甲醇和天然气性能对比
- 格式:docx
- 大小:24.14 KB
- 文档页数:7
天然气制甲醇工艺简介天然气制甲醇工艺是一种利用天然气作为原料来生产甲醇的化学工艺。
甲醇是一种重要的化工原料,广泛应用于制药、塑料、涂料、溶剂等领域。
天然气作为一种丰富的化石能源资源,通过制甲醇工艺可以实现资源的高效利用。
工艺流程天然气制甲醇的工艺流程主要包括天然气预处理、气化、合成气净化、甲醇合成和甲醇精制等步骤。
1.天然气预处理:天然气中含有硫化氢、二氧化碳等杂质,需要进行预处理来降低对后续工艺的影响。
常用的预处理方法包括酸气洗、脱硫和脱气等。
2.气化:将预处理后的天然气与适量的氧气或空气进行反应,在高温高压条件下进行气化反应,生成合成气。
合成气的组成主要包括一氧化碳、二氧化碳、氢气和少量的甲烷等。
3.合成气净化:合成气中含有一些杂质,如硫化物、氨等,需要进行净化处理。
常用的净化方法包括变换反应、水煤气变换反应和低温变换反应等。
4.甲醇合成:将净化后的合成气与催化剂进行反应,通过甲醇合成反应将一氧化碳和二氧化碳转化为甲醇。
甲醇合成反应通常在高温高压条件下进行,常用的催化剂有铜锌锆系列、铜锌铝系列等。
5.甲醇精制:将合成的甲醇进行精制,去除其中的杂质,得到高纯度的甲醇。
常用的精制方法包括蒸馏、吸附和萃取等。
工艺优势天然气制甲醇工艺具有以下的优势:1.资源丰富:天然气是一种丰富的化石能源资源,在全球范围内广泛存在。
通过天然气制甲醇工艺,可以实现天然气资源的高效利用。
2.环保节能:相比于传统煤制甲醇工艺,天然气制甲醇工艺在减少二氧化碳排放和其他污染物排放方面具有明显优势。
甲醇也是一种清洁能源,可以作为替代传统燃料的燃料。
3.经济效益:天然气制甲醇工艺具有较高的产率和选择性,可以提高甲醇的产量和质量。
甲醇作为一种重要的化工原料,具有广泛的应用前景,可以为相关产业带来经济效益。
工艺挑战天然气制甲醇工艺在实际应用中还面临一些挑战:1.催化剂选择:催化剂是甲醇合成反应的关键,需要选择具有高活性和稳定性的催化剂。
甲醇燃料与天然气性能对比天然气输送、储存对设备要求高,对于中、小城镇,远离气源的地区不易获得。
在中、小城镇引入天然气气源前,有部分用户使用甲醇作为燃料。
甲醇产能过剩,每年过剩2700万吨,价格低廉,储运、运输简便,安全性高,是各国政府目前大力推广的环保洁净能源;面对石化能源的枯竭,醇基燃料是最有潜力的新型替代能源,深受各国企业组织的青睐。
新型醇基液体燃料对环境无污染,运输方便,可用普通塑料桶装运,常温常压下燃烧安全可靠。
燃烧热效高于其他燃料20%多。
因此,项目所开发的新型、节能且无污染的新型醇基液体燃料,以优异的品质替代柴油、液化气应用在餐饮业领域内中餐灶、茶炉、小锅炉等,将对减少城市污染,降低餐饮业成本,提高燃料利用率与使用的安全性,改善能源供应紧张,推动我国民用燃料的技术进步,满足社会对清洁能源的需求具有重要意义。
1、甲醇及甲醇燃料物理特性甲醇无色、透明、易燃、易挥发、有毒、略有酒精气味;相对密度(20℃):0.792;沸点:64.5℃;熔点:-97.8℃;闪点:12.22℃;燃点:8℃;自燃点:463.89℃;蒸汽蒸汽与空气混合物爆炸极限:6~36.5%;能与水、乙醇、乙醚、苯、酮、卤代烃等许多有机溶剂相混溶,遇热、明火或氧化剂容易燃烧,燃烧产物为水与二氧化碳。
粗甲醇中,甲醇约占80%,水约占20%,其余杂质为有机醇、醚、醛、酸等(如甲酸、乙醇等,比例非常小,几百到几十个ppm)。
粗甲醇价格在1500~2000元/吨。
加入醇基燃料增热添加剂后,热值可以达到7300~9000大卡(约30.6~37.7MJ/kg)。
目前市场上添加剂主要有三类。
第一类是醇水型燃料。
就是燃料中含有20%以上的水,燃料的热值更低,达不到“醇基民用燃料”行业标准技术要求,而且使用此类添加剂的灶具气化效果都不好,灶具设计复杂,不宜推广。
第二类是醇烃型燃料。
这种燃料主要给粗甲醇加烃类物质来提高燃料热值,加入烃类物质容易产生分层,适当加入助溶剂使燃料与烃类物质混合均匀不至分层。
天然气制氢、甲醇制氢与水电解制氢的经济性对比探讨王周【摘要】氢气作为无碳绿色新能源是应对日趋严峻环境危机和构建清洁低碳能源体系的重要载体.目前天然气、甲醇、水制氢是最有竞争力的技术手段,但生物能、太阳能、风能等可再生能源制氢是未来的趋势.对天然气制氢、甲醇制氢及水电解制氢进行了对比探讨,分别从技术特点、制氢纯度、场地要求、投资规模、运行费用及制氢成本等方面进行了分析,认为天然气制氢、甲醇制氢及水电解制氢分别适用于大、中、小规模,制氢成本依次为低、中、高,且分别受天然气价格、甲醇价格及电价影响较大.【期刊名称】《天然气技术与经济》【年(卷),期】2016(010)006【总页数】3页(P47-49)【关键词】天然气制氢;甲醇制氢;水电解制氢;经济性【作者】王周【作者单位】佛山市燃气集团股份有限公司,广东佛山 528000【正文语种】中文氢气作为无碳绿色新能源,具有环保安全、能量密度大、转化效率高、储量丰富和适用范围广等特点,可实现从开发到利用全过程的零排放、零污染,是应对日趋严峻环境危机和构建清洁低碳能源体系的重要载体。
随着石油资源的日益枯竭和能源价格的不断上涨,寻找不依赖化石燃料、储量丰富的廉价可替代能源制氢成为大家共同面临的难题,从长远来看,生物能、太阳能、风能等可再生能源制氢在21世纪将开始逐步具有竞争力,但目前从天然气、甲醇、水等资源中制氢仍然是最有竞争力的技术手段[1],煤制氢对水和大气污染严重,笔者暂不讨论。
目前国内制氢原料路线的选择,主要取决于原料资源的可得性和原料成本的高低,笔者将以华南某区域的制氢状况来进行分析探讨。
1.1 技术特点天然气制氢工艺复杂,操作条件严格,设备设计制造要求高,技术成熟;甲醇制氢工艺流程简单,相对易操作维护,主体设备为常见化工设备,技术也较为成熟;水电解制氢流程简单,操作简便,甚至可实现无人值守全自动操作。
1.2 制氢纯度天然气制氢与甲醇制氢一般纯度可达到99.999%,而水电解制氢纯度高时可达到99.999 9%。
焦炉煤气制甲醇与制天然气对比分析【摘要】估算了我国焦炉煤气的资源量及分布,简述了焦炉煤气的主要用途,简述了焦炉煤气制甲醇与焦炉煤气制lng两种工艺,并从7个方面进行对比分析,指出用焦炉煤气生产lng效益较好。
【关键词】焦炉煤气制甲醇焦炉煤气制lng 对比分析1 我国的焦炉煤气简况焦炉煤气(cog)是指经过配比的炼焦煤在焦炉中经过高温干馏后,与焦炭和焦油产品的同时产出的一种可燃性气体,是炼焦副产品。
平常所述的焦炉煤气是焦化厂经过化产车间“四脱”(脱焦、脱硫、脱氨、脱苯)处理后的净焦炉煤气,其主要成分为氢气(体积分数55~60%)和甲烷(23~27%)。
2012年焦炭产量4.4亿吨,其中,1/3来自于钢铁联合企业,2/3来自独立焦化企业;而独立焦化企业主要分布在山西、河南、山东、云南、内蒙等地,其中山西为世界上焦炭最大聚集地。
我国每年可供综合利用的焦炉煤气高达1700亿方。
每1吨焦炭大约会副产焦炉煤气420m3,其中一半用于焦炉回炉,其余部分必须进行回收净化处理,有很多非钢焦化企业所产的焦炉煤气无法利用被直接燃烧排放(俗称“点天灯”),既造成大量的资源浪费,同时又造成严重的大气污染。
2 焦炉煤气的综合利用2.1 焦炉煤气可用于工业与民用燃料、发电、化工原料、还原剂直接还原炼铁、制氢、生产天然气等用途在工业与民用燃料方面:工业生产,如金属镁锻造等;亦可接入城市供气管网作为居民用气。
发电方面:焦炉煤气可替代燃煤进行发电。
化工原料方面:可利用焦炉煤气生产合成氨、尿素、甲醇等,也可合成生产清洁燃料油;还原炼铁:焦炭是高炉炼铁过程的还原剂(co作为还原剂),焦炉煤气可以作为直接还原炼铁的还原剂。
制氢:焦炉煤气主要成分为氢气(体积分数55~60%)和甲烷(23~27%),因此可以焦炉煤气为原料制备氢气。
目前一般采用变压吸附法(psa)提取氢气。
生产合成天然气(sng):是近年来的技术方向,合成的天然气产品可利用管道输送到用户,也可以加工成压缩天然气(cng)或液化天然气(lng)。
浅谈天然气制甲醇与煤制甲醇的区别摘要:天然气制甲醇和煤制甲醇是我国目前主要产甲醇工艺,但是随着经济的发展,各种资源的短缺,煤和天然气的产量存在了差异,这就直接导致甲醇的产量和主要生产工艺的选择。
本文将从天然气和煤产甲醇各自的利弊进行分析,探究甲醇未来生产道路。
关键词:天然气煤甲醇利弊分析一、天然气制甲醇与煤制甲醇各自的利弊经济飞速发展的当下,甲醇以及其下游、上游产品的需求量在不断的增加,制甲醇的方法工艺也日渐增多,然而煤制甲醇和天然气制甲醇这两种工艺依旧是最主要的制造生产甲醇的重要工艺手段。
这两种生产工艺可以说是各有千秋。
本文就从生产工艺、建设成本、生产成本、产品质量以及发展前景对这两个主要制甲醇工艺予以比较。
在生产工艺方面,煤制甲醇总体是一个气化、变换、低温甲醇洗、甲醇合成及精馏、空分装置地过程。
煤制甲醇,是以煤和水蒸气为原料生产甲醇,在这个过程中得先把煤制成煤浆,通过加入碱液调整煤浆的酸碱度,使用棒磨机或者球磨机对原煤进行煤浆气化,相比之下球磨机磨出的煤浆粒度均匀,筛下物少,在这个过程中排出的废水中含有一定量的甲醇和甲醇精馏废水,这些废水可以充分利用在磨浆水;气化就是煤浆与氧气部分氧化制的粗合成气,在这个过程中会产生co、co2等有害气体;接下来是灰水处理;变换的过程就是把co转化成h2;在这个过程会产生大量的杂质;低温甲醇洗,这一过程是把制的甲醇的硫化物和杂质等脱除;甲醇合成及精馏的过程其实就是把制的甲醇进行再次净化和优化。
煤制甲醇工艺整个过程相对于复杂,在生产过程中产生的杂质比较多,操作难度比较大,杂质多就导致甲醇纯度相对比较低,合成的粗甲醇中杂质种类和量都比天然气甲醇多,因此精馏难度也较大。
天然气制甲醇的主要原料是天然气,甲烷是天然气的主要部分,此外还存在少量的烷烃、氮气与烯烃。
以非催化部分氧化、蒸汽氧化等方法进行生产甲醇,蒸汽转化法作为应用最广的生产方法,它的生产环境是管式炉中在常压或者加压下进行的,在催化剂的催化下,甲烷与水蒸气进行反应,生成甲醇以及二氧化碳等混合气体。
甲醇合成成本分析(天然气和煤)天然气制甲醇与煤制甲醇对比分析天然气制甲醇和煤制甲醇是我国目前主要产甲醇工艺,但是随着经济的发展,各种资源的短缺,煤和天然气的产量存在了差异,这就直接导致甲醇的产量和主要生产工艺的选择。
本文将从天然气和煤产甲醇各自的利弊进行分析,探究甲醇未来生产道路。
一、天然气制甲醇与煤制甲醇各自的利弊经济飞速发展的当下,甲醇以及其下游、上游产品的需求量在不断的增加,制甲醇的方法工艺也日渐增多,然而煤制甲醇和天然气制甲醇这两种工艺依旧是最主要的制造生产甲醇的重要工艺手段。
这两种生产工艺可以说是各有千秋。
本文就从生产工艺、建设成本、生产成本、产品质量以及发展前景对这两个主要制甲醇工艺予以比较。
在生产工艺方面,煤制甲醇总体是一个气化、变换、低温甲醇洗、甲醇合成及精馏、空分装臵地过程。
煤制甲醇,是以煤和水蒸气为原料生产甲醇,在这个过程中得先把煤制成煤浆,通过加入碱液调整煤浆的酸碱度,使用棒磨机或者球磨机对原煤进行煤浆气化,相比之下球磨机磨出的煤浆粒度均匀,筛下物少,在这个过程中排出的废水中含有一定量的甲醇和甲醇精馏废水,这些废水可以充分利用在磨浆水;气化就是煤浆与氧气部分氧化制的粗合成气,在这个过程中会产生co、co2等有害气体;接下来是灰水处理;变换的过程就是把co转化成h2;在这个过程会产生大量的杂质;低温甲醇洗,这一过程是把制的甲醇的硫化物和杂质等脱除;甲醇合成及精馏的过程其实就是把制的甲醇进行再次净化和优化。
煤制甲醇工艺整个过程相对于复杂,在生产过程中产生的杂质比较多,操作难度比较大,杂质多就导致甲醇纯度相对比较低,合成的粗甲醇中杂质种类和量都比天然气甲醇多,因此精馏难度也较大。
天然气制甲醇的主要原料是天然气,甲烷是天然气的主要部分,此外还存在少量的烷烃、氮气与烯烃。
以非催化部分氧化、蒸汽氧化等方法进行生产甲醇,蒸汽转化法作为应用最广的生产方法,它的生产环境是管式炉中在常压或者加压下进行的,在催化剂的催化下,甲烷与水蒸气进行反应,生成甲醇以及二氧化碳等混合气体。
车用甲醇/汽油智能双燃料电子转换器使用服务手册一、产品简介产品功能简述本产品在车辆发动机增加一个车用ECU电控单元,使点燃式发动机车辆实现既可燃用汽油,又可燃用高比例M85—M100甲醇燃料。
本产品适应多种型号的车辆使用。
请在有资质的车辆改装服务单位安装及指导使用。
燃料甲醇甲醇原料来源广泛,生产工艺成熟,主要来自煤化工和天然气合成,可以利用煤炭、天然气、煤层气、生物质等制成。
甲醇的分子式是CH30H,与其它燃料的理化性能对比见表1。
甲醉与其它燃料比较有如下特点:1)热值低。
甲醇热值约为汽油的一半,但甲醇燃烧的理论空气量少,约为汽油的43%,因此,汽油机使用甲醇燃料,可适当的提高供油量,从而使混合气热值大体与汽油的混合气热值相当或略高。
2)辛烷值较高。
汽油机使用甲醇燃料可以适当提高压缩比,有利于提高发动机的动力性能和经济性能。
甲醇是汽油的理想替代燃料,也是提高汽油辛烷值的优良添加剂。
3)汽化潜热大。
甲醇汽化潜热为汽油的3.7倍,有利于提高发动机的充量和动力性。
甲醇汽车汽车使用燃料甲醇按在混合燃料中的比例可分为:低比例甲醇汽油M3M5,可和汽油一样使用,发动机不做任何改动,一般要加助溶剂(TBA等)以防燃料分层;中比例甲醇汽油如M15,发动机只需作调整,曾在欧洲等国家进行跨国界的车队示范,必须添加助溶剂;高比例甲醇汽油和M85/M90和100%燃料甲醇,需对发动机加装甲醇\汽油灵活燃料微电脑控制器,其功率排放和热效都优于原汽油机,续驶里程可达500公里。
1、动力性能低比例掺烧的甲醇汽车,通过调整燃料供给量,可以作到汽车动力性不下降;对于高比例或纯甲醇汽车由于发动机压缩比的提高,动力性优于发动机压缩比例的提高,动力性优于同类发动机,2、排放性能汽车使用低比例掺烧的甲醇汽车可以改善排放,高比例或纯甲烷汽车的尾气常规排放大副下降,可以达到国家最新排放标准(GB18252.2-2001(欧Ⅱ排放法规)预计2005年实施);甲醇汽车非常规排放的甲醛较高,并有未燃甲醇,但是由于甲醇是含氧燃料,通过改善燃烧性和加装后处理装置,可以降低甲醛和未燃甲醇排放。
天然气制甲醇与焦炉气制甲醇工艺优化对比摘要:当前我国资源日益短缺,政府部门日益重视节能降耗问题,许多节能技术研究人员正在研究资源转换技术。
经过广泛的实际研究,人们发现,高效生产天然气和焦炉气体制甲醇不仅可以大大提高可再生资源的效率,而且还可以实现减少污染的目标。
在此基础上,从焦炉煤气和天然气角度分析了我国甲醇生产技术的现状,并对两种甲醇生产方法进行了优化比较研究,以期为相关行业的发展提供了参考。
关键词:焦炉煤气;天然气;制造甲醇;对比分析前言甲醇是化学生产中常用的原料之一,目前广泛应用于许多领域。
甲醇广泛用于药品、农药、燃料和其他化学生产系统。
目前,随着全球能源危机的严重发展,甲醇的生产和制造已成为关键的研究问题。
在天然气和焦炉煤气生产甲醇方面,解决优先问题和困难问题对生产产生了限制作用,处理技术问题是甲醇生产过程中亟待解决的问题。
一、工艺流程对比1.焦炉煤气制备甲醇的工艺流程焦炉气体是在工业炼焦过程中生产的,含有H2、CO和CO2等基本成分,甲烷、焦油、氨和硫是重要的结构成分。
在甲醇制备过程中,焦炉气体被输送到储气罐中,然后进行压缩和净化,以确保有效处置对甲醇制备有害的物质。
在初始净化结束时,配制人员应在废气中添加催化剂,使甲烷和碳氢化合物所代表的气体逐渐转化为H2和一氧化碳,并在获得较高比例H2和一氧化碳的基础上添加和缩放碳,通过气体压缩形成粗甲醇最后,应用精细蒸馏技术纯化原甲醇,实现精细甲醇的制备。
在甲醇制备过程中,主要工艺包括焦炉气体的净化、净化气体的转化以及精制甲醇的制备和合成。
所以在生产过程中也要控制技术要点。
首先,在焦炉煤气净化过程中,要注意净化程度的控制。
焦炉煤气中硫化物的不合理净化会严重影响甲醇的生产。
一般而言,有机脱硫是其技术应用的核心,操作人员必须确保每立方米净化气体的硫含量不超过100毫克。
第二,净化气体初转化时,应注意甲烷合成碳比的调整。
具体而言,在转换过程中,氢含量的增加应注意提高反应效率,避免二次反应,从而更好地控制成本。
天然气制甲醇工艺流程天然气是一种重要的能源资源,而甲醇则是一种重要的有机化工产品。
天然气制甲醇工艺是将天然气转化为甲醇的重要途径之一。
本文将对天然气制甲醇工艺流程进行详细介绍,以便读者对该工艺有一个清晰的认识。
首先,天然气经过脱硫处理后,进入蒸汽重整反应器,在高温高压条件下与水蒸气进行重整反应,生成一氧化碳和氢气。
然后,将产生的一氧化碳和氢气通过甲醇合成反应器进行催化反应,生成甲醇产品。
在这一过程中,催化剂的选择和反应条件的控制对甲醇的产率和纯度有着重要影响。
其次,甲醇产品需要经过精馏、脱水等工艺步骤进行纯化和提纯,以满足不同用途的需求。
在工艺流程中,需要对产物进行严格的分离和纯化,以确保甲醇产品的质量符合标准。
最后,对废气和废水进行处理是天然气制甲醇工艺中不可忽视的环节。
废气中含有一定量的二氧化碳和其他有害气体,需要进行脱除和处理;废水中也含有一定量的有机物和杂质,需要进行处理和回收利用,以减少对环境的影响。
总的来说,天然气制甲醇工艺流程是一个复杂的系统工程,涉及到物理、化学、工艺、环保等多个领域的知识和技术。
只有在严格控制每一个环节的条件和参数,才能够实现高效、低能耗、低排放的甲醇生产。
同时,随着技术的不断进步和创新,天然气制甲醇工艺流程也在不断地得到优化和改进,以适应市场和环境的需求。
在未来,随着能源和化工行业的发展,天然气制甲醇工艺将会发挥越来越重要的作用,成为推动能源转型和化工产业升级的重要力量。
希望本文对读者对天然气制甲醇工艺流程有所帮助,也希望在未来的实践中能够不断完善和提高该工艺的技术水平,为社会和经济发展做出更大的贡献。
焦炉气制甲醇与天然气的比较探讨摘要:焦炉气制甲烷与天然气两种工艺技术具有一定的对比性,各有各自的优势与特点,本文将从二者的工艺流程、能量利用率、消耗定额、产品方案以及项目投资等方面加以对比分析,从而体现出焦炉气制天然气的独特优势。
关键词:焦炉气天然气对比甲醇由于世界石油价格不断上涨,对我国一些对石油资源依赖性较大的产业带来较大的困难,严重影响到社会经济的发展和进步,在此形势下,必须要对当前的能源结构加以调整,不断开发相应的可替代性能源,降低对石油资源的依赖,才能保障经济的健康、快速运行。
一、工艺流程对比(一)焦炉气制甲醇工艺流程焦炉气制甲醇工艺流程图:焦炉气从焦化厂输送到气柜之后,使用压缩机将其压力提升至 2.5Mpa,然后通过一级加氢转化催化剂、氧化铁脱硫剂、预脱硫剂、二级加氢转化催化剂、氧化锌脱硫剂等对其加以作用,使其内部无机硫和有机硫降至0.1PPM以下。
采用催化部分氧化转化工艺技术,对其中的甲烷加以转化,将其制成甲醇的主要其他成分H2和CO,再将其输送到合成系统内,对其进行提压,使其压力控制到5.5Mpa左右。
在甲醇合成塔内添加氢,使之发生反应得到粗甲醇,再通过三塔精馏转化为精甲醇。
配套的空分系统需提供转化反应所需的氧气,焦炉气用于生产甲醇过程中氢气过剩。
(二)焦炉气制天然气工艺流程使用粗脱硫剂对原料焦炉气加以吸附,吸附环境控制为40℃以下、24KPa,其中的大多无机硫会在粗脱硫塔中被消除掉。
再使用预处理吸附剂对其加以选择性吸附,将其中的萘、苯等杂质脱除掉,采用中温水解催化剂,转化环境控制为175℃和2.4Mpa,将预处理后焦炉气中含有的有机硫转化为无机硫。
用精脱硫剂对酸性气体进行选择性吸附,吸附环境为40℃以下、2.3Mpa,使酸性气体中含有的汞和硫在脱汞塔与脱硫塔中被清除掉,并施以等压干燥的方式,在吸附净化塔内将焦炉气中干燥后的杂质脱除掉。
检查焦炉气净化后是否合格,符合标准后再将其送至PRISM?膜分离器中环境条件为40℃、2.0Mpa,在膜两侧气体组组分分压差的作用下,焦炉气中的氢气会部分渗入纤维内部,并出现富氢物质,压力为0.2Mpa,对富甲烷气加以精馏和液化,从而制成符合标准的天然气产品。