基于matlab的衍射系统仿真 -
- 格式:docx
- 大小:664.47 KB
- 文档页数:25
成绩:《工程光学》综合性练习二题目:基于matlab的衍射系统仿真学院精密仪器与光电子工程学院专业测控技术与仪器年级20**级班级**班姓名20**年**月综合练习大作业二一、要求3-4人组成小组,对下面给出的各题目利用Matlab等工具进行仿真。
练习结束时每组提交一份报告及仿真程序。
在报告中应注明各仿真结果所对应的参数,如屏与衍射屏间距、孔径形状尺寸等。
二、仿真题目1.改变观察屏与衍射屏间距,观察观察屏上发生的衍射逐渐由菲涅耳衍射转为夫琅和费衍射1)原理图:S点光源发出的波长lam=500纳米S点发出光线经过单缝,缝宽a;单缝到衍射屏的距离L'2)Matlab代码clear;clcl=10;%l=input('单缝到衍射屏的距离L=');a=0.2;%a=input('单缝的宽度(mm)a=');lam=500e-6;%lam=input('波长(nm)');x=-1:0.001:1;%接收屏边界y=x./sqrt(x.^2+l^2);z=a.*y/lam;I=1000*(sinc(z)).^2;%计算接受屏某点光强subplot(2,1,1)%绘制仿真图样及强度曲线image(2,x,I)colormap(gray(3))title('单缝衍射条纹')subplot(2,1,2)plot(x,I)title(光强分布)3)初始仿真图样(d=10)4)改变d之后的图样(d=1000)5)变化规律根据衍射屏以及接受屏的相对位置不同,由此产生菲涅尔衍射和夫琅禾费衍射的区别,根据我们模拟的情况得到菲涅尔衍射和夫琅禾费衍射的明显不同是夫琅禾费衍射条件下:中央有一条特别明亮的亮条纹,其宽度是其他亮条纹的两倍;其他亮条纹的宽度相等,亮度逐渐下降。
2.改变孔径形状、尺寸,观察图样变化1)原理图矩孔衍射:透镜焦距:1000mm;照射光波长:500nm;孔高:a(mm);孔宽:b(mm);圆孔衍射:圆孔直径:r(mm);照射光波长:500nm;照射光波长:500nm;2)matlab代码矩孔衍射:focallength=1000;lambda=500;a=2.0;b=2.0;resolution=64;center=(resolution)/2;A=zeros(resolution,resolution);for i=1:1:resolutionfor j=1:1:resolutionif abs(i-center)<a*10/2&abs(j-center)<b*10/2 A(j,i)=255;endendendE=ones(resolution,resolution);k=2*pi*10000/focallength/lambda;imag=sqrt(-1);for m=1:1:resolutionx=m-center;for n=1:1:resolutiony=n-center;C=ones(resolution,resolution);for i=1:1:resolutionp=i-center;for j=1:1:resolutionq=j-center;C(j,i)=A(j,i)*exp(-imag*k*(x*p+y*q)); endendE(n,m)=sum(C(:));endendE=abs(E);I=E.^2;I=I.^(1/3);I=I.*255/max(max(I));L=I;I=I+256;CM=[pink(255).^(2/3);gray(255)];Colormap(CM);edge=(resolution-1)/20;[X,Y]=meshgrid([-edge:0.1:edge]);x=linspace(-edge,edge,resolution);y=linspace(-edge,edge,resolution);subplot(1,2,1);surf(x,y,L);axis([-edge,edge,-edge,edge,0,255]);caxis([0,511]);subplot(1,2,2);image(x,y,I);axis([-edge,edge,-edge,edge,0,511]);view(2);axis square;圆孔衍射:clearlmda=500e-9;%波长r=1.2e-3;%f=1;%焦距N=19;K=linspace(-0.1,0.1,N);lmda1=lmda*(1+K);xm=2000*lmda*f;xs=linspace(-xm,xm,2000);ys=xs;z0=zeros(2000);[x,y]=meshgrid(xs);for i=1:19s=2*pi*r*sqrt(x.^2+y.^2)./(lmda1(i));z=4*(besselj(1,s)./(s+eps)).^2;%光强公式z0=z0+z;endz1=z0/19;subplot(1,2,1)imshow(z1*255);%平面图xlabel('x')ylabel('y')subplot(1,2,2)mesh(x,y,z1)%三维图colormap(gray)xlabel('x')ylabel('y')zlabel('光强')3)仿真图样:矩孔衍射:a=1,b=2a=2,b=2可知:矩孔在一个维度上展宽一定倍数将导致衍射图样在相同维度上缩短相同倍数,同时能量会更向中心亮斑集中。
实验7衍射的Matlab模拟一、实验目的:掌握衍射的matlab模拟。
二、实验内容:1)单个圆孔夫朗和费衍射的matlab模拟2)双圆孔夫朗和费衍射的matlab模拟3)同一波长,狭缝数量分别为1、2、3、6、9、10时候的夫朗和费衍射的matlab模拟4)对4个不同波长的光照射时,狭缝数量分别为1、3时候的夫朗和费衍射的matlab 模拟5)单个圆孔菲涅尔衍射的matlab模拟6)模拟圆孔(或者单缝)衍射时,衍射屏到接收屏距离不同的时候衍射的图样1)clearclclam=632.8e-9;a=0.0005;f=1;m=300;ym=4000*lam*f;ys=linspace(-ym,ym,m);xs=ys;n=200;for i=1:mr=xs(i)^2+ys.^2;sinth=sqrt(r./(r+f^2));x=2*pi*a*sinth./lam;hh=(2*BESSELJ(1,x)).^2./x.^2;b(:,i)=(hh)'.*5000;B=b/max(b);endimage(xs,ys,b);colormap(gray(n));figure;plot(xs,B);colormap(green);-2.5-2-1.5-1-0.500.51 1.52 2.5x 10-3-2.5-2-1.5-1-0.50.511.522.5x 10-3-3-2-10123x 10-300.10.20.30.40.50.60.70.80.912)%双圆孔夫琅禾费衍射clear all close all clc %lam=632.8e-9;a=0.0005;f=1;m=300;ym=4000*lam*f;ys=linspace(-ym,ym,m);xs=ys;n=200;for i=1:m r=xs(i)^2+ys.^2;sinth=sqrt(r./(r+f^2));x=2*pi*a*sinth./lam;h=(2*BESSELJ(1,x)).^2./x.^2;d=10*a;deltaphi=2*pi*d*xs(i)/lam;hh=4*h*(cos(deltaphi/2))^2;b(:,i)=(hh)'.*5000;end image(xs,ys,b);colormap(gray(n));-2.5-2-1.5-1-0.500.51 1.52 2.5x 10-3-2.5-2-1.5-1-0.50.511.522.5x 10-33)lamda=500e-9;%波长N=[1236910];for j=1:6a=2e-4;D=5;d=5*a;ym=2*lamda*D/a;xs=ym;%屏幕上y 的范围n=1001;%屏幕上的点数ys=linspace(-ym,ym,n);%定义区域for i=1:n sinphi=ys(i)/D;alpha=pi*a*sinphi/lamda;beta=pi*d*sinphi/lamda;B(i,:)=(sin(alpha)./alpha).^2.*(sin(N(j)*beta)./sin(beta)).^2;B1=B/max(B);end NC=256;%确定灰度的等级Br=(B/max(B))*NC;figure(j);subplot(1,2,1);image(xs,ys,Br);colormap(hot(NC));%色调处理subplot(1,2,2);plot(B1,ys,'k');end-0.4-0.200.20.4-0.025-0.02-0.015-0.01-0.00500.0050.010.0150.020.02500.51-0.025-0.02-0.015-0.01-0.0050.0050.010.0150.020.025狭缝数为1-0.4-0.200.20.4-0.025-0.02-0.015-0.01-0.00500.0050.010.0150.020.02500.51-0.025-0.02-0.015-0.01-0.0050.0050.010.0150.020.025狭缝数为2-0.4-0.200.20.4-0.025-0.02-0.015-0.01-0.00500.0050.010.0150.020.02500.51-0.025-0.02-0.015-0.01-0.0050.0050.010.0150.020.025狭缝数为3-0.4-0.200.20.4-0.025-0.02-0.015-0.01-0.00500.0050.010.0150.020.02500.51-0.025-0.02-0.015-0.01-0.0050.0050.010.0150.020.025-0.4-0.200.20.4-0.025-0.02-0.015-0.01-0.00500.0050.010.0150.020.02500.51-0.025-0.02-0.015-0.01-0.0050.0050.010.0150.020.025狭缝数为9狭缝数为6-0.4-0.200.20.4-0.025-0.02-0.015-0.01-0.00500.0050.010.0150.020.02500.51-0.025-0.02-0.015-0.01-0.0050.0050.010.0150.020.0254)lamda=400e-9:100e-9:700e-9;%波长N=[13];a=2e-4;D=5;d=5*a;for j=1:4ym=2*lamda(j)*D/a;xs=ym;%屏幕上y 的范围n=1001;%屏幕上的点数ys=linspace(-ym,ym,n);%定义区域for k=1:2for i=1:n sinphi=ys(i)/D;alpha=pi*a*sinphi/lamda(j);beta=pi*d*sinphi/lamda(j);B(i,:)=(sin(alpha)./alpha).^2.*(sin(N(k)*beta)./sin(beta)).^2;B1=B/max(B);end NC=256;%确定灰度的等级Br=(B/max(B))*NC;figure();subplot(1,2,1);image(xs,ys,Br);colormap(hot(NC));%色调处理subplot(1,2,2);狭缝数为10plot(B1,ys,'k');end end-0.4-0.200.20.4-0.02-0.015-0.01-0.00500.0050.010.0150.0200.51-0.02-0.015-0.01-0.0050.0050.010.0150.02Lamda=400nm,N=1-0.4-0.200.20.4-0.02-0.015-0.01-0.00500.0050.010.0150.0200.51-0.02-0.015-0.01-0.0050.0050.010.0150.02-0.4-0.200.20.4-0.025-0.02-0.015-0.01-0.00500.0050.010.0150.020.02500.51-0.025-0.02-0.015-0.01-0.0050.0050.010.0150.020.025Lamda=400nm,N=3Lamda=500nm,N=1-0.4-0.200.20.4-0.025-0.02-0.015-0.01-0.00500.0050.010.0150.020.02500.51-0.025-0.02-0.015-0.01-0.0050.0050.010.0150.020.025-0.4-0.200.20.4-0.03-0.02-0.0100.010.020.0300.51-0.03-0.02-0.010.010.020.03Lamda=500nm,N=3Lamda=600nm,N=1-0.4-0.200.20.4-0.03-0.02-0.0100.010.020.0300.51-0.03-0.02-0.010.010.020.03-0.4-0.200.20.4-0.03-0.02-0.0100.010.020.0300.51-0.04-0.03-0.02-0.010.010.020.030.04Lamda=600nm,N=3Lamda=700nm,N=1-0.4-0.200.20.4-0.03-0.02-0.0100.010.020.0300.51-0.04-0.03-0.02-0.010.010.020.030.045)clearclcN=300;r=15;a=1;b=1;I=zeros(N,N);[m,n]=meshgrid(linspace(-N/2,N/2-1,N));D=((m-a).^2+(n-b).^2).^(1/2);i=find(D<=r);I(i)=1;subplot(2,2,1);imagesc(I)colormap([000;111])axis imagetitle('衍射前的图样')L=300;M=300;[x,y]=meshgrid(linspace(-L/2,L/2,M));lamda=632.8e-6;k=2*pi/lamda;z=1000000;Lamda=700nm,N=3h=exp(j*k*z)*exp((j*k*(x.^2+y.^2))/(2*z))/(j*lamda*z); H=fftshift(fft2(h));%传递函数B=fftshift(fft2(I));%圆孔频谱G=H.*B;U=fftshift(ifft2(G));Br=(U/max(U));subplot(2,2,2);imshow(abs(U));axis image;colormap(hot)%figure,imshow(C);title('衍射后的图样');subplot(2,2,3);mesh(x,y,abs(U));subplot(2,2,4);plot(abs(Br))6)lamda=500e-9;%波长N=1;%缝数,可以随意更改变换a=2e-4;D=3:7;d=5*a;for j=1:5ym=2*lamda*D(j)/a;xs=ym;%屏幕上y的范围n=1001;%屏幕上的点数ys=linspace(-ym,ym,n);%定义区域for i=1:nsinphi=ys(i)/D(j);alpha=pi*a*sinphi/lamda;beta=pi*d*sinphi/lamda;B(i,:)=(sin(alpha)./alpha).^2.*(sin(N*beta)./sin(beta)).^2;B1=B/max(B);endNC=256;%确定灰度的等级Br=(B/max(B))*NC;figure();subplot(1,2,1)image(xs,ys,Br);colormap(hot(NC));%色调处理subplot(1,2,2)plot(B1,ys,'k');end-0.4-0.200.20.4-0.015-0.01-0.00500.0050.010.01500.51-0.015-0.01-0.0050.0050.010.015D=3m-0.4-0.200.20.4-0.02-0.015-0.01-0.00500.0050.010.0150.0200.51-0.02-0.015-0.01-0.0050.0050.010.0150.02-0.4-0.200.20.4-0.025-0.02-0.015-0.01-0.00500.0050.010.0150.020.02500.51-0.025-0.02-0.015-0.01-0.0050.0050.010.0150.020.025D=5m D=4m-0.4-0.200.20.4-0.03-0.02-0.0100.010.020.0300.51-0.03-0.02-0.010.010.020.03-0.4-0.200.20.4-0.03-0.02-0.0100.010.020.0300.51-0.04-0.03-0.02-0.010.010.020.030.04D=7m D=6m。
基于MATLAB 模拟演示衍射实验阚亮亮 李宗景 吴小龙 尹岩 将matlab 应用与以前学习过的课程是学习该课程的最重要的意义,通过matlab 演示衍射实验效果好,简洁,直观。
下图是单缝衍射是matlab 所得到的图像-0.025-0.02-0.015-0.01-0.0050.0050.010.0150.020.025附上MATLAB 程序:lamda=500e-9; %波长N=1; %缝数 ,可以随意更改变换a=2e-4;D=5;d=5*a;ym=2*lamda*D/a;xs=ym;%屏幕上y 的范围n=1001;%屏幕上的点数ys=linspace(-ym,ym,n);%定义区域for i=1:nsinphi=ys(i)/D;alpha=pi*a*sinphi/lamda;beta=pi*d*sinphi/lamda;B(i,:)=(sin(alpha)./alpha).^2.*(sin(N*beta)./sin(beta)).^2;B1=B/max(B);endNC=256; %确定灰度的等级Br=(B/max(B))*NC;subplot(1,2,1)image(xs,ys,Br);colormap(hot(NC)); %色调处理subplot(1,2,2)plot(B1,ys,'k');衍射现象的模拟结果与讨论在实验时改变N的值可以得到单缝以及多缝衍射的输出结果,并可以得到这样的结论:(1)当入射光波长一定时,单缝宽度a越小,衍射条纹越宽,衍射现象越显著;(2)单缝越宽,衍射越不明显,单缝宽度逐渐增大,衍射条纹越来越窄;(3)当缝宽a>>λ时,各级衍射条纹向中央明纹靠拢,而无法分辨,这时衍射现象消失。
结束语利用MATLAB对抽象物理现象进行计算机仿真时,首先必须对物理过程进行数学抽象,建立适合程序实现的数学模型,其次利用MATLAB软件包中的有关工具编制m文件,最后对物理过程和物理现象进行模拟,从而可以把抽象的物理问题进行简明、直观的动态展现。
基于MATLAB的光学光栅衍射仿真在“光栅衍射计算器”(钆计算器®)是一个基于MATLAB,电磁仿真程序,计算光栅结构,包括biperiodic光栅衍射效率。
该方案的功能包括一样的设施和灵活的光栅造型,结构参数(与任意数量的参数),超过衍射顺序不受选择限制的操纵。
另外,它在泛型编程及应用Matlab开发框架的实施提供了软件的灵活性和互操作性不与独立衍射分析程序可费用本条第1部份提供了钆Calc的概念性概述,归纳描述如何指定光栅结构,和如何进行了电磁计算。
这次报告会要紧以概念为导向,但有几个简单的代码例子提供给读者一个如何用GD- Calc软件接口来工作的感觉。
第2部份提供了一个更深切地介绍了软件界面,利用钨作为一个例子来讲明光子晶体结构光栅结构是如何规定的.本文的要紧核心是光栅结构标准。
电磁计算中的应用实例,载于所附文件,钆。
(在这篇文章,并在GD- 的代码例如都能够运行的免费演示/从Calc的网站教程中的代码。
光子晶体的例子是在演示脚本为基础。
)电磁理论与算法基础详见钆。
第1部份:概念概述MATLAB的开发环境一个在MATLAB环境下工作的优势是了解GD- Calc图的功能联系,而无需依托繁琐的数据转换和导入/导出进程中创建的。
例如,在半导体光刻技术的应用,光刻胶光栅的厚度和折射率的阻碍都可能暴露有关抗击致密,因此很自然地就会指定的厚度和折射率既是暴露用户概念函数。
这是专门有效的结构参数化,例如,曝光能够被概念为一个矢量的数量,在这种情形下,所有曝光依托数量,包括阻碍厚度,折射率,并计算出衍射效率,也一样向量化。
通常情形下,光栅的光学特性不是要紧关切它本身最为一个完整的系统,应该包括作为一个组件光栅光学响应。
MATLAB的通用编程能力,能够轻松地链接到用户的功能概念的光学系统模型的Gd - Calc中,它本身能够成通用的优化程序性能的优化设计中。
钆Calc是简单的MATLAB函数(),可纳入其他MATLAB 函数或脚本,而且需要实例化的参数,能够对用户概念的函数..尽管独立程序缺乏通用性和Matlab开发环境的灵活性,他们能够有简单和易于利用的优势。
西安工业大学毕业设计(论文)开题报告题目:基于Matlab的光学衍射实验仿真系别光电信息系专业光电信息工程班级XXX姓名王XX学号X070104XX导师XX2010 年11 月27 日课题背景及研究意义衍射是光波的一种重要特征,对光波衍射现象的讨论是以惠更斯- 菲涅尔原理为基础的。
事实证明,在大多数光学问题中,可以采用光场的标量衍射理论来描述和计算。
光场的频率非常高,只能测量在一个比光的周期大得多的时间间隔内的平均值,在计算衍射光波场的光振动和光强分布时则利用菲涅尔- 基尔霍夫衍射积分公式[1,2,3]。
在物理光学的光的衍射教学过程中,光学实验内容比较抽象, 如不借助实验, 学生很难理解理论、实验原理和过程。
通常,学校的教学中,将光学理论教学与实验教学相分离,理论教学中需要实验现象来验证,而光学实验的进行一般要稳定的环境、高精密的仪器, 复杂的实验仪器以及光路的调试, 花费了技术人员相当多的时间,往往很难调试到理想的状态,搭建好的仪器和光路也会受到环境和温度的影响,有时实验结果将偏离理论预测。
为了在物理光学课程教学过程形象生动,需要现代化的教学手段,千方百计地为学生提供观察物理现象的机会,提高学生学习光学课程的兴趣,培养他们的思维水平和创新能力,应该充分利用计算机软件功能为教学增添活力,为学生理解复杂理论和实验做好铺垫,可以用MATLAB软件为平台,对光学实验进行计算机仿真,具有两个方面意义:一方面,利用仿真结果指导实际实验。
前期投资少,且可以减少贵重仪器的损伤等;另一方面,在教学上,将抽象难懂的概念、规律通过实验仿真生动、形象地表现出来,使学生更易于接受,具有明显的教学效果。
还可以鼓励学生自主探索,研究一些更深入的光学问题,这样可以拓宽知识面,提高能力[4,5,6]。
国内外研究情况在用计算机模拟[7]光学实验软件方面,国外的光学衍射模拟试验是在模拟设计和优化光学系统的过程中发展起来的。
在这方面,美国走在最前面,他们最具代表性的是劳伦斯利弗莫尔实验室光传输模拟计算软件Prop92[8,9]及大型总体优化设计软件CHAINOP 和PROPSUITE[10]。
光的干涉和衍射的matlab模拟单缝夫琅和费衍射是光的衍射现象之一,如图2所示。
当单色光波通过一个狭缝时,光波会向周围扩散,形成一系列同心圆环。
这些圆环的亮度分布是由夫琅和费衍射公式描述的,即。
其中为入射光波长,为狭缝宽度,为衍射角。
夫琅和费衍射公式表明,随着衍射角的增大,圆环的半径会减小,而亮度则会逐渐减弱。
在MATLAB中,可以通过输入实验参数,如光波长和狭缝宽度,来观察圆环的亮度分布和半径随衍射角的变化情况。
同时,还可以探讨不同波长和狭缝宽度对圆环亮度和半径的影响。
4双缝衍射双缝衍射是光的干涉和衍射现象的结合,如图3所示。
当一束单色光波通过两个狭缝时,光波会在屏幕上形成一系列干涉条纹和衍射环。
干涉条纹的亮度分布与___双缝干涉相同,而衍射环的亮度分布则由夫琅和费衍射公式描述。
在MATLAB中,可以通过输入实验参数,如光波长、双缝间距和双缝宽度,来观察干涉条纹和衍射环的亮度分布和条纹间距、环半径随实验参数的变化情况。
同时,还可以探讨不同实验参数对干涉条纹和衍射环的影响。
5衍射光栅衍射光栅是一种利用衍射现象制成的光学元件,如图4所示。
当一束单色光波通过光栅时,光波会被分为多个衍射光束,形成一系列亮度不同的衍射条纹。
衍射条纹的亮度分布与夫琅和费衍射公式描述的圆环类似,但是条纹间距和亮度分布会受到光栅常数的影响。
在MATLAB中,可以通过输入实验参数,如光波长和光栅常数,来观察衍射条纹的亮度分布和条纹间距随实验参数的变化情况。
同时,还可以探讨不同实验参数对衍射条纹的影响。
总之,通过MATLAB模拟光的干涉和衍射现象,可以更加直观地理解和掌握这些重要的光学现象,同时也可以为实验设计和数据分析提供有力的工具和支持。
本文介绍了___双缝干涉、单缝夫琅禾费衍射和衍射光栅光谱的计算机模拟。
当一束单色平行光通过宽度可调的狭缝,射到其后的光屏上时,形成一系列亮暗相间的条纹。
单缝夫琅禾费衍射的光强分布可以通过惠更斯-费涅耳原理计算。
圆孔衍射与像分辨本领的matlab仿
真分析
衍射技术以其得天独厚的特性在一系列领域中发挥着重要作用,而圆孔衍射技
术更是其中最重要的应用。
以圆孔衍射理论研究和仿真分析来加深对其原理以及原理背后的分歧准确的说明属于数学处置,而matlab仿真分析可以理解圆孔衍射事
例的表述,使其能够详实地反映分析结果,并推进应用技术的实际研发。
圆孔衍射的matlab仿真分析是指利用matlab软件来处置圆孔衍射的分析问题,其特点是其计算速度快,精确度高,可以同时处置多种孔径形态的圆孔衍射。
MATLAB仿真分析运用Rayleigh衍射方程与Fresnel误差函数;它可以模拟任何扫
描尺度、光斑有效直径及衍射模式差异,测定衍射效果的衰变和聚焦程度,精确的表征像分辨率的改变指标。
此外,应用matlab仿真分析,可以准确可靠的量化把握不同孔径尺寸,材质
及照度等参数对像分辨率性能的影响,从而更好地开发和调校圆孔衍射系统以及其他光学模组;同时,matlab仿真可以高效地分析仿真原理分歧对性能参数影响的
复杂关系,以此作为参考来改进技术參数,使圆孔衍射系统能够达到最好的设计效果。
综上,matlab仿真分析是指利用matlab软件处置圆孔衍射的分析问题,可以
准确把握不同孔径尺寸,材质及照度等参数对像分辨率性能的影响,从而更好地开发和调校圆孔衍射系统,提升其像分辨本领,使其在一系列字段中有较高的应用价值。
《基于Matlab的光学实验仿真》篇一一、引言光学实验是物理学中重要的实验领域之一,其研究范围涵盖了光的传播、干涉、衍射、偏振等基本现象。
然而,在实际的光学实验中,由于各种因素的影响,如设备精度、环境噪声等,往往难以得到理想的实验结果。
为了更好地理解和研究光学现象,提高实验的准确性和效率,基于Matlab的光学实验仿真成为了一种有效的手段。
本文将介绍基于Matlab的光学实验仿真的基本原理、方法及其实验结果分析。
二、Matlab光学实验仿真的基本原理和方法1. 基本原理Matlab是一种强大的数学计算软件,其强大的数值计算和图像处理功能为光学实验仿真提供了可能。
在光学实验仿真中,我们可以通过建立数学模型,模拟光的传播、干涉、衍射等过程,从而得到光场分布、光强分布等光学参数。
2. 方法(1)建立数学模型:根据光学实验的实际情况,建立光的传播、干涉、衍射等过程的数学模型。
(2)设置参数:根据实验需求,设置模拟参数,如光波长、光束尺寸、光学元件参数等。
(3)运行仿真:在Matlab中运行仿真程序,得到光场分布、光强分布等光学参数。
(4)结果分析:对仿真结果进行分析,如绘制光强分布图、计算光程差等。
三、基于Matlab的光学实验仿真实例以光学干涉实验为例,介绍基于Matlab的光学实验仿真方法。
1. 建立数学模型:根据干涉实验的实际情况,建立双缝干涉的数学模型。
该模型包括双缝的结构参数、光的波长、干涉场的空间分布等。
2. 设置参数:根据实验需求,设置双缝间距、缝宽、光波长等参数。
3. 运行仿真:在Matlab中运行仿真程序,得到双缝干涉的光强分布。
4. 结果分析:对仿真结果进行分析,如绘制光强分布图、计算干涉条纹的可见度等。
通过仿真结果与实际实验结果的对比,验证了仿真方法的准确性和可靠性。
四、实验结果分析基于Matlab的光学实验仿真可以得到准确的光场分布、光强分布等光学参数,为光学实验提供了有效的手段。
基于Matlab的夫琅禾费衍射光学仿真摘要计算机仿真技术是以多种学科和理论为基础,以计算机及其相应的软件为工具,通过虚拟试验的方法来分析和解决问题的一门综合性技术。
计算机仿真早期称为蒙特卡罗方法,是一门利用随机数实验求解随机问题的方法。
关键词:计算机仿真夫琅禾费衍射MatlabFraunhofer Diffraction Optical Simulation Based onMatlabAbstract The computer simulation technology is based on a variety of disciplines and theoretical, with the computer and the corresponding software tools, we can analyze the virtual experimentation and solve the problem of a comprehensive technology. Computer simulation of early known as the Monte Carlo method, is a random problem solved using the method of random number test.Key words:Computer simulation Fraunhofer diffraction Matlab一、引言计算机仿真技术是以多种学科和理论为基础,以计算机及其相应的软件为工具,通过虚拟试验的方法来分析和解决问题的一门综合性技术。
计算机仿真早期称为蒙特卡罗方法,是一门利用随机数实验求解随机问题的方法。
根据仿真过程中所采用计算机类型的不同,计算机仿真大致经历了模拟机仿真、模拟-数字混合机仿真和数字机仿真三个大的阶段。
20世纪50年代计算机仿真主要采用模拟机;60年代后串行处理数字机逐渐应用到仿真之中。
基于Matlab的光学衍射实验仿真摘要光学试验中衍射实验是非常重要的实验. 光的衍射是指光在传播过程中遇到障碍物时能够绕过障碍物的边缘前进的现象, 光的衍射现象为光的波动说提供了有力的证据. 衍射系统一般有光源、衍射屏和接受屏组成,按照它们相互距离的大小可将衍射分为两大类,一类是衍射屏与光源和接受屏的距离都是无穷远时的衍射,称为夫琅禾费衍射,一类是衍射屏与光源或接受屏的距离为有限远时的衍射称为菲涅尔衍射.本文用Matlab软件对典型的衍射现象建立了数学模型,对衍射光强分布进行了编程运算,对衍射实验进行了仿真。
最后创建了交互式GUI界面,用户可以通过改变输入参数模拟不同条件下的衍射条纹.本文对于衍射概念、区别、原理及光强分布编程做了详细全面的介绍关键字:Matlab;衍射;仿真;GUI界面;光学实验Matlab-based Simulation of Optical Diffraction ExperimentAbstractOptical diffraction experiment is a very important experiment. is the diffraction of light propagation of light in the obstacles encountered in the process to bypass the obstacles when the forward edge of the phenomenon of light diffraction phenomenon of the wave theory of light provides a strong Evidence。
diffraction systems generally have light, diffraction screen and accept the screen composition,size according to their distance from each other diffraction can be divided into two categories, one is the diffraction screen and the light source and the receiving screen is infinity when the distance between the diffraction Known as Fraunhofer diffraction, one is diffraction screen and the light source or accept a limited away from the screen when the diffraction is called Fresnel diffraction.In this paper, Matlab software on a typical phenomenon of a mathematical model of diffraction, the diffraction intensity distribution of the programming operation,the diffraction experiment is simulated. Finally, create an interactive GUI interface, users can change the input parameters to simulate different conditions of the diffraction pattern.This concept of the diffraction, difference, intensity distribution of programming principles and a detailed comprehensive descriptionKey word:matlab;diffraction; simulation;gui interface;optical experiment目录1 绪论 (1)1.1光学仿真的研究意义 (1)1.2国内外研究现状 (2)1。
基于MATLAB的光学光栅衍射仿真“光栅衍射计算器”是一种基于MATLAB的,用于计算包括双周期光栅在内的光栅结构衍射效率的电磁仿真程序。
该程序的功能包括一般的和灵活的光栅模型,结构参数(包括任意数目的参数),以及对衍射顺序进行无限制的控制。
此外,它在通用编程和Matlab的应用开发框架下的实现提供了一定程度的软件灵活性和与独立衍射分析程序不兼容的交互性。
本文的第1部分提供了光栅衍射计算器的概念描述,概括描述如何指定光栅结构以及如何进行电磁计算。
这些介绍主要面向概念,但有一些简单代码的例子给读者演示了如何使用光栅衍射计算器软件界面。
第二部分对软件界面做了进一步的介绍:以钨光子晶体结构为例来说明光栅结构是如何确定的。
(第二部分中的代码列表总结在gdc_intro.m中。
)本文的主要重点是定义光栅结构。
所附文件Calc_Demo.pdf提供了电磁计算中的应用例子。
(在这篇文章和GD- Calc_Demo.pdf中的所有代码示例都可以在GD-Calc 网站上的免费演示/教程代码中运行。
光子晶体示例在演示脚本gdc_demo11.m上运行。
)电磁理论与光栅衍射计算器的算法详见GD-Calc.pdf。
第1部分:概念描述MATLAB的开发环境在MATLAB环境下工作的一个优点是可以创建光栅衍射计算器的功能链接,这个功能不依赖于繁琐的数据转换和导入/导出过程。
例如,在半导体光刻技术的应用中,可能被曝光的相关的抗蚀剂致密化会影响光阻光栅的厚度和折射率指数,因此很自然地就会把指定厚度和折射率作为用户定义的曝光函数。
这对结构参数是非常有用的,例如,曝光可以被定义为一个量化的数量,在所有曝光依赖数量的情况下,包括抗蚀剂厚度和折射率指数,计算出的衍射效率,也同样会被量化。
通常情况下,光栅的光学特性不是它本身的主要焦点,它最主要的焦点应该是把光栅作为一个组件的完整系统的光学响应。
MATLAB的通用编程能力可以轻松的将光栅衍射计算机在功能上连接到用户定义的光学系统模型中,它可以自身并入通用的优化程序来优化设计程序。
些多边形衍射孔matlab仿真实验报告实验报告:多边形衍射孔的MATLAB仿真一、实验目的本实验旨在通过MATLAB仿真,研究多边形衍射孔对光波的衍射现象,深入理解衍射的基本原理及其在光学系统中的应用。
二、实验原理衍射是光波遇到障碍物时,绕过障碍物的边缘继续传播的现象。
当光波通过一个具有规则形状的小孔或狭缝时,会按照一定的规律扩散,形成特有的衍射图案。
多边形衍射孔是一种特殊的衍射装置,通过多边形的每个角产生不同的衍射级次,形成复杂的衍射图案。
三、实验步骤1. 打开MATLAB软件,创建一个新的脚本文件。
2. 在脚本文件中,定义多边形的边长、角度和波长等参数。
3. 使用MATLAB中的绘图函数,绘制多边形的几何形状。
4. 根据衍射公式计算多边形每个角产生的衍射光强分布。
5. 在同一幅图上绘制出衍射图案,以便观察和比较。
6. 分析衍射图案的规律和特点,理解多边形衍射孔的工作原理。
7. 清理工作空间,保存脚本文件。
四、实验结果及分析以下是实验中得到的衍射图案示例:图1:正方形衍射孔的衍射图案(请在此处插入正方形衍射孔的衍射图案)分析:从图中可以看出,正方形衍射孔产生了4个明显的衍射级次,每个级次的强度分布呈现出对称性。
这是因为正方形有4个相等的边,每个角产生的衍射级次相同。
图2:六边形衍射孔的衍射图案(请在此处插入六边形衍射孔的衍射图案)分析:六边形衍射孔产生了6个明显的衍射级次,每个级次的强度分布也呈现出对称性。
这是因为六边形有6个相等的边,每个角产生的衍射级次相同。
与正方形相比,六边形的衍射图案更加复杂,这是因为六边形的角比正方形的角更多。
通过以上实验结果,我们可以得出以下结论:多边形衍射孔产生的衍射图案具有对称性,每个角产生的衍射级次相同。
多边形的边数越多,衍射图案越复杂。
在实际应用中,可以根据需要选择不同形状的多边形衍射孔,以获得所需的衍射效果。