overflow Attack)是一种非法异常的程序运行行为,它发生的目的是让受害者的程序运行出现崩溃,从而获得机器控制权限,可以获取机器中存有的敏感资料,并进行恶意操作,如发送垃圾邮件,拒绝服务攻击(DoS attack),远程控制等行为破坏网络安全。
缓冲区溢出攻击的基本原理,就是恶意程序使用某种方法,将程序缓冲区中存放的数据或者信息溢出,超出缓冲区的容量,而这种溢出的数据又存放了受害者程序控制机器的恶意命令,从而给受害者程序植入恶意代码,使恶意程序获得了机器的控制权限,进而达到攻击系统的目的。
二、防范方法
1、使用受检程序,受检程序是一种编译技术,通过对程序源代码进行类型检查、安全检查等操作,来把漏洞修复好,从而起到防止缓冲区溢出攻击的作用。
2、使用数据流分析技术,它是一种动态分析技术,可以识别出恶意代码并阻止其危害,对程序运行的漏洞进行检查,从而防止攻击者利用缓冲区溢出攻击系统。
3、实行严格的安全审计制度,对程序源码、程序诊断、数据加密技术等进行严格的审计,确保程序运行的安全性,以及防止攻击者利用缓冲区溢出攻击系统。
4、采用虚拟化技术,虚拟化技术可以在不同的安全层次上对程序进行控制,对程序运行的过程进行审查,从而防止攻击者使用缓冲区溢出攻击系统。
5、对网络环境进行安全审计,包括电脑中存在的安全漏洞,系统的安全配置,网络设备的稳定性以及系统的社会工程学攻击等,从而确保网络环境能够不被缓冲区溢出攻击所侵袭。
摘要:正文:大纲:1.引言;随着网络安全技术的飞速发展,缓冲区溢出漏洞已经成为当前最具安全威胁的漏洞之一,缓冲区溢出攻击也成为一种非常有效而常见的攻击方法。
如Internet上的第1例蠕虫(Morris)攻击,就是利用了fingerd的缓冲区溢出漏洞。
SANS评选出的2005年威胁最大的20个漏洞中,有8个跟缓冲区溢出有关。
根据CNCERT最近几周的计算机安全漏洞的统计数据,与缓冲区溢出有关的安全事件占了很大的比例。
这些都充分说明了研究缓冲区溢出的重要性。
本文主要介绍了windows下的缓冲区溢出的相关知识。
2.漏洞原因和原理;2.1 产生原因;当向一个已分配了确定存储空间的缓冲区内复制多于该缓冲区处理能力的数据时,就会发生缓冲区溢出,溢出包括堆溢出和堆栈溢出。
它与程序在内存中的分布有关,而它产生的直接原因是由于C/C++程序中的一些函数调用时,没有进行边界检查,如C函数库中的strcpy(),strcat(),sprintf(),gets()等都是不安全的。
由上面的分析可知要产生缓冲区溢出,需要有几个条件: 1) 程序编译时在堆栈上分配了固定大小的缓冲区,并且在对缓冲区进行访问时没有提供边界检查。
这条在C/C ++语言中就满足,而对于有边界检查的语言,如Pascal 等,就没有这样的溢出问题。
2) 程序调用了没有进行边界检查的函数来访问(写操作) 缓冲区,这些函数没有对访问的缓冲区的大小进行判断。
由于在C语言中,字符串以0字节来标识结尾,其中没有字符串的长度信息,所以几个没有判断字符串长度的字符串拷贝函数就是容易出现问题的函数。
这些函数有: strcat()、strcpy()、sprintf()等。
3) 即使程序使用了上面所说的问题函数也不一定会出现溢出漏洞,漏洞发生的最后一个条件是程序员由于粗心,未检查用户输入数据的长度就将其直接复制到缓冲区中去。
虽然这看起来是一件小事,很容易杜绝。
可惜的是正因为有大量粗心的程序员的存在,使得溢出漏洞变得非常的普遍。
缓冲区溢出攻击原理及防范作者姓名:XXX 班级:计算机网络XXX学号:2200951XXX 指导教师:XXX教授摘要缓冲区简单来说是一块连续的计算机内存区域,可以保存相同数据类型的多个实例, 缓冲区溢出是指当计算机向缓冲区内填充数据位数时超过了缓冲区本身的容量溢出的数据覆盖在合法数据上,理想的情况是程序检查数据长度并不允许输入超过缓冲区长度的字符,但是绝大多数程序都会假设数据长度总是与所分配的储存空间相匹配,这就为缓冲区溢出埋下隐患.操作系统所使用的缓冲区又被称为"堆栈". 在各个操作进程之间,指令会被临时储存在"堆栈"当中,"堆栈"也会出现缓冲区溢出。
缓冲区溢出是最常见的安全漏洞,针对缓冲区溢出的漏洞进行攻击,是很常见的攻击手段,可以使本地用户获得超级用户权限,也可以使外部攻击者通过网络直接进入系统。
本文详细分析了缓冲区溢出的基本原理,描述了利用缓冲区溢出漏洞进行攻击的基本方式,并通过对一段实例程序的溢出和构建攻击语句直观的演示了缓冲区溢出的形成过程及其攻击原理,最后提出了防范缓冲区溢出的有效措施。
关键词:缓冲区溢出堆栈漏洞AbstractSimply ,buffer is a continuous computer memory area, can keep the same data types of multiple instances, buffer overflow is when computer to the buffer filled with data f igures within the capacity of the buffer itself more than the data covered in legal spill data, the ideal situation is not allowed to check the data length program more than the length of the input buffer characters, but most of the program will be always with the assumption that data length distribution of storage space match, this is the buffer overf low buried hidden trouble. Operating system used by buffer is known as the "stack". I n between each operation process, the instructions will be temporarily stored in the "st ack" of "stack" also can appear buffer overflow. Buffer overrun is the most common s ecurity flaws in the buffer overflow vulnerability to attack, it is very common attack method, can make local users get super user permissions, also can make the external a ttackers through the network directly into the system.This paper analyzes the basic principle of buffer overflow, describes the use of buf fer overrun vulnerabilities to attack the basic way of, and through the example of a pr ogram and the construction of overflow attack statement intuitive demonstrates buffer overflow the forming process and the principle of attack, finally puts forward the cou ntermeasures of buffer overflow effective measures.Keywords:buffer overflow Stack shellcod目录摘要 (1)Abstract (2)绪论 (1)第一章缓冲区溢出基本原理 (2)1.1 栈缓冲区溢出 (2)1.2 HEAP/BSS缓冲区溢出 (4)1.2.1重要性 (4)1.2.2相关概念介绍 (4)1.2.3Heap/BSS溢出攻击 (5)第二章缓冲区溢出攻击 (8)2.1 shellcode基础 (9)2.2 可注入shellcode的编写 (11)2.3 远程缓冲区溢出威胁 (15)第三章缓冲区溢出攻击防御 (17)3.1 给有漏洞的程序打补丁 (17)3.2 编写安全的代码 (17)3.3 静态分析 (17)3.4 动态测试 (17)3.5软件开发过程中的防范策略 (18)3.6 缓冲区溢出攻击的抵御 (23)第四章缓冲区溢出攻击与防御实例设计 (25)4.1 缓冲区溢出攻击实例 (25)总结与展望 (27)致谢 (28)参考文献 (29)绪论随着计算机技术、现代通信技术和网络技术的发展,尤其是Internet的广泛使用,计算机网络与人们的工作和生活的联系越来越密切、越来越深入,同时也使网络系统的安全问题日益复杂和突出。
实验十二缓冲区溢出攻击与防范实验1.实验目的通过实验掌握缓冲区溢出的原理;通过使用缓冲区溢出攻击软件模拟入侵远程主机;理解缓冲区溢出危险性;理解防范和避免缓冲区溢出攻击的措施。
2.预备知识2.1缓冲区溢出攻击简介缓冲区溢出攻击之所以成为一种常见的攻击手段,其原因在于缓冲区溢出漏洞太普通了,并且易于实现。
而且,缓冲区溢出所以成为远程攻击的主要手段,其原因在于缓冲区溢出漏洞给予了攻击者所想要的一切:植入并且执行攻击代码。
被植入的攻击代码以一定的权限运行有缓冲区溢出漏洞的程序,从而得到被攻击主机的控制权。
下面简单介绍缓冲区溢出的基本原理和预防办法。
(1)缓冲区概念缓冲区是内存中存放数据的地方。
在程序试图将数据放到机器内存中的某一个位置的时候,因为没有足够的空间就会发生缓冲区溢出。
而人为的溢出则是有一定企图的,攻击者写一个超过缓冲区长度的字符串,植入到缓冲区,然后再向一个有限空间的缓冲区中植入超长的字符串,这时可能会出现两个结果:一是过长的字符串覆盖了相邻的存储单元,引起程序运行失败,严重的可导致系统崩溃;另一个结果就是利用这种漏洞可以执行任意指令,甚至可以取得系统root特级权限。
缓冲区是程序运行的时候机器内存中的一个连续块,它保存了给定类型的数据,随着动态分配变量会出现问题。
大多时为了不占用太多的内存,一个有动态分配变量的程序在程序运行时才决定给它们分配多少内存。
如果程序在动态分配缓冲区放入超长的数据,它就会溢出了。
一个缓冲区溢出程序使用这个溢出的数据将汇编语言代码放到机器的内存里,通常是产生root权限的地方。
仅仅单个的缓冲区溢出并不是问题的根本所在。
但如果溢出送到能够以root权限运行命令的区域,一旦运行这些命令,那可就等于把机器拱手相让了。
造成缓冲区溢出的原因是程序中没有仔细检查用户输入的参数。
缓冲区是一块用于存放数据的临时内存空间,它的长度事先已经被程序或操作系统定义好。
缓冲区类似于一个杯子,写入的数据类似于倒入的水。
缓冲区溢出原理及防范缓冲区溢出(Buffer Overflow)是一种常见的软件安全漏洞,其原理是当程序向缓冲区中写入数据时,如果写入的数据超过了缓冲区的容量,多余的数据就会溢出到相邻的内存空间中,从而导致程序崩溃、系统崩溃或者被黑客利用进行恶意攻击。
1.程序在栈上为局部变量等分配内存空间时,会事先确定该内存空间的大小。
2.程序在执行过程中,会将用户输入的数据存储到这些内存空间中。
3.如果用户输入的数据超过了内存空间的大小,多余的数据就会溢出到相邻的内存空间中,并可能覆盖其他重要的数据。
为了防范缓冲区溢出漏洞,可以采取以下几种措施:1.输入验证:对用户输入进行有效的检查和验证,确保输入的数据长度不超过缓冲区的容量,并过滤掉恶意的输入。
2. 使用安全的开发工具和编程语言:使用安全的开发工具和编程语言可以减少缓冲区溢出漏洞的风险。
一些编程语言(如Java)有自动的垃圾回收机制,可以减少缓冲区溢出漏洞的发生。
3. 内存分配和释放的正确使用:在程序中正确使用内存分配和释放的函数,如malloc、free等,可以避免因为内存管理不当而导致的缓冲区溢出漏洞。
4.代码审查和测试:在开发过程中,进行代码审查和测试是非常重要的。
通过对代码进行审查和测试,可以及时发现和修复潜在的缓冲区溢出漏洞。
5. 采用安全编程技术:使用一些安全编程技术,如使用缓冲区溢出检测工具、使用安全的字符串处理函数(如strncpy而不是strcpy)、采用随机地址布局(ASLR)等,可以增强程序的安全性。
总之,缓冲区溢出是一种常见的软件安全漏洞,可以通过合理的输入验证、使用安全的开发工具和编程语言、正确使用内存分配和释放、代码审查和测试,以及采用安全编程技术来防范和减少缓冲区溢出漏洞的风险。
详解缓冲区溢出攻击以及防范⽅法缓冲区溢出是⼀种在各种操作系统、应⽤软件中⼴泛存在普遍且危险的漏洞,利⽤缓冲区溢出攻击可以导致程序运⾏失败、系统崩溃等后果。
更为严重的是,可以利⽤它执⾏⾮授权指令,甚⾄可以取得系统特权,进⽽进⾏各种⾮法操作。
第⼀个缓冲区溢出攻击--Morris蠕⾍,发⽣在⼗多年前,它曾造成了全世界6000多台⽹络服务器瘫痪。
⼀、缓冲区溢出的原理:当正常的使⽤者操作程序的时候,所进⾏的操作⼀般不会超出程序的运⾏范围;⽽⿊客却利⽤缓冲长度界限向程序中输⼊超出其常规长度的内容,造成缓冲区的溢出从⽽破坏程序的堆栈,使程序运⾏出现特殊的问题转⽽执⾏其它指令,以达到攻击的⽬的。
造成缓冲区溢出的原因是程序中没有仔细检查⽤户输⼊的参数,属于程序开发过程考虑不周到的结果。
当然,随便往缓冲区中填东西造成它溢出⼀般只会出现“分段错误”(Segmentation fault),⽽不能达到攻击的⽬的。
最常见的⼿段是通过制造缓冲区溢出使程序运⾏⼀个⽤户shell,再通过shell执⾏其它命令。
如果该程序属于root且有suid权限的话,攻击者就获得了⼀个有root权限的shell,可以对系统进⾏任意操作了。
缓冲区溢出攻击之所以成为⼀种常见安全攻击⼿段其原因在于缓冲区溢出漏洞普遍并且易于实现。
⽽且缓冲区溢出成为远程攻击的主要⼿段其原因在于缓冲区溢出漏洞给予了攻击者他所想要的⼀切:植⼊并且执⾏攻击代码。
被植⼊的攻击代码以⼀定的权限运⾏有缓冲区溢出漏洞的程序,从⽽得到被攻击主机的控制权。
在1998年Lincoln实验室⽤来评估⼊侵检测的的5种远程攻击中,有2种是缓冲区溢出。
⽽在1998年CERT的13份建议中,有9份是是与缓冲区溢出有关的,在1999年,⾄少有半数的建议是和缓冲区溢出有关的。
在Bugtraq的调查中,有2/3的被调查者认为缓冲区溢出漏洞是⼀个很严重的安全问题。
缓冲区溢出漏洞和攻击有很多种形式,会在第⼆节对他们进⾏描述和分类。
缓冲区溢出攻击的分析及防范策略【摘要】缓冲区溢出攻击是一种常见的攻击手段,通过利用程序中的缓冲区溢出漏洞,攻击者可以在程序内存中写入恶意代码并执行。
这种攻击方式具有很高的危害性,可能导致系统崩溃、信息泄露甚至远程控制。
本文对缓冲区溢出攻击的原理进行了分析,并介绍了常见的攻击方法。
还提出了防范缓冲区溢出攻击的措施,包括编程语言中的防范措施、操作系统和网络安全设备中的防范措施等。
结论部分强调了缓冲区溢出攻击的风险不可忽视,建议综合使用多种防范策略以及加强安全意识培训和定期安全漏洞检测来有效防范这种攻击手段。
通过本文的介绍,读者可以更加深入地了解缓冲区溢出攻击,并掌握防范措施。
【关键词】关键词:缓冲区溢出攻击、危害、常见攻击方法、防范策略、原理分析、编程语言、操作系统、网络安全设备、风险、多种防范策略、安全意识培训、安全漏洞检测。
1. 引言1.1 什么是缓冲区溢出攻击缓冲区溢出攻击是指攻击者利用软件缓冲区溢出的漏洞,将大量数据输入超出缓冲区尺寸的内容,从而覆盖程序正常的运行空间,改变程序的执行路径,插入恶意代码或者执行恶意操作。
缓冲区溢出攻击是一种常见的计算机安全威胁,由于许多程序在设计上没有考虑到缓冲区的大小和输入数据的合法性,导致了这一漏洞的存在。
攻击者可以通过缓冲区溢出攻击来实现对系统的控制、数据泄露、拒绝服务等恶意目的。
了解缓冲区溢出攻击的原理对于加强计算机系统的安全防范至关重要。
通过加强对软件漏洞的修补、限制程序对输入数据的处理等措施,可以有效防范缓冲区溢出攻击带来的安全风险。
1.2 缓冲区溢出攻击的危害缓冲区溢出攻击是一种常见的网络安全威胁,其危害十分严重。
当程序接收到超出其预留空间的数据输入时,缓冲区溢出就会发生。
攻击者可以利用这一漏洞来执行恶意代码,篡改数据或者拒绝服务。
具体来说,缓冲区溢出攻击可能导致以下几种危害:1. 执行任意代码:通过向程序输入超出缓冲区界限的数据,攻击者可以利用溢出的内存空间来执行恶意代码。
安全测试中的缓冲区溢出攻击与防御在安全测试领域中,缓冲区溢出攻击是一种常见而危险的攻击方式。
本文将对缓冲区溢出攻击的原理、危害以及常见的防御措施进行探讨。
1. 缓冲区溢出攻击的原理缓冲区溢出攻击主要利用程序中的缺陷,通过向程序输入超过其缓冲区容量的数据来覆盖除缓冲区外的内存空间,从而控制程序的执行流程。
攻击者通常通过溢出的数据来注入恶意代码或修改栈中的返回地址,使程序转向攻击者设计的恶意代码,从而实现攻击目的。
2. 缓冲区溢出攻击的危害缓冲区溢出攻击可能导致以下危害:- 执行任意代码:攻击者通过溢出的数据注入恶意代码,并在程序执行时执行该代码,从而获取系统权限或进一步渗透目标系统。
- 拒绝服务:溢出攻击可能导致目标系统崩溃或无法继续正常运行,造成服务不可用的情况,给系统造成严重影响。
- 信息泄露:攻击者通过溢出泄露系统中的重要信息,如密码、敏感数据等,进一步危害系统和用户安全。
3. 缓冲区溢出攻击的防御措施为了防范缓冲区溢出攻击,以下是一些常见的防御措施:- 输入验证:对输入数据进行严格校验,限制其长度和特殊字符,并使用安全的输入函数进行数据传递,以防止溢出发生。
- 内存分配和使用:合理规划内存分配,使用强类型语言,避免使用不安全的函数和操作。
及时释放不再使用的内存,防止被滥用。
- 栈保护技术:通过使用栈保护技术,如栈溢出保护(Stack Overflow Protection,SOP)、Cannonical Address Space (CAS)等,检测和阻止栈溢出攻击。
- ASLR和DEP:地址空间布局随机化(Address Space Layout Randomization,ASLR)和数据执行保护(Data Execution Prevention,DEP)可以增加攻击者获取目标地址和执行恶意代码的难度,有效防御缓冲区溢出攻击。
4. 实例分析举一个实际的案例来说明缓冲区溢出攻击与防御的重要性。
C语言技术中常见的安全漏洞及预防措施C语言是一种广泛应用于系统和应用软件开发的高级编程语言。
然而,正因为其高效、灵活的特性,C语言也存在一些安全漏洞。
本文将讨论C语言技术中常见的安全漏洞,并提供相应的预防措施。
一、缓冲区溢出缓冲区溢出是C语言中最常见的安全漏洞之一。
当程序尝试向一个预先分配的缓冲区写入超过其容量的数据时,会导致数据溢出,并可能覆盖其他内存空间的内容。
这种漏洞往往会被黑客用来执行恶意代码或破坏系统的稳定性。
为了防止缓冲区溢出,开发者应该使用安全的字符串函数,如`strncpy`、`strncat`等,而不是传统的不安全函数`strcpy`、`strcat`。
此外,还应该确保程序能够正确地验证和过滤输入,以防止输入内容超过缓冲区的容量。
二、整数溢出C语言中的整数溢出是指一个表达式的结果超出了数据类型所能表示的范围。
这种漏洞可能导致程序异常或安全问题。
例如,当使用一个带符号的整数来储存用户输入的年龄时,如果用户输入一个负数,计算结果可能会溢出,导致结果变为正数,从而产生逻辑错误。
为了预防整数溢出,开发者应该使用适当大小的数据类型来储存数据,并进行溢出检查。
此外,还应该避免直接依赖用户输入的数据进行计算,而是进行合理的范围验证和处理。
三、格式化字符串漏洞格式化字符串漏洞是指在格式化输入和输出函数(如`printf`、`sprintf`)中,如果格式控制字符串由用户输入的内容组成,黑客可以利用这种漏洞执行恶意操作。
例如,黑客可以通过输入特定的格式字符串来读取内存中的数据,导致信息泄露。
为了避免格式化字符串漏洞,开发者应该避免使用用户输入的内容直接作为格式控制字符串。
相反,可以通过使用`snprintf`等安全函数来限制输出字符串的长度,并进行适当的输入验证。
四、空指针解引用空指针解引用是指当程序尝试对一个未初始化或已释放的指针进行解引用操作时产生的漏洞。
这种漏洞会导致程序崩溃或不可预测的行为。
缓冲区溢出是一种常见的安全漏洞,攻击者利用缓冲区溢出使程序崩溃或执行恶意代码。
以下是缓冲区溢出漏洞的原理和攻击步骤:1. 缓冲区溢出:缓冲区是一种存储数据的地方,当输入的数据长度超过缓冲区的长度时,就会发生缓冲区溢出。
攻击者通常会利用缓冲区溢出漏洞来向程序写入任意数据,包括恶意代码。
2. 栈溢出:栈溢出是缓冲区溢出的一个特殊情况,当程序在堆栈上分配内存时,如果输入的数据长度超过堆栈的大小,就会发生栈溢出。
栈溢出通常发生在函数调用或跳转时,当函数调用时,栈指针会指向函数的返回地址和参数列表,如果输入的数据长度超过堆栈的大小,就会覆盖函数的返回地址和参数列表,使程序崩溃或执行恶意代码。
3. 堆溢出:堆溢出是缓冲区溢出的另一个特殊情况,当程序在堆上分配内存时,如果输入的数据长度超过堆的大小,就会发生堆溢出。
堆溢出通常发生在动态分配内存时,当程序动态分配内存时,堆指针会指向一个空闲的内存块,如果输入的数据长度超过堆的大小,就会覆盖堆指针,使程序崩溃或执行恶意代码。
4. 溢出攻击:攻击者通常会利用缓冲区溢出漏洞来向程序写入任意数据,包括恶意代码。
攻击者可能会通过Web攻击、命令执行攻击、DLL注入攻击等手段来实现。
5. 命令执行攻击:命令执行攻击是攻击者利用缓冲区溢出漏洞来执行恶意命令的攻击。
攻击者通常会利用命令执行漏洞来向程序写入任意命令,包括系统命令和恶意代码。
6. 注入攻击:注入攻击是攻击者利用缓冲区溢出漏洞来注入恶意代码的攻击。
攻击者通常会利用SQL注入、XML注入等手段来实现。
7. 代码执行攻击:代码执行攻击是攻击者利用缓冲区溢出漏洞来执行恶意代码的攻击。
攻击者通常会利用Shellshock、Code Red等漏洞来实现。
总之,缓冲区溢出漏洞是一种常见的安全漏洞,攻击者可以利用它来执行恶意代码或使程序崩溃。
程序员应该加强代码的安全性,避免缓冲区溢出漏洞的发生。
缓冲区溢出攻击的原理与防范陈硕2004-7-12读者基础:熟悉C语言及其内存模型,了解x86汇编语言。
缓冲区溢出(buffer overflow)是安全的头号公敌,据报道,有50%以上的安全漏洞和缓冲区溢出有关。
C/C++语言对数组下标访问越界不做检查,是引起缓冲区溢出问题的根本原因。
本文以Linux on IA32(32-bit Intel Architecture,即常说的x86)为平台,介绍缓冲区溢出的原理与防范措施。
按照被攻击的缓冲区所处的位置,缓冲区溢出(buffer overflow)大致可分为两类:堆溢出1(heap overflow)和栈溢出2(stack overflow)。
栈溢出较为简单,我先以一些实例介绍栈溢出,然后谈一谈堆溢出的一般原理。
栈溢出原理我们知道,栈(stack)是一种基本的数据结构,具有后入先出(LIFO, Last-In-First-Out)的性质。
在x86平台上,调用函数时实际参数(arguments)、返回地址(return address)、局部变量(local variables)都位于栈上,栈是自高向低增长(先入栈的地址较高),栈指针(stack pointer)寄存器ESP始终指向栈顶元素。
以图表1中的简单程序为例,我们先将它编译为可执行文件,然后在gdb中反汇编并跟踪其运行:$ gcc stack.c –o stack -ggdb -mperferred-stack-boundary=2在IA32上,gcc默认按8个字节对齐,为了突出主题,我们令它按4字节对齐,最末一个参数的用处在此。
图表1在每条语句之后列出对应的汇编指令,注意这是AT&T格式汇编,mov %esp, %ebp 是将寄存器ESP的值赋给寄存器EBP(这与常用的Intel汇编格式正好相反)。
// stack.c#01 int add(int a, int b)#02 {// push %ebp// mov %esp,%ebp#03 int sum;// sub $0x4,%esp#04 sum = a + b;// mov 0xc(%ebp),%eax// add 0x8(%ebp),%eax// mov %eax,0xfffffffc(%ebp)#05 return sum;// mov 0xfffffffc(%ebp),%eax1本文把静态存储区溢出也算作一种堆溢出。
2 Stack 通常翻译为“堆栈”,为避免与文中出现的“堆/heap”混淆,这里简称为“栈”。
// leave// ret#06 }#07#08 int main()#09 {// push %ebp// mov %esp,%ebp#10 int ret = 0xDEEDBEEF;// sub $0x4,%esp// movl $0xdeedbeef,0xfffffffc(%ebp)#11 ret = add(0x19, 0x82);// push $0x82// push $0x19// call 80482f4 <add>// add $0x8,%esp// mov %eax,0xfffffffc(%ebp)#12 return ret;// mov 0xfffffffc(%ebp),%eax// leave// ret#13 }图表 1 典型的函数调用当程序执行完第10行时,堆栈如图表2所示。
图中每格表示一个double word(4字节)。
图表 2 堆栈状况1EBP是栈帧指针(frame pointer),在整个函数的运行过程中,它始终指向间于返回地址和局部变量之间的一个double word,此处保存着调用端函数(caller)的EBP值(第9行对应的两条指令正是起这个作用)。
EBP所指的位置之下是局部变量,例如EBP-4是变量ret 的地址,-4的补码表示正好是0xFFFFFFFC,第11行上方的movl指令将0xDEEDBEEF 存入变量ret。
当函数返回时,须将EBP恢复原值。
leave指令相当于:mov %ebp, %esp // 先令esp指向saved ebppop %ebp // 弹出栈顶内容至ebp,此时esp正好指向返回地址,ebp也恢复原值ret指令的作用是将栈顶元素(ESP所指之处)弹出至指令指针EIP,完成函数返回动作。
执行第11条语句时,先将add()的两个参数按从右到左的顺序压入堆栈,call指令会先把返回地址(也就是call指令的下一条指令的地址,此处为一条add指令3)压入堆栈,3C语言为了实现变长参数调用(就像printf()),通常规定由调用端负责清理堆栈,这条add指令正是起平衡堆栈的作用。
然后修改指令指针EIP,使程序流程(flow)到达被调用函数处(第2行)。
当程序运行到第4行时,堆栈的情况如图表3所示。
图表 3 堆栈情况2图中灰色部分是main()的栈帧(stack frame,又称活动记录:activation record),其下是add()的栈帧,从中可以看出,保存函数返回地址(return addr)的位置比第一个局部变量高8字节。
由此我们想到,函数可以修改自己的返回地址。
下面我们做一个试验。
// retaddr.c#01 #include <stdio.h>#02#03 void malice()#04 {#05 printf("Hey, you've been attacked.\n");#06 }#07#08 void foo()#09 {#10 int* ret;#11 ret = (int*)&ret + 2; // get the addr of return addr#12 (*ret) = (int)malice; // set my return addr to malice()#13 }#14#15 int main()#16 {#17 foo();#18 return 0;#19 }图表 4 改变函数返回地址图表4列出了一个函数改变自己返回地址的程序,foo()函数将自己的返回地址改为malice()函数。
编译运行这个程序,结果如下:$ gcc retaddr.c -o retaddr -ggdb -mpreferred-stack-boundary=2$ ./retaddrHey, you've been attacked.Segmentation fault (core dumped)core dump 4发生在malice()返回时,我们来分析一下究竟发生了什么。
首先,在进入main()函数后,在执行第17行之前,堆栈情况如图表5-(a)所示,这是main()的栈帧;随后,进入函数foo(),在执行第11行之前,堆栈布局如图表5-(b)所示,灰色部分是调用端main()的栈帧;执行第11行之后,ret 指向函数的返回地址(图表5-(c));第12行修改*ret ,将返回地址设为malice()的入口。
foo()函数结束后,本应返回到main(),执行第18行的语句return 0;然而由于返回地址被修改,foo()函数返回后进入函数malice(),在执行第5行之前,堆栈的情况如图表5-(d)。
这时堆栈已被破坏,malice()函数的返回地址处存放的是main()函数保存的EBP 值(图中的 saved EBP* ),malice()函数返回后,会跳转到 saved EBP* 所指的地址,oops!接下来发生的事情想必大家都知道了☺(a) (b)(c) (d)图表 5 堆栈情况3继续我们的试验:如何让这个程序正常退出?我想到的办法是,利用main()函数的局部变量伪造一个貌似合法的堆栈,让malice()返回后,程序得以安全退出。
办法很简单,在malice()的返回地址处放上exit()的入口地址☺,当然,我们还要顺便伪造传给exit()的参数。
改进后的main()见图表 6。
4如果没有出现core dumped 字样,请先执行 ulimit –c unlimited 。
#02 #include <stdlib.h>#15 int main() #16 {#17 volatile int exit_val = 100; #18 volatile int dumy = 0;#19 volatile void* ret_addr = &exit; #20 foo(); #21 }图表 6 改进后的“修改函数返回地址”示例使用volatile 关键字是为了防止编辑器将这些看似没用的局部变量优化掉。
进入函数malice()后,堆栈情况如图表 7-(a)所示。
与图表 5-(d)比较可知,malice()会把ret_addr作为自己的返回地址,我们已在此处填上了exit()的入口地址。
当malice()返回后,程序进入exit()函数,这时堆栈如图表 7-(b)所示(注意,exit()没有保存ESP )。
exit()函数会把100认为是传递给自己的参数,还会认为返回地址是0,但是exit()永不返回,所以不会造成core dump ,程序正常结束,返回给操作系统的代码是100。
(a) (b)图表 7 堆栈情况4有了以上对函数调用栈的了解,接下来,我们可以谈谈栈上的缓冲区溢出了。
利用缓冲区溢出,我们能 1) 自由修改EIP ,控制程序流程;2) 植入shellcode ,获得root shell 。
所谓shellcode ,是指能调出shell 的程序,功能如同shellcode1.c (图表 8)。
#01 #include <unistd.h>#02#03 int main() #04 {#05 char* name[2]; #06#07 setuid(0); // required if bash is used #08 name[0] = "/bin/sh"; #09 name[1] = NULL;#10 execve(name[0], name, NULL); #11 return 0; #12 }图表 8 shellcode1.c如果以root权限执行这段程序,我们就能获得一个root shell,Wow! 先试一把:$ gcc -o shellcode1 shellcode1.c$ whoamischen$ ./shellcode1sh-2.05b$ whoamischen咦?怎么没有变身root?噢,忘了将shellcode1的owner设为root,还要设置suid位:$ sudo chown root shellcode1$ sudo chmod +s shellcode1$ whoamischen$ ./shellcode1sh-2.05b# whoamirootsh-2.05b# id// 不放心,再确认一下☺uid=0(root) gid=500(schen) groups=500(schen)当然,我们不能直接使用图表8中的程序,需要把它转换为机器码,再注入缓冲区。