多层薄膜生产工艺
- 格式:ppt
- 大小:2.26 MB
- 文档页数:30
ldd工艺技术LDD(Low-dose Dielectric Deposition)工艺技术是一种低剂量多层介电薄膜沉积方法。
该技术主要应用于微电子器件中的绝缘层的制备,以及提高器件性能和可靠性。
LDD工艺技术的核心是使用较低的剂量沉积介电薄膜。
传统的沉积方法通常会使用较高的剂量,这可能导致薄膜中的缺陷增加,增加电学导通、击穿和漏电等问题。
而LDD工艺技术通过控制沉积的剂量,可以在实现所需介电性能的同时,尽可能减少薄膜中的缺陷。
LDD工艺技术的另一个重要特点是多层沉积。
在传统的沉积过程中,通常只会增加一层介电薄膜。
而LDD工艺技术通过多次进行低剂量沉积,并在每层之间进行退火和修饰工序,可以形成更为完整和均匀的介电层结构。
这样的多层结构可以有效地减少薄膜中的缺陷,提高电学性能和可靠性。
LDD工艺技术的应用范围非常广泛。
在微电子器件中,绝缘层的制备十分重要。
LDD工艺技术可以用来制备绝缘层,以提供电学隔离、防止电子漏泄和电磁干扰等作用。
此外,LDD工艺技术还可以应用于光电器件的制备,如太阳能电池、显示屏等。
这些器件也需要具有一定的绝缘层,以提高其电学性能和可靠性。
在LDD工艺技术的具体实施中,有几个关键因素需要考虑。
首先是沉积剂量的控制,这决定了薄膜的质量和性能。
较低的剂量可以降低缺陷数量,但过低的剂量可能导致薄膜质量下降。
其次是退火和修饰工序的设计,这对形成完整的多层介电结构至关重要。
实验和模拟技术可以帮助优化这些参数,以实现最佳工艺条件。
总之,LDD工艺技术是一种提高微电子器件性能和可靠性的重要方法。
通过低剂量沉积和多层结构的设计,可以有效地减少介电薄膜中的缺陷,提高器件的电学性能和可靠性。
在微电子器件制备和光电器件制备等领域都有广泛的应用前景。
随着技术的不断发展,LDD工艺技术将不断优化和改进,进一步推动微电子行业的发展。
多层共挤流延膜
多层共挤流延膜是一种塑料薄膜的生产工艺,通过将多个不同的熔体层以共挤的方式挤出到一起,形成多层结构的薄膜。
这种工艺可以利用不同材料的特性,使得膜具有更好的性能和功能。
多层共挤流延膜可以应用于各种领域,例如包装行业、农业覆盖膜、建筑材料等。
不同层次的材料可以提供不同的特性,例如抗水性、氧隔离性、耐热性、机械强度等。
此外,多层共挤流延膜还可以实现复合材料的制备,通过将不同的材料层结合在一起,达到更多的功能要求。
多层共挤流延膜的生产过程中需要使用共挤挤出机,通过控制挤出头的结构和温度,调节每层材料的厚度和比例。
同时,也需要对材料进行适当的配方设计和工艺参数的优化,以确保薄膜的质量和性能。
总之,多层共挤流延膜是一种利用共挤技术将多个材料层挤出到一起形成多层结构的塑料薄膜制备工艺,可以实现多种功能和特性的要求。
薄膜材料与技术引言薄膜材料是一种在厚度范围内具有特定性能和结构的材料,它在多个领域中发挥着重要作用。
薄膜技术是制备、改进和应用薄膜材料的一套方法和工艺。
本文将介绍薄膜材料的定义、制备方法、常见应用以及未来的发展趋势。
薄膜材料的定义薄膜材料是在纳米尺度至微米尺度范围内的一种特殊材料,其厚度通常在0.1nm到100μm之间。
相比于传统材料,薄膜材料具有较高的比表面积和特殊的物理、化学性质,使得其在光电、能源、生物医学等领域具有广泛的应用前景。
薄膜材料的制备方法薄膜材料的制备方法多种多样,常见的制备方法包括:1.物理气相沉积(PVD):通过热蒸发、电子束蒸发、激光蒸发等方法将材料蒸发在基底上,形成薄膜。
2.化学气相沉积(CVD):将气相前体分子引入反应室中,经过热分解或化学反应,在基底表面生成薄膜。
3.溶液法:将溶解了材料的溶液涂覆在基底上,通过溶剂蒸发或化学反应,将材料转变为薄膜。
常见的溶液法包括旋涂法、浸渍法等。
4.声波法:利用声波的能量使材料溶解或悬浮在溶剂中,然后将溶液通过超声波定向沉积在基底上。
5.离子束辅助沉积(IBAD):通过将离子束轰击基底表面,促使薄膜材料原子结晶或沉积在基底上。
薄膜材料的应用领域薄膜材料在多个领域中发挥着重要作用,以下是几个常见的应用领域:1.光学领域:薄膜材料在光学镀膜中广泛应用,用于改善光学元件的透射和反射特性。
例如,透明导电薄膜可用于制造触摸屏、光伏电池和显示器件。
2.电子领域:薄膜材料可用于制造半导体器件,如晶体管、薄膜电阻器和电容器。
此外,薄膜材料还可用于制造柔性电子产品和纳米电子元件。
3.能源领域:薄膜太阳能电池是一种高效能源转换设备,薄膜材料在其制备过程中起到关键作用。
此外,薄膜材料还可用于燃料电池、锂离子电池等能源存储和转换装置中。
4.生物医学领域:薄膜材料在生物医学传感器、生物芯片、医用导管等方面有广泛应用。
例如,聚合物薄膜可用于修复组织缺损,金属薄膜可用于制造仿生传感器。
吹塑法“与”流延法“ 工艺比较薄膜生产领域中,“吹塑法“与”流延法“是较为常用的两种工艺,下面就这两种薄膜生产中最常用的生产工艺做一个简单的介绍与比较。
1、多层共挤吹塑法:这种生产工艺方法主要分为上吹风冷和下吹水冷两种形式。
上吹风冷,主要是由多台挤出机,多层叠加模头,多风口风环,IBC内冷系统,人字夹板,旋转牵引系统,下牵引系统以及收卷系统这几个主要部分组成。
目前,进口机组以原德国巴登菲尔德,德国W&H,加拿大宾顿为主,国产机组中以广东金明为代表。
总体上来分析,目前核心的机械能力依然由国外公司控制,如广东金明的机组大部分核心部件仍然需要国外的生产商供应。
下吹水冷,基本组件与上吹式相同,所不同的是在冷却方式,下吹以循环泠却水作为冷却的主要形式,各部件的设计位置与上吹有所不同,这种生产工艺在我国的PE和PP膜生产中比较常见。
在多层共挤高阻隔性薄膜的生产中,仍旧以上吹风冷式机组为主。
不管用哪二种形式的机组,在外观形态上,都是以筒状膜为主要表现特征,在真空袋制袋方面,由于减少了二个热封边,在对包装内容物的保护上比流延膜有着非常大的优势。
在拉伸强度方面比流延膜好。
2、多层共挤流延法:这种生产工艺主要是由多台挤出机,多流道分配器(俗称“集料器”),T型模头,流延系统,水平牵引系统,振荡器,收卷系统组成。
这种生产工艺主要的特点在于,生产出来的薄膜制品表面光泽度好,平整度高,厚度公差小,力学延伸性能好,柔韧性好,透明度比吹塑法高。
目前进口机组以原德国巴登菲尔德,德国W&H,意大利科林斯,奥地利兰精公司,原日本三菱重工为代表,国产机组以佛山仕诚为代表。
同样,国产流延机组的生产方式与吹塑一样,主要的核心部件来自于国外供应商。
目前此种生产工艺主要应用在国内的CPP行业,在七层共挤高阻隔性生产中也有少量的应用。
进口生产线中主要以广东中山祥富的七层和十一层机组与常州海企塑业的九层机组为代表。
这两种生产工艺在我国是最为常见的,由于吹塑工艺在产品平整度以及透明度方面不能与流延膜相比,但是其生产的高效率,设备投入低,低材料损耗量是流延工艺无法比拟的。
双叠层工艺原理
双叠层工艺原理是指在某一基底材料上堆叠两层不同的薄膜材料,并通过控制两层薄膜材料的成分、厚度和结构等因素来实现特定的功能。
双叠层工艺一般由以下几个步骤组成:
1. 基底材料选择:选择合适的基底材料,通常是具有特定物理性质和化学稳定性的材料,如玻璃、硅等。
2. 薄膜堆叠:通过物理或化学方法将两层薄膜材料堆叠在基底材料上。
薄膜材料可以是金属、氧化物、半导体等。
堆叠时需要确保两层薄膜紧密贴合,避免出现空隙或缺陷。
3. 控制薄膜成分和厚度:通过控制薄膜材料的成分和厚度,可以实现不同的功能。
例如,通过调节某一层薄膜的成分和厚度,可以改变材料的光学性质或电子性质。
4. 结构设计:双叠层工艺中的薄膜结构设计十分重要。
通过设计不同的结构,如多层结构、交错结构等,可以进一步改变材料的物理和化学性质,实现更复杂的功能。
5. 后处理和表征:完成双叠层工艺后,需要进行后处理和表征。
后处理包括退火、刻蚀等步骤,以提高薄膜的结晶性和表面光洁度。
表征则包括使用不同的分析技术,如电子显微镜、X射线衍射等,来评估薄膜的结构和性能。
双叠层工艺原理的应用非常广泛,例如在光电子器件中可以利用不同薄膜的光学性质和电子特性实现光电转换功能;在电子器件中可以通过不同薄膜的界面效应来改变电子的传输性质;在光催化材料中可以通过不同薄膜的光吸收和电子传输来提高催化性能等。
多层共挤热收缩薄膜1. 引言多层共挤热收缩薄膜是一种采用共挤技术制备的特殊型薄膜材料。
它具有独特的性能和广泛的应用领域。
本文将详细介绍多层共挤热收缩薄膜的制备工艺、性能特点以及应用领域。
2. 制备工艺多层共挤热收缩薄膜制备工艺主要包括以下几个步骤:2.1 原料准备多层共挤热收缩薄膜的原料主要包括聚乙烯、聚丙烯等热塑性聚合物。
这些原料需要经过预处理,包括干燥、筛选等步骤,以确保原料的质量和稳定性。
2.2 共挤成型在共挤成型过程中,不同种类的原料通过多层共挤机头进行连续注塑。
通过调整机头结构和温度控制等参数,可以实现不同材料的均匀分布和粘接。
2.3 热收缩处理共挤成型后的薄膜需要进行热收缩处理,以提高其物理性能和尺寸稳定性。
热收缩处理过程中,将薄膜暴露在高温环境下,使其发生一定程度的收缩。
通过控制温度和时间等参数,可以实现所需的收缩率。
2.4 切割和包装经过热收缩处理的薄膜需要进行切割和包装。
切割过程中需要保证切口的平整和尺寸的准确性。
包装过程中要注意防潮、防尘等措施,以确保产品质量。
3. 性能特点多层共挤热收缩薄膜具有以下几个主要性能特点:3.1 高强度和耐磨性多层共挤热收缩薄膜由多层不同材料组成,具有较高的强度和耐磨性。
这使得该材料在包装、保护等领域具有广泛应用。
3.2 良好的透明性和光泽度多层共挤热收缩薄膜具有良好的透明性和光泽度,可以保持包装物表面的光洁和美观。
这使得该材料在食品、日用品等领域的包装中得到广泛应用。
3.3 优异的热收缩性能多层共挤热收缩薄膜经过热收缩处理后,可以实现较高的收缩率。
这使得该材料在包装、固定等领域具有优异的性能。
3.4 良好的阻隔性能多层共挤热收缩薄膜具有良好的阻隔性能,可以有效隔离氧气、水分等外界因素,延长产品的保质期。
这使得该材料在食品、医药等领域得到广泛应用。
4. 应用领域多层共挤热收缩薄膜在各个领域都有广泛应用,主要包括以下几个方面:4.1 食品包装多层共挤热收缩薄膜具有良好的透明性、阻隔性能和热收缩性能,适用于食品包装。
FPC生产方式及工艺流程FPC,即柔性印刷电路板(Flexible Printed Circuit Board),是一种以聚酰亚胺薄膜为基材,经过电子线路制作工艺加工而成的柔性电路板。
相比传统的刚性电路板,FPC具有体积小、重量轻、可折迭、可弯曲等优点,广泛应用于汽车电子、消费电子、医疗设备等领域。
FPC的生产方式包括单面贴片、双面贴片和多层贴片三种,下面将详细介绍每种生产方式的工艺流程。
1.单面贴片生产方式:(1)刷膜:将聚酰亚胺薄膜放在滚筒上,通过刷涂胶水的方式将胶水均匀地涂布在薄膜上。
(2)固化:将刷涂胶水的聚酰亚胺薄膜放入固化炉中,经过高温固化,使胶水变为固态。
(3)表面处理:使用化学方法将聚酰亚胺薄膜表面进行粗糙化处理,增加与线路层的粘附力。
(4)印刷:将图纸上的线路图案通过丝网印刷的方式印制到聚酰亚胺薄膜上。
(5)电镀:将印制好的线路薄膜浸入电镀槽中,进行金属电镀,使线路形成导电层。
(6)固定:将电镀好的线路薄膜放在模具中,通过热压或胶合的方式将导线固定在聚酰亚胺薄膜上。
(7)加工:对固定好的线路薄膜进行裁剪、穿孔等加工工艺,使其符合设计要求。
(8)测试:对加工好的FPC进行电气测试,确保各个线路连接正常。
(9)质检:对测试合格的FPC进行外观检查,确保产品质量。
(10)包装:将质检合格的FPC进行包装,以便运输和销售。
2.双面贴片生产方式:双面贴片生产方式在单面贴片的基础上增加了第二层线路,使FPC具有更高的线路密度和更复杂的功能。
(1)刷膜:同单面贴片生产方式。
(2)固化:同单面贴片生产方式。
(3)表面处理:同单面贴片生产方式。
(4)印刷:同单面贴片生产方式。
(5)电镀:同单面贴片生产方式。
(6)固定:将第一个线路薄膜和第二个线路薄膜按照设计要求进行层间定位和胶合,固定在一起。
(7)加工:同单面贴片生产方式。
(8)测试:同单面贴片生产方式。
(9)质检:同单面贴片生产方式。
(10)包装:同单面贴片生产方式。
塑料薄膜流延成型技术
1 塑料薄膜流延成型技术
塑料薄膜流延成型技术是一项技术,它是将长期熟悉的塑料材料通过成型机制热轧压,形成薄膜。
薄膜流延成型技术的主要特点在于生产效率较高,可以大大增加生产的产量和效率,也可以减少材料的消耗,并且产品的外形变化幅度也较大。
薄膜流延成型技术的基本原理是将塑料材料在挤出模具中挤压,使其产生流延效应,在一定温度下形成一层薄膜。
将薄膜叠加到多层中,然后通过激光雕刻等手段切割,经过多次模具激烈挤压,就可以成型各种三维零件和元件。
薄膜流延成型技术在成型过程中广泛应用,因为它可以显著改善成型效率和产品的质量,可以有效地减少膨胀量和缩短成型时间。
在生产周期以及生产效率方面,塑料薄膜流延成型技术可以说是一个重要的创新贡献。
当使用塑料薄膜流延成型技术时,在热塑性流动部分,应注意温度分布的均匀性,温度应该恰到好处,否则就会导致薄膜的偏离。
另外,控制客户的布局参数,如材料的厚度,宽度和长度,也是很重要的,否则可能引发断档和变形现象,破坏产品质量。
塑料薄膜流延成型技术受到许多行业的欢迎,尤其是电子电路板行业。
它不仅可以更快地完成制作,而且塑料物理性质,如紧凑度和耐腐蚀性,使其成为许多电子产品和元件制造的理想材料。
总之,塑料薄膜流延成型技术是一种新颖的技术,它不仅大大提高了生产的效率,而且还大大满足了多种行业对性能优异的产品的需求,是不可多得的技术。
多层共挤流延膜挤出技术是一种传统的薄膜挤出生产工艺。
该工艺最大的优势是具有极高的加工精度,且能够最大限度地发挥被加工材料的性能。
特别是在加工高阻隔多层共挤流延膜方面,具有无可比拟的优势。
多层共挤流延膜挤出技术特点和优势多层共挤流延膜挤出技术是一种将两种或两种以上的不同塑料利用2台或2台以上的挤出机通过一个多流道的复合模头,汇合生产多层结构的复合薄膜,并通过急冷辊成型的技术。
多层共挤流延膜挤出技术也是传统的生产薄膜的挤出生产工艺。
采用这种方法可生产各种不同材料的薄膜,且具有很高的加工精度,尤其是在加工半结晶热塑性塑料时,这种加工方法能够充分地发挥被加工材料的性能,同时又能保持最佳的尺寸精度。
所制得的流延膜具有优良的光学性能和厚薄均匀度,并且由于采用急冷辊可以获得很高的生产速度,并改善薄膜的形态结构。
此法制得的薄膜与其他薄膜(如吹膜)相比,其优点是生产速度快,产量高,有利于大批量生产;产品的厚薄控制精度较高,厚度均匀性较好;透明性和光泽性俱佳;各向平衡性能优异。
某些材料,例如聚丙烯(PP)膜、聚脂(PET)膜加工的通用方法甚至是唯一的方法就是多层共挤流延法。
挤出机单元多层共挤流延法的主要技术特点是:多种原料和辅助材料的混配和输送的精确控制;2台或2台以上的挤出机实现共挤;共挤熔体经T型平模头挤出后在一个大直径的急冷辊上骤冷和重新固化后成型;多层共挤复合模头的设计使各层熔体在模头展开后能均匀地分布,并防止各层物料间的互窜;既能对整体厚度进行精确监控和调整,又能对某些关键的功能层进行厚度的精确监控和调整;设备的自动控制系统非常复杂,如原料的混配和输送、温度控制、速度控制、共挤控制、厚薄均匀度控制等,另外工艺的控制也相当复杂。
对比干法复合技术,多层共挤流延膜挤出技术能够大幅度降低生产成本,实现清洁化、安全化生产,产品的卫生可靠性更佳。
由于多层共挤流延膜是通过一步加工处理直接制得的多层复合薄膜。
因此多层共挤流延膜和干法复合膜法相比,具有生产工序少、能耗小,成本低的优势。
压延法、吹塑法、流延法、多层共挤生产工艺及产品性能差别一、生产工艺1、流延树脂经挤出机熔融塑化,从机头通过狭缝型模口挤出,使熔料紧贴在冷却辊筒上,然后再经过剥离、位伸、分切、卷取得到成品。
流延生产工艺示意图2、吹塑树脂经挤出机熔融塑化,从环形机头垂直向上引出,经吹胀后由人字板导入牵引辊,再经导向辊及卷取装置得到成品。
吹塑生产工艺示意图3、压延树脂经挤出机熔融塑化,从机头通过狭缝型模口挤出,经三辊压光机压延、次却,再经过冷却输送辊及卷取装置得到成品。
压延生产工艺示意图4、多层共挤多层共挤流延膜挤出技术是一种将两种或两种以上的不同塑料利用2台或2台以上的挤出机通过一个多流道的复合模头,汇合生产多层结构的复合薄膜,并通过急冷辊成型的技术。
多层共挤流延膜挤出技术也是传统的生产薄膜的挤出生产工艺。
采用这种方法可生产各种不同材料的薄膜,且具有很高的加工精度,尤其是在加工半结晶热塑性塑料时,这种加工方法能够充分地发挥被加工材料的性能,同时又能保持最佳的尺寸精度。
所制得的流延膜具有优良的光学性能和厚薄均匀度,并且由于采用急冷辊可以获得很高的生产速度,并改善薄膜的形态结构。
此法制得的薄膜与其他薄膜(如吹膜)相比,其优点是生产速度快,产量高,有利于大批量生产;产品的厚薄控制精度较高,厚度均匀性较好;透明性和光泽性俱佳;各向平衡性能优异。
某些材料,例如聚丙烯(PP)膜、聚脂(PET)膜加工的通用方法甚至是唯一的方法就是多层共挤流延法。
二、吹塑法和压延法的主要区别:(1)在同样生产能力,生产相同规格产品时,投资上压延式工艺比吹塑式工艺要高出大约十倍以上,大的投资才能保证好的质量。
(2)压延式生产工艺远远先进于吹塑式,在产品的各个性能指标(拉伸强度、拉伸断裂伸长率、直角撕裂强度、水蒸气渗透系数)上均高于吹塑产品,尤其在膜的厚度均匀程度上,压延式远比吹塑式均匀。
(3)从材料取向上讲,不同的生产工艺也直接影响到施工焊接二次加热时的稳定性,压延法生产的土工膜焊接时产生的收缩性远远小于吹塑式工艺生产的土工膜。
半导体制造工艺薄膜沉积随着半导体工业的快速发展,人们对芯片质量的要求也越来越高。
薄膜沉积作为芯片制造过程中的一项重要工艺,在半导体工业中具有极其重要的作用。
本文将介绍薄膜沉积的基本概念、分类以及制备方法,并对其中的一些细节进行分析和探讨。
什么是薄膜沉积薄膜沉积(Thin Film Deposition)是在基底表面制备极其薄的物质层的技术。
这些薄膜通常是微米或纳米级别的,这些物质通常具有单晶或多晶结构,然后用于半导体器件、光电器件、传感器等领域。
在晶体生长时,沉积的晶体结构是由基底表面的原子排列方式决定的。
薄膜沉积的分类根据不同的沉积原理,薄膜沉积可以分为化学气相沉积、物理气相沉积、溅射沉积、化学涂敷沉积等多种类型。
下面针对几种较为常见的薄膜沉积进行详细介绍:化学气相沉积化学气相沉积(Chemical Vapor Deposition,简称CVD)是一种常见的薄膜沉积方法。
该方法通过将反应气体混合后加热,用于生成可沉积的气体,然后让气体接触到基底表面,生成一层新的材料。
在CVD方法中,沉积的材料运输是通过气态反应器中的化学反应实现的。
利用不同的化学反应条件,可以制备出多种材料。
常用的CVD方法有PECVD (Plasma-enhanced Chemical Vapor Deposition)和LPCVD(Low-pressure Chemical Vapor Deposition)。
物理气相沉积物理气相沉积(Physical Vapor Deposition,简称PVD),也称为蒸镀,是一种利用高温蒸发和凝结作用的方法。
物理气相沉积主要通过基底加热和靶材蒸发的方式来实现。
靶材通常是纯金属或金属合金。
使用物理气相沉积技术可以制备金属、金属合金和其他材料的薄膜,例如在生产光学镜片时用于制备光学膜。
常见的沉积方法有单个磁控溅射(Magnetron Sputtering)和电弧溅射(Arc Sputtering)。
多层共挤流延膜的生产工艺与应用阿里巴巴小商品2006-09-15打印高阻隔性共挤流延薄膜是20世纪80年代末开发成功的塑料包装材料。
近年来,随着多层共挤流延膜的问世,其阻隔性、保香性、防潮性、耐油性、可蒸煮性和热封性能进一步提高,可广泛应用于肉类冷冻制品、蒸煮肉类食品、方便食品、水产品、水果等的固体包装和乳制品、食用油、酒类、酱油类等液体包装,大大延长商品的货架寿命。
但由于高阻隔性共挤流延薄膜目前尚无法回收利用,相对增加了生产成本,因此,加快科技创新,优化工艺流程,已成为其规模化生产应用的必然选择。
1、生产工艺流程高阻隔性多层共挤流延摸是以高阻隔材料为主要材料,配合其它复合材料和粘接树脂经一次挤出成型的,其生产工艺流程如下:高阻隔材料熔融挤出粘结材料熔融挤出→熔体分层分流→流延铸片→电晕处理→测厚→收卷复合材料熔融挤出2、原材料的选择和质量控制生产高阻隔多层共挤流延膜的原材料可分为3大类,即高阻隔材料、复合材料和粘结材料。
(1)高阻隔材料。
高阻隔材料的性能直接影响共挤流延膜的高阻隔性。
目前,常用的高阻隔材料包括PA、EVOH和PVDC三种,由于这些材料均是极性材料,吸湿力很强,而材料中的水分对生产影响很大,水分本身在加热过程中可产生降解作用,而含水分过高在熔融挤出时会产生气泡,使高阻隔材料形成断层,严重影响产品的质量,故对高阻隔材料的水分含量要求很高,一般不能超过0.06%。
因此,为防止原材料的吸湿,要求采用防潮的纸铝复合包装,并在运输过程中要确保包装的完好:有条件的厂家可安装干燥器,对购入的原材料实施干燥后再使用。
(2)复合材料。
根据用途,可采用蒸煮级CPP粒料、复合级CPP粒料、LDPE、LLDPE、茂金属LLDPE,要求MI值在2-8范围,熔融挤出性能良好,热封性能良好。
(3)粘结材料。
粘结强度的大小直接影响共挤膜的质量。
因此,根据不同的高阻隔材料和复合材料而选用粘结力强的粘结树脂,其MI值在2~6之间。