地球化学——元素的地球化学迁移
- 格式:ppt
- 大小:1.62 MB
- 文档页数:24
地球化学中的元素迁移与地球演化地球化学是研究地球上元素的分布、迁移和演化的学科。
元素的迁移、转化和演化是地球化学中的重要概念。
本文旨在探讨地球化学中的元素迁移与地球演化。
一、元素迁移1. 大气的化学反应大气中的化学反应和气候变化会导致元素的迁移。
例如,空气中的二氧化碳可以通过光合作用被植物吸收。
但是,如果大气中的二氧化碳过多,这会导致气候变化,从而影响植物、动物和人类的生活。
2. 地球内部的活动地球内部的活动可以导致元素的迁移。
例如,火山喷发会释放大量的二氧化硫和二氧化碳,这些化合物可以迁移到大气中。
地震可以引起水的迁移,使地下水和地表水的量减少或增加。
3. 水文循环水文循环是指地球上水从大气、陆地、河流、湖泊和地下水中循环。
水循环可以导致元素的迁移。
例如,雨水可以在流经泥土和岩石时溶解许多化学物质,如盐和氧化物。
这些溶解的物质可以在水循环过程中被运输到其他地方。
二、地球演化1. 地球的起源地球的起源始于46亿年前,当时太阳系的尘埃和气体聚集在一起形成了行星原始物质云。
这些物质经历了相当长时间的凝聚和熔化,形成了一个小行星,也就是我们现在的地球。
2. 大陨石撞击在地球早期的几亿年中,地球曾遭受数次大撞击。
这些撞击激发了地球的内部能量和热力学运动,导致了地球内部物质的循环和迁移。
这些撞击也使地球表面的岩石和矿物质发生了巨大的化学变化。
3. 活动板块地球表面的21个板块在持续不断地移动。
板块的移动导致了地球内部物质的运动和迁移,也导致了地球表面的地震和火山喷发。
这些运动和迁移使得大量的元素从地球内部向外部迁移。
三、结论地球化学中的元素迁移和地球演化是密切相关的。
地球上发生的各种化学和地球物理过程会导致元素的转化和迁移,从而对地球表面的化学组成和演化产生深刻影响。
了解和研究这些过程对我们了解地球的过去和现在具有十分重要的意义。
1、克拉克值:是指元素地壳中重量百分含量。
2、浓度克拉克值:浓度克拉克值=元素在某一地质体中平均含量/元素的克拉克值,它反映元素在地质体中集中和分散程度,大于1说明相对集中,小于1说明相对分散。
3、元素的地球化学迁移:元素从一种赋存状态转变为另一种赋存状态,并经常伴随元素组合和分布上的变化以及空间位移的作用称为地球化学迁移。
4、元素的丰度值:每种化学元素在自然体中的质量,占自然体总质量(或自然体全部化学元素总质量)的相对份额(如百分数),称为该元素在该自然体中的丰度值.5、类质同象:某种物质在一定的外界条件下结晶时,晶体中的部分构造位置被介质的其它质点 (原子、离子、络离子、分子)所占据,结果只引起晶格常数的微小变化,而使晶体构造类型、化学键类型等保持不变的现象。
6、载体矿物和富集矿物载体矿物:载体矿物和富集矿物载体矿物是指岩石中所研究元素的主要量分配于其中的那种矿物。
但有时该元素在载体矿物中的含量并不很高,往往接近该元素在有时总体中的含量。
富集矿物是指岩石中所研究元素在其中的含量大大超过它在岩石总体中的含量的那种矿物。
7、元素的共生组合:具有共同或相似迁移历史和分配规律的元素常在特定的地质体中形成有规律的组合,称为元素的共生组合。
8、元素的赋存状态:也称为元素的存在形式、结合方式、相态、迁移形式等,指元素在其迁移历史的某个阶段所处的物理化学状态与共生元素的结合性质。
9、亲氧元素:是指那些能与氧形成强烈离子键化合物的元素,如K、Na、Si、Al 等,通常以硅酸盐形式聚集于岩石圈。
10、八面体择位能:任意给定的过渡元素离子,在八面体场中的晶体场稳定能一般总是大于在四面体场中的晶体场稳定能.二者的差值称为该离子的八面体择位能(OSPE). 这是离子对八面体配位位置亲和势的量度。
八面体择位能愈大,则趋向于使离子进入八面体配位位置的趋势愈强,而且愈稳定。
11、相容元素和不相容元素:在液相和结晶相(固相)的共存体系,如在岩浆结晶作用过程中,一些微量元素易以类质同像的形式进入造岩矿物晶格,称为相容元素,如Ni2+、Co2+、V3+、Cr3+、Yb3+、Eu2+等。
地球化学复习资料第1章绪论一、地球化学的定义地球化学是研究地球及子系统(含部分宇宙体)的化学组成、化学作用和化学演化的科学(涂光炽)。
地球化学是研究地球的化学成分及元素在其中分布、分配、集中、分散、共生组合与迁移规律、演化历史的科学。
二、地球化学研究的基本问题第一:元素(同位素)在地球及各子系统中的组成(量)第二:元素的共生组合和存在形式(质)第三:研究元素的迁移(动)第四:研究元素(同位素)的行为第五:元素的地球化学演化第2章自然体系中元素的共生结合规律一、元素地球化学亲和性的定义在自然体系中元素形成阳离子的能力和所显示出的有选择地与某种阴离子结合的特性称为元素的地球化学亲和性。
二、亲氧元素、亲硫元素与亲铁元素的特点地球的组分分异,由元素的性质决定。
元素在周期表中的位置:亲铁元素: 地核亲石元素: 地幔与地壳亲气元素: 大气圈和水圈三、其它的概念离子电位(π):是离子电价(W)与离子半径(R)的比值,即π=W/R电离能:指从原子电子层中移去电子所需要的能量。
电离能愈大,则电子与原子核之间结合得愈牢固。
电子亲和能:原子得到电子所放出的能量(E)叫电子亲和能。
E越大,表示越容易得到电子成为负离子。
电负性:中性原子得失电子的难易程度。
或者说原子在分子中吸引价电子的能力叫电负性。
表示为:X=I+E (X:电负性;I:电离能;E:电子亲和能)周期表上,以Li的电负性为1.0,得出其它元素相对电负性。
化学键:离子键(电子交换),共价键(电子共用),金属键(价电子自由移动),范德华键(分子间或惰性原子间,存在弱的偶极或瞬时偶极),氢键(也属分子间静电力,含H的分子与其它极性分子或负离子间)四、元素的地球化学化学分类(戈式分类)亲氧(亲石)、亲硫(亲铜)、亲铁、亲气根据地球中阴离子中氧丰度最高,其次是硫(主要形成氧的化合物和硫化物);而能以自然金属形式存在的丰度最高的元素是铁,因此,元素的地球化学亲和性主要分为以下三类:①亲氧性(亲石)元素;②亲硫性(亲铜)元素;③亲铁元素。
地球化学中的元素地球化学行为与地球形成机制研究方法地球化学是研究地球上化学元素存在、分布、转移和环境效应等方面的学科。
元素地球化学行为与地球形成机制研究方法是地球化学研究的重要内容,本文将介绍地球化学中的元素地球化学行为以及研究这些行为的方法。
一、地球化学行为的基本概念在地球化学中,元素地球化学行为是指地球上元素在地球系统中的分布、转换和循环等过程。
了解元素地球化学行为可以帮助我们揭示地球的起源、演化和变化规律。
元素地球化学行为主要包括以下几个方面:1. 元素在地壳中的分布:地壳是地球最外层的固体壳层,包括陆壳和海壳。
不同元素在地壳中的分布不均匀,有些元素丰富,而有些元素相对较少。
了解元素在地壳中的分布可以帮助我们研究地球的成分和地球壳的形成机制。
2. 元素的富集与稀释:地球上某些地方可能富集了某种元素,形成了矿床或矿点;而其他地方则可能存在元素稀释的现象。
这些元素的富集与稀释与地球内部、外部环境条件等有密切关系,研究这些现象可以帮助我们了解地球的资源分布和形成机制。
3. 元素的转移与迁移:元素在地球系统中可以通过地球体系内部和地球体系之间的相互作用进行转移和迁移。
例如,岩石的风化、溶解和沉积作用可以将元素从地壳中释放出来,进入水体或大气中。
了解元素的转移与迁移过程可以帮助我们揭示地球系统中不同组分之间的相互作用和能量传递规律。
4. 元素的循环和生物地球化学行为:生物活动对地球化学行为也有重要影响。
例如,植物的吸收作用可以将元素从土壤中吸收到植物体内,进而进入食物链。
动物的新陈代谢过程、有机物的分解和燃烧等过程也会影响元素的循环和地球化学行为。
二、元素地球化学行为研究方法为了研究元素地球化学行为,地球化学家采用了多种不同的方法和技术。
下面介绍几种常用的研究方法:1. 地球化学剖面方法:地球化学剖面是指沿着某一条地理剖面收集样品,并对其进行元素分析。
通过对地球化学剖面的研究,可以得到地壳中不同元素的含量、分布和变化规律,揭示地球元素地球化学行为的时空差异。
地球化学期末复习20221207整理名词解释:1、硅酸盐地球:地球总体元素丰度与球粒陨石相近,除了挥发元素外,主要是由硅酸盐组成的,故名硅酸盐地球。
2、元素丰度:就是化学元素在一定自然体中的相对平均含量3、元素地球化学迁移:当体系与环境处于不平衡条件时,元素将从一种赋存状态转变为另一种赋存状态,并伴随着元素组合和分布上的变化及空间上的位移,以达到与新环境条件的平衡,该过程称为元素的地球化学迁移。
4、元素地球化学亲和性:在自然体系中元素形成阳离子的能力和所显示出的有选择地与某种阴离子结合的特性称为元素的地球化学亲和性。
5、微量元素:是指构成物质的常量(或主要)元素之外的、用现代分析技术可以检测出来的所有元素。
6、不相容元素:总分配系数小于1,在硅酸盐熔体中相对富集的元素。
7、相容元素:总分配系数大于1,在早期结晶的固相矿物组合中相对富集的元素。
8、能斯特分配定律:在一定的温度压力下,微量组分在两共存相中的分配达平衡时,其在两相中的化学位相等。
9、分配系数:在温度、压力恒定的条件下,微量元素i(溶质)在两相分配达平衡时其浓度比为一常数(KD),此常数KD称为分配系数,或称能斯特分配系数。
10、放射性衰变定律:单位时间内发生衰变的原子数与现存放射性母体的原子数成正比。
其数学表达式:—dN/dt=λN11、同位素等时线:对于同期同源地质样品,它们应有相同的初始子体同位素比值和形成时间,即各样品均符合具相同参数(如对于Sm-Nd的143Nd/144Nd(0)和t)的放射成因子体同位素衰变方程,表现为各样品沿以初始子体同位素比值为截距,以(eλt-1)为斜率的直线分布,这条直线称为等时线。
12、Sr模式年龄:用假定初始87Sr/86Sr比值的方法计算出来的同位素年龄称为Sr模式年龄。
13、同位素封闭温度:对各种同位素定年体系来说,它们不是在矿物、岩石形成时的那一瞬间就开始计时,而是必须当温度降低到能使该计时体系达到封闭状态时,即子体由于热扩散丢失可以忽略不计时,子体才开始积累,这个开始计时的温度就是封闭温度,得到的年龄即为表面年龄或称冷却年龄。
第一章1.克拉克值:元素在地壳中的丰度,称为克拉克值。
元素在宇宙体或地球化学系统中的平均含量称之为丰度。
丰度通常用重量百分数(%),PPM(百万分之一)或g/t表示。
2.富集矿物:指所研究元素在其中的含量大大超过它在岩石总体平均含量的那种矿物。
3.载体矿物:指岩石中所研究元素的主要量分布于其中的那种矿物。
4. 浓集系数=工业利用的最低品位/克拉克值。
为某元素在矿床中可工业利用的最低品位与其克拉克值之比。
5.球粒陨石:是石陨石的一种。
(约占陨石的84%):含有球体,具有球粒构造,球粒一般为橄榄石和斜方辉石。
基质由镍铁、陨硫铁、斜长石、橄榄石、辉石组成。
划分为: E群——顽火辉石球粒陨石,比较稀少;O群——普通球粒陨石: H亚群—高铁群,橄榄石古铜辉石球粒损石;L亚群—低铁群,橄榄紫苏辉石球粒陨石; LL 亚群—低铁低金属亚群;C群——碳质球粒陨石,含有碳的有机化合物和含水硅酸盐,如烷烃、芳烃、烯烃、氨基酸、卤化物、硫代化合物等。
为研究生命起源提供重要信息。
分Ⅰ型、Ⅱ型和Ⅲ型。
Ⅰ型其非挥发性组成代表了太阳系星云的非挥发性元素丰度。
6.浓度克拉克值=某元素在地质体中的平均含量/克拉克值,反映地质体中某元素的浓集程度。
1.陨石在地化研究中的意义:(一)陨石的成分是研究和推测太阳系及地球系统元素成分的重要依据:(1)用来估计地球整体的平均化学成分。
○1陨石类比法,即用各种陨石的平均成分或用球粒陨石成分来代表地球的平均化学成分。
○2地球模型和陨石类比法来代表地球的平均化学成分,其中地壳占质量的1%,地幔31.4%,地核67.6%,然后用球粒陨石的镍—铁相的平均成分加5.3%的陨硫铁可以代表地核的成分,球粒陨石的硅酸盐相平均成分代表地壳和地幔的成分,用质量加权法计算地球的平均化学成分。
(2)I型碳质球粒陨石其挥发性组成代表了太阳系中非挥发性元素的化学成分。
(二)陨石的类型和成分是用来确定地球内部具层圈结构的重要依据:由于陨石可以分为三种不同的陨石—石陨石、石铁陨石和铁陨石,因而科学家设想陨石是来自某种曾经分异成一个富含金属的核和一个硅酸盐外壳的行星体,这种行星经破裂后就成为各种陨石,其中铁陨石来自核部,石铁陨石来自金属核和硅酸盐幔的界面,而石陨石则来自富硅酸盐的幔区。
元素地球化学迁移是指地球上元素在大气圈、水圈、岩石圈和生物圈之间的相互迁移过程。
而元素地球化学迁移的影响因素包括以下几个方面:一、地质作用地质作用是元素地球化学迁移的重要影响因素之一。
地球内部的构造运动和岩浆活动会影响地球上元素的迁移。
在火成岩的形成过程中,高温高压条件下会导致一些元素的迁移和浓缩,从而形成矿石资源;而在变质作用中,岩石的变形和重结晶过程也会影响元素地球化学的迁移,形成新的矿物和岩石。
二、气候环境气候环境是影响元素地球化学迁移的另一个重要因素。
气候环境的变化会导致地表水的流动和地表岩石的风化,从而影响元素的溶解和迁移。
在气候干燥的地区,地表水的流动较少,岩石的风化作用减弱,元素的迁移速率也会变慢;而在气候潮湿的地区,地表水的侵蚀作用会加剧,元素的溶解和迁移速率会相应增加。
三、生物作用生物作用也是影响元素地球化学迁移的重要因素之一。
植物和微生物在生长过程中会吸收周围土壤和水体中的元素,从而影响地球化学元素的平衡和迁移。
植物的生长会导致土壤中某些元素的浓缩,而微生物的代谢活动也会影响元素的迁移和转化。
四、人类活动人类活动也会对元素地球化学迁移产生影响。
工业生产、矿山开采、农业施肥等活动会导致大量的元素被排放到大气和水体中,从而改变地球化学元素的平衡和迁移速率。
工业废气中的重金属元素会在大气中迁移和沉积,对环境造成污染;而农业施肥导致的化肥残留也会影响土壤中元素的平衡和迁移。
地质作用、气候环境、生物作用和人类活动都是影响元素地球化学迁移的重要因素。
对于理解地球化学元素迁移规律,保护环境和资源利用具有重要意义。
需要加强对于这些影响因素的研究和认识,以实现人类与自然的和谐共生。
五、土壤特性土壤中的特性也是影响元素地球化学迁移的重要因素之一。
土壤中各种粒径成分的大小、分布、孔隙度和有机质含量等,会直接影响土壤中元素的迁移和分布。
砂土的孔隙度较大,水分渗透性强,导致土壤中的元素容易迁移;而黏土和壤土则因为孔隙度小、吸附能力强,使得土壤中的元素迁移速率较慢。